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The brain performs intelligent tasks with extremely low energy consumption. This work

takes its inspiration from two strategies used by the brain to achieve this energy

efficiency: the absence of separation between computing and memory functions and

reliance on low-precision computation. The emergence of resistive memory technologies

indeed provides an opportunity to tightly co-integrate logic and memory in hardware.

In parallel, the recently proposed concept of a Binarized Neural Network, where

multiplications are replaced by exclusive NOR (XNOR) logic gates, offers a way to

implement artificial intelligence using very low precision computation. In this work, we

therefore propose a strategy for implementing low-energy Binarized Neural Networks that

employs brain-inspired concepts while retaining the energy benefits of digital electronics.

We design, fabricate, and test a memory array, including periphery and sensing circuits,

that is optimized for this in-memory computing scheme. Our circuit employs hafnium

oxide resistive memory integrated in the back end of line of a 130-nm CMOS process,

in a two-transistor, two-resistor cell, which allows the exclusive NOR operations of the

neural network to be performed directly within the sense amplifiers. We show, based on

extensive electrical measurements, that our design allows a reduction in the number of

bit errors on the synaptic weights without the use of formal error-correcting codes. We

design a whole system using this memory array. We show on standard machine learning

tasks (MNIST, CIFAR-10, ImageNet, and an ECG task) that the system has inherent

resilience to bit errors. We evidence that its energy consumption is attractive compared

to more standard approaches and that it can use memory devices in regimes where they

exhibit particularly low programming energy and high endurance. We conclude the work

by discussing how it associates biologically plausible ideas with more traditional digital

electronics concepts.

Keywords: binarized neural networks, resistive memory, memristor, in-memory computing, biologically plausible

digital electronics, ASICs
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1. INTRODUCTION

Through the progress of deep learning, artificial intelligence
has made tremendous achievements in recent years. Its energy
consumption in graphics or central processing units (GPUs and
CPUs) remains, however, a considerable challenge, limiting its
use at the edge and raising the question of the sustainability
of large-scale artificial intelligence-based services. Brains, by
contrast, manage intelligent tasks with highly reduced energy
usage. One key difference between GPUs and CPUs on the
one hand and brains on the other hand is how they deal with
memory. In GPUs and CPUs, memory and arithmetic units
are separated, both physically and conceptually. In artificial
intelligence algorithms, which require large amounts of memory
access, considerably more energy is spent moving data between
logic and memory than in doing actual arithmetic (Pedram
et al., 2017). In brains, by contrast, neurons—which implement
most of the arithmetic—and synapses—which are believed to
store long-term memory—are entirely colocated. A major lead
for reducing the energy consumption of artificial intelligence is
therefore to imitate this strategy and design non-von Neumann
systems where logic and memory are merged (Indiveri and
Liu, 2015; Querlioz et al., 2015; Editorial, 2018; Yu, 2018).
There is new interest in this idea today with the advent of
novel nanotechnology-based non-volatile memories, which are
compact and fast and can be embedded at the core of the
Complementary Metal Oxide Semiconductor (CMOS) process
(Prezioso et al., 2015; Saïghi et al., 2015; Wang et al., 2015;
Covi et al., 2016; Serb et al., 2016; Ambrogio et al., 2018;
Yu, 2018). Another key difference between processors and the
brain is the basic nature of computations. GPUs and CPUs
typically perform all neural network computations with precise
floating-point arithmetic. In brains, most of the computation
is done in a low-precision analog fashion within the neurons
(Klemm and Bornholdt, 2005; Faisal et al., 2008), resulting in
asynchronous spikes as an output, which is therefore binary.
A second idea for cutting the energy consumption of artificial
intelligence is therefore to design systems that operate with much
lower-precision computation.

In recent years, considerable research has been conducted
to implement neural networks using analog resistive memory
as synapses—the device conductance implementing the synaptic
weights. To a large extent, neural network computation can
be done using analog electronics: weight/neuron multiplication
is performed based on Ohm’s law, and addition is natively
implemented with Kirchoff’s current law (Prezioso et al., 2015;
Serb et al., 2016; Ambrogio et al., 2018; Li et al., 2018; Wang
et al., 2018). This type of implementation is, to a certain extent,
very biologically plausible, as it reproduces the two strategies
mentioned above. The challenge of this implementation,
however, is that it requires relatively heavy analog or mixed-
signal CMOS circuitry such as operational amplifiers or
Analog-to-Digital Converters, resulting in significant area and
energy overhead.

In parallel, a novel class of neural networks has recently been
proposed—Binarized Neural Networks (or the closely related
XNOR-NETs) (Courbariaux et al., 2016; Rastegari et al., 2016). In

these neural networks, once trained, synapses as well as neurons
assume only binary values, meaning +1 or −1. These neural
networks therefore have limited memory requirements and also
rely on highly simplified arithmetic. In particular, multiplications
are replaced by one-bit exclusive NOR (XNOR) operations.
Nevertheless, Binarized Neural Networks can achieve near state-
of-the-art performance on vision tasks (Courbariaux et al., 2016;
Rastegari et al., 2016; Lin et al., 2017) and are therefore extremely
attractive for realizing inference hardware. The low precision of
Binarized Neural Networks and in particular the binary nature
of neurons—which is reminiscent of biological neurons spikes—
also endows them with biological plausibility: they can indeed be
seen as a simplification of spiking neural networks.

Great effort has been devoted to developing hardware
implementations of Binarized Neural Networks.
Using nanodevices, one natural intuition would be to adopt
the strategy proposed for conventional neural networks and
perform arithmetic in an analog fashion using Kirchoff’s law
(Yu et al., 2016; Yu, 2018). However, Binarized Neural Networks
are very digital in nature and are multiplication-less. These
networks can therefore provide an opportunity to benefit, at the
same time, from both bioinspired ideas and the achievements
of Moore’s law and digital electronics. In this work, we propose
a fully digital implementation of binarized neural networks
incorporating CMOS and nanodevices, and implementing the
biological concepts of tight memory and logic integration,
and low-precision computing. As memory nanodevices, we
use hafnium oxide-based resistive random access memory
(OxRAM), a compact and fast non-volatile memory cell that is
fully compatible with the CMOS process (Grossi et al., 2016).

However, one significant challenge to implementing a digital
system with memory nanodevices is their inherent variability
(Ielmini and Wong, 2018; Ly et al., 2018), which causes
bit errors. Traditional memory applications employ multiple
error-correcting codes (ECCs) to solve this issue. ECC
decoding circuits have large areas and high energy consumption
(Gregori et al., 2003) and add extra time to data access
due to syndrome computation and comparison. Moreover,
the arithmetic operations of error-syndrome computation are
actually more complicated than those of a Binarized Neural
Network. This solution is difficult to implement in a context
where memory and logic are tightly integrated, especially when
part of the computation is performed during sensing. This is one
of the main reasons that the state of the art of RRAM for in-
memory computing does not correct errors and is not compatible
with technologies with errors (Chen et al., 2017, 2018). In this
paper, we introduce our solution. We design, fabricate, and test
a differential oxide-based resistive memory array, including all
peripheral and sensing circuitry. This array, based on a two-
transistor/two-resistor (2T2R) bit cell, inherently reduces bit
errors without the use of ECC, and we show that it is particularly
well-adapted for in-memory computing. We then design and
simulate a fully binarized neural network based on this memory
array. We show that the XNOR operations can be integrated
directly within the sense operation of the memory array and
that the resulting system can be highly energy efficient. Based
on neural networks on multiple datasets (MNIST, CIFAR-10,
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ImageNet, and ECG data analysis), we evaluate the number of bit
errors in the memory that can be tolerated by the system. Based
on this information, we show that the memory nanodevices can
be used in an unconventional programming regime, where they
feature low programming energy (less than five picoJoules per
bit) and outstanding endurance (billions of cycles).

Partial and preliminary results of this work have been
presented at a conference (Bocquet et al., 2018). This paper adds
additional measurements of OxRAMswith shorter programming
pulses, an analysis of the impact of bit errors on more datasets
(ImageNet and ECG data analysis), and a detailed comparison
and benckmarking of our approach with processors, non-
binarized ASIC neural networks, and analog RRAM-based
neural networks.

2. MATERIALS AND METHODS

2.1. Differential Memory Array for
In-memory Computing
In this work, we fabricated a memory array for in-memory
computing with its associated peripheral and sensing circuits.
The memory cell relies on hafnium oxide (HfO2) oxide-based
resistive Random Access Memory (OxRAM). The stack of the
device is composed of a HfO2 layer and a titanium layer. Both
layers have a thickness of ten nanometers, and they grow between
two titanium nitride (TiN) electrodes. Our devices are embedded
within the back-end-of-line of a commercial 130-nmCMOS logic

process (Figure 1A), allowing tight integration of logic and non-
volatile memory (Grossi et al., 2016). The devices are integrated
on top of the fourth (copper) metallic layer.

We chose hafnium oxide OxRAMs because they are known
to provide non-volatile memories compatible with the modern
CMOS process and only involve foundry-friendly materials and
process steps.

After a one-time forming process, such devices can switch
between low-resistance and high-resistance states (LRS andHRS)
by applying positive or negative electrical pulses, respectively.
Our work could be reproduced with other types of memories.
NOR flash cells, which are readily available in commercial
processes, could be used, and their potential for neuromorphic
inference has been proven Merrikh-Bayat et al. (2017). However,
they suffer from high programming voltages (higher than ten
volts) requiring charge pumps, have limited endurance, and are
not scalable to the most advanced technology nodes (Dong et al.,
2017). Emerging memories such as phase change memory or

spin torque magnetoresitive memory could also be used adopting
the strategies presented in this paper. These technologies do not

require a forming process, and they can bring enhanced reliability
with regards to OxRAMs but come with an increased process cost
(Chen, 2016).

Conventionally, OxRAMs are organized in a “One Transistor-
One Resistor” structure (1T1R), where each nanodevice is
associated with one access transistor (Chen, 2016). The LRS
and HRS are used to mean the zero and one logic values or

FIGURE 1 | (A) Scanning Electron Microscopy image of the back-end-of-line of the CMOS process integrating an OxRAM device. (B) Photograph and (C) simplified

schematic of the one kilobit in-memory computing-targeted memory array characterized in this work.
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FIGURE 2 | (A) Schematic of the precharge sense amplifier used in this work to read 2T2R memory cells. (B) Schematic of the precharge sense amplifier augmented

with an XNOR logic operation.

the inverse. The read operation is then achieved by comparing
the electrical resistance of the nanodevice to a reference value
intermediate between the typical values of resistances in HRS and
LRS. Unfortunately, due to device variability, OxRAMs are prone
to bit errors: the HRS value can become lower than the reference
resistance, and the LRS value can be higher than the reference
resistance. The device variability includes both device-to-device
mismatch and the fact that, within the same device, the precise
value of HRS and LRS resistance changes at each programming
cycle (Grossi et al., 2018).

To limit the number of bit errors, in this work, we fabricated a
memory array with a “Two Transistors-Two Resistors” structure
(2T2R), where each bit of information is stored in a pair
of 1T1R structures. A photograph of the die is presented in
Figure 1B and its simplified schematic in Figure 1C. Information
is stored in a differential fashion: the pair LRS/HRS means
logic value zero, while the pair HRS/LRS means logic value
one. In this situation, readout is performed by comparing the
resistance values of the two devices. We therefore expect bit
errors to be less frequent, as a bit error only occurs if a device
programmed in LRS is more resistive than its complementary
device programmed in HRS. This concept of 2T2R memory
arrays has already been proposed, but its benefits in terms of
bit error rate have never been demonstrated until this work
(Hsieh et al., 2017; Shih et al., 2017).

The programming of devices in our array is made sequentially,
i.e., on a device-by-device basis. The first time that the memory
array is used, all devices are “formed.” To form the device of
row i and column j, the bit line BLj, connected to the bottom
electrode of the memory device, is set to ground, and the word
line WLi is set to a voltage chosen to limit the current to a
“compliance value” of 200µA. A voltage ramp is applied to the

sense line SLi connected to the top electrode of the memory
device, increasing from 0 to 3.3V at a ramp rate of 1,000 V/s.
This forming operation is performed only once over the lifetime
of the device. To program a device into its LRS (SET operation),
the bit line BLj is set to ground, while the sense line SLi is set to
2V . The word line WLi is again set to a voltage chosen to limit
the current to a compliance value, ranging from 20 to 200µA
depending on the chosen programming condition. To program a
device into its HRS (RESET operation), a voltage of opposite sign
needs to be applied to the device, and the current compliance
is not needed. The sense line SLi is therefore set to the ground,
while the word lineWLi is set to a value of 3.3V , and the bit line
BLj to a “RESET voltage” ranging from 1.5 to 2.5V depending on
the chosen programming condition. For both SET and RESET
operations, the programming duration can range from 0.1 to
100µs. During programming operations, all bit, select, and word
lines corresponding to non-selected devices are grounded, with
the exception of the bit line of the complementary device of the
selected device: this one is programmed to the same voltage as the
one applied to the sense line to avoid any disturbing effect on the
complementary device.

In our fabricated circuit, the readout operation is performed
with precharge sense amplifiers (PCSA) (Zhao et al., 2009, 2014)
(Figure 2A). These circuits are highly energy-efficient due to
their operation in two phases, precharge and discharge, avoiding
any direct path between the supply voltage and ground. First, the
sense signal (SEN) is set to ground and SL to the supply voltage,
which precharges the two selected complementary nanodevices
as well as the comparing latch at the same voltage. In the second
phase, the sense signal is set to the supply voltage, and the
voltages on the complementary devices are discharged to ground
through SL. The branch with the lowest resistance discharges
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faster and causes its associated inverter output to discharge to
ground, which latches the complementary inverter output to the
supply voltage. The two output voltages therefore represent the
comparison of the two complementary resistance values. In our
test chip, the read time is approximately 10 ns and results from
the high capacitive load associated with our probe testing setup.
Without this high capacitive load, the switching time would be
determined by the time to resolve the initial metastability of the
circuit. This switching time can be as fast as 100 ps in a scaled
technology (Zhao et al., 2014).

We fabricated a differential memory array with 2,048 devices,
therefore implementing a kilobit memory array. Each column of
complementary nanodevices features a precharge sense amplifier,
and rows and columns are accessed through integrated CMOS
digital decoders. The pads of the dies are not protected from
electrostatic discharge, and the dies were tested with commercial
22-pad probe cards. In all the experiments, voltages are set
using a home-made printed circuit board, and pulse voltages are
generated using Keysight B1530A pulse generators. In the design,
the precharge sense amplifiers can optionally be deactivated
and bypassed, which allows the nanodevice resistance to be
measured directly through external precision source monitor
units (Keysight B1517a).

2.2. Design of In-memory Binarized Neural
Network Based on the Differential Memory
Building Block
This work aims at implementing Binarized Neural Networks in
hardware. In these neural networks, the synaptic weights, as well
as the neuronal states, can take only two values, +1 and −1,
while these parameters assume real values in conventional neural
networks. The equation for neuronal value Aj in a conventional
neural network is:

Aj = f

(

∑

i

WjiXi + bj

)

, (1)

where Xi are the neuron inputs, Wji the synaptic weights values,
bj a bias term, and f the neural activation function, which
introduces non-linearity into the network. Typical examples
of activation functions are the sigmoid function, the softmax
function, and the hyperbolic tangent function. In Binarized
Neural Networks, the activation function is much simpler, as it
is substituted by the sign function, as shown in Equation (2):

Aj = sign

(

POPCOUNT
i

(

XNOR
(

Wji,Xi

))

− Tj

)

. (2)

In this equation, Tj is the so-called threshold of the neuron, and
it is learned during training. POPCOUNT is the function that
counts the number of ones in a series of bits, and sign is the
sign function.

The training process of binarized neural networks differs
from that of conventional neural networks. During training,
the weights assume real weights in addition to the binary
weights, which are equal to the sign of the real weights.
Training employs the classical error backpropagation equations

with several adaptations. The binarized weights are used in the
equations of both the forward and the backward passes, but the
real weights change as a result of the learning rule (Courbariaux
et al., 2016). Additionally, as the activation function of binarized
neural networks is the sign function and is not differentiable,
we consider the sign function as the first approximation of the
hardtanh function,

Hardtanh(x) = Clip(x,−1, 1), (3)

and we use the derivative of this function as a replacement for
the derivative of the sign function in the backward pass. This
replacement is a key element for training BNN successfully. The
clip interval in Equation (3) is not learned and is chosen to
be between −1 and 1 for all neurons. Using a larger interval
would indeed increase the vanishing gradient effect, while using a
smaller interval would lead to derivatives higher than one, which
can cause exploding gradient effects.

Finally, the Adam optimizer is used to stabilize learning
(Kingma and Ba, 2014). A technique known as batch-
normalization is employed at each layer of the neural network
(Ioffe and Szegedy, 2015). Batch-normalization shifts and scales
the neuronal activations over a batch during the training process.
This method is used optionally in conventional neural networks
to accelerate and stabilize learning. Using this technique becomes
essential when training binarized neural networks to reach high
accuracies, as it ensures that neuronal activations utilize both
+1 and −1 values. At inference time, batch-normalization is no
longer necessary, and the threshold learned by this technique can
be used directly as the neuronal threshold in Equation (2).

With this learning technique, binarized neural networks
function surprisingly well. They can achieve near state-of-the-
art performance on image recognition tasks such as CIFAR-
10 and ImageNet (Lin et al., 2017). After learning, the real
weights serve no more purpose and can be discarded. This
makes binarized neural networks exceptional candidates for
hardware implementation of neural network inference. Not only
are their memory requirements minimal (one bit per neuron
and synapse), but their arithmetic is also vastly simplified.
Multiplication operations of Equation (1) are expensive in terms
of area and energy consumption, and they are replaced by one-bit
exclusive NOR (XNOR) operations in Equation (2). Additionally,
the real sums in Equation (1) are replaced by POPCOUNT
operations, which are equivalent to integer sums with a low
bit width.

It is possible to implement ASIC Binarized Neural Networks
with solely CMOS (Ando et al., 2017; Bankman et al., 2018).
However, a more optimal implementation would rely on
emerging non-volatile memories and associate logic andmemory
as closely as possible. This approach can provide non-volatile
neural networks and eliminate the von Neumann bottleneck
entirely: the nanodevices can implement the synaptic weights,
while the arithmetic can be done in CMOS. Most of the literature
proposing the use of emerging memories as synapses relies
on an ingenious technique to perform the multiplications and
additions of Equation (1) that relies on analog electronics: the
multiplications are done based on Ohm’s law and the addition
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FIGURE 3 | (A) Schematization of the implemented Binarized Neural Network highlighting connections to one specific neuron. (B) Schematization of the full

architecture to implement the Binarized Neural Network in the “parallel to sequential” configuration. The system assembles a memory block surrounded by logic

circuits and moves minimal data between the blocks. The architecture is presented with three rows and three columns (i.e., N = M = 3) of kilobit memory blocks (i.e.,

n = 32).

based on Kirchoff’s current law (Yu et al., 2016; Ambrogio
et al., 2018). This analog approach can be transposed directly to
binarized neural networks (Tang et al., 2017; Sun et al., 2018a,b;
Yu, 2018). However, binarized neural networks are inherently
digital objects that rely, as previously remarked, on simple logic
operation: XNOR operations and low bit-width sums. Therefore,
here, we investigate their implementation with purely digital
circuitry. This concept also recently appeared in Natsui et al.
(2018) and Giacomin et al. (2019) and in our preliminary version
of this work (Bocquet et al., 2018). Our work is the first one to
present measurements on a physical memory array that include
the effect of bit errors.

A first realization is that the XNOR operations can be
realized directly within the sense amplifiers. For this, we follow
the pioneering work of Zhao et al. (2014), which shows that
a precharge sense amplifier can be enriched with any logic
operation. In our case, we can add four additional transistors
in the discharge branches of a precharge sense amplifier
(Figure 2B). These transistors can prevent the discharge and
allow the implementation of the XNOR operation between input
voltage X and the value stored in the complementary OxRAM
devices in a single operation.

Based on the basic memory array with PCSAs enriched
with XNOR, we designed the whole system implementing a

Binarized Neural Network. The overall architecture is presented
in Figure 3. It is inspired by the purely CMOS architecture
proposed in Ando et al. (2017), adapted to the constraints
of OxRAM. The design consists of the repetition of basic
cells organized in a matrix of N by M cells. These basic cells
incorporate a n×nOxRAMmemory block with XNOR-enriched
PCSAs and POPCOUNT logic. The whole system, which aims
at computing the activation of neurons (Equation 2), features a
degree of reconfigurability to adapt to different neural network
topologies: it can be used either in a “parallel to sequential” or in
a “sequential to parallel” configuration.

The parallel to sequential configuration (presented in
Figure 3) can deal with layers with up to n × N input neurons
and up to n ×M output neurons. In this situation, at each clock
cycle, the system computes the activations of M output neurons
in parallel. At each clock cycle, each basic cell reads an entire
row of its OxRAM memory array while performing the XNOR
operation with input neuron values. The results are used to
compute the POPCOUNT operation over a subset of the indices
i in Equation (2), using fully digital five-bit counters embedded
within the cell. Additional logic, called “popcount tree” and only
activated in this configuration, computes the full POPCOUNT
value operation over a column by successively adding the five-
bit-wide partial POPCOUNT values. The activation value of the
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FIGURE 4 | (a) Distributions of the LRS and HRS of the OxRAM devices in an array programmed with a checkerboard pattern. RESET voltage of 2.5V, SET current of

55µA, and programming time of 1µs. (b,c) Proportion of 1 values read by the on-chip precharge sense amplifier, over 100 whole-array programming cycles of a

memory array, for the two complementary checkerboards configuration. (d) Rate of programming failure indicated of the precharge sense amplifier circuits as a

function of the ratio between HRS and LRS resistance (measured by a sense measure unit) in the same configuration as (a–c). (e–f) Proportion of 1 values read by the

on-chip precharge sense amplifier, over 100 whole-array programming cycles of a memory array, for the last layer of a binarized neural network trained on MNIST

(details in body text).

neuron is obtained by subtracting the complete POPCOUNT
value at the bottom of the column from a threshold value stored
in a separate memory array; the signed bit of the result gives the
activation value. At the next clock cycle, the next rows in the
OxRAM memory arrays are selected, and the activations of the
nextM neurons are computed.

The sequential to parallel configuration (not presented), by
contrast, can be chosen to deal with a neural network layer with
up to n2 inputs neurons and up to NM output neurons. In
this configuration, each basic cell of the system computes the
activation of one neuron Aj. The input neurons Xi are presented
sequentially by subsets of n inputs. At each clock cycle, the
digital circuitry therefore computes only a part of Equation (2).
The partial POPCOUNT is looped to the same cell to compute
the whole POPCOUNT sequentially. After the presentations of
all inputs, the threshold is subtracted, the binary activation is
extracted, and Equation (2) has been entirely computed.

This whole system was designed using synthesizable
SystemVerilog. The memory blocks are described in behavioral
SystemVerilog. We synthesized the system using the 130-nm
design kit used for fabrication, as well as using the design kit of
an advanced commercial 28-nm process for scaling projection.

All simulations reported in the results sections were
performed using Cadence Incisive simulators. The estimates
for system-level energy consumption were obtained using the
Cadence Encounter tool. We used Value Change Dump (VCD)
files extracted from simulations of practical tasks so that the
obtained energy values would reflect the operation of the
system realistically.

3. RESULTS

3.1. Differential Memory Allows Memory
Operation at Reduced Bit Error Rate
This section first presents the results of electrical characterization
of the differential OxRAM arrays. We program the array with
checkerboard-type data, alternating zero and one bits, using

programming times of one microsecond. For programming
devices in HRS (RESET operation), the access transistor is fully
opened, and a reset voltage of 2.5V is used. For programming
devices in LRS (SET operation), the gate voltage of the access
transistor is chosen to ensure a compliance current of 55µA.
Figure 4a shows the statistical distribution of the LRS and HRS
of the cells, based on 100 programming cycles of the full array.
This graph uses a standard representation in the memory field,
where the y axis is expressed as the number of standard deviations
of the distribution (Ly et al., 2018). The figure superimposes
distributions of left (BL) and right (BLb) columns of the array,
and no significant difference is seen between BL and BLb devices.
The LRS and HRS distributions are clearly separate but overlap
at a value of three standard deviations, which makes bit errors
possible. If a 1T1R structure were used, a bit error rate of 0.012
(1.2%) would be seen with this distribution. By contrast, at the
output of the precharge sense amplifiers, a bit error rate of 0.002
(0.2%) is seen, providing a first indication of the benefits of the
2T2R approach. Figures 4b,c show the mean error (using the
2T2R configuration) on the whole array for the two types of
checkerboards. We see that all devices can be programmed in
HRS and LRS. A few devices have an increased bit error rate.
This graph highlights the existence of both cycle-to-cycle and
device-to-device variability and the absence of “dead” cells.

We now validate in detail the functionality of the precharge
sense amplifiers. The precise resistance of devices is first
measured by deactivating the precharge sense amplifiers and
using the external source monitor units. Then, the precharge
sense amplifiers are reactivated, and a sense operation is
performed. Figure 4d plots the mean measurement of the sense
amplifiers as a function of the ratio between the two resistances
that are being compared, superimposed on the ideal behavior of a
sense amplifier. The sense amplifiers show excellent functionality
but can make mistakes if the two resistances differ by less
than a factor of five. Finally, Figures 4e,f show the results of
repeating the experiments of Figures 4b,c in a more realistic
situation and on a different die. We trained a memory array 100
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times with weights corresponding to the last layer of a binarized
neural network trained on the MNIST task of handwritten digit
recognition. As in the checkerboard case, no dead cell is seen, and
a similar degree of cycle-to-cycle and device-to-device variation
is exhibited.

The programming rates are strongly dependent on the
programming conditions. Figure 5 shows the mean number of
incorrect bits on a whole array for various combinations of
programming time (from 0.1 to 100µs), RESET voltage (between
1.5 and 2.5 Volts), and SET compliance current (between 28 and
200µA). We observe that the bit error rate depends extensively

FIGURE 5 | Number of errors for different programming conditions, as

measured by precharge sense amplifier, for a 2T2R configuration on a kilobit

memory array. The “< 1” label means that no errors were detected. The error

bars present the minimum and maximum number of detected errors over five

repetitions of the experiments.

on these three programming parameters, the SET compliance
current having the most significant impact.

In Figure 6, we look more precisely at the effects of cycle-
to-cycle device variability and device aging. A device and its
complementary device were programmed through 700 million
cycles. Figures 6A,B show the distribution of the LRS andHRS of
the device under test and its complementary device after different
number of cycles, ranging from the first one to the last one. We
can observe that as the devices are cycled, the LRS and HRS
distributions become less separated and start to overlap at a lower
number of standard deviations. This translates directly to the
mean resistance of the devices in HRS and LRS (Figures 6C,D),
which become closer as the device ages. More importantly, the
aging process impacts the device bit error rate (Figure 6E): the
bit error rate of the device and its complementary device increase
by several orders of magnitudes over the lifetime of the device.
The same effect is seen on the bit error rate resulting from
the precharge sense amplifier (2T2R), but it remains at a much
lower level: while the 1T1R bit error rate goes above 10−3 after
a few million cycles, the 2T2R remains below this value over
the 700 million cycles. This result highlights that the concept of
cyclability depends on the acceptable bit error rate and that the
cyclability at constant bit error rate can be considerably extended
by using the 2T2R structure. It should also be highlighted
that the cyclability depends tremendously on the programming
conditions. Figures 7A,B shows endurance measurements with
a reset voltage of 1.5V (all other programming conditions
are identical to Figures 6A–E). We can see that the device
experiences no degradation through more than ten billion cycles.
Over that time, the 2T2R bit error rate remains below 10−4.

We now aim at quantifying and benchmarking the benefits
of the 2T2R structure more precisely. We performed extensive
characterization of bit error rates on the memory array in various

FIGURE 6 | (A,B) Distribution of resistance values, (C,D) mean resistance value, and (E) mean bit error rate over 10 million cycles, as measured by precharge sense

amplifier, in the 2T2R configuration, as a function of the number of cycles for which a device has been programmed. RESET voltage of 2.5V, SET current of 200µA,

and programming time of 1µs.
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FIGURE 7 | (A,B) Mean resistance value of the BL and BLb device over 10 thousand cycles for measurements of a device pair over 5× 1010 cycles. RESET voltage

of 1.5V, SET current of 200µA, and programming time of 1µs.

FIGURE 8 | (A) Experimental bit error rate of the 2T2R array, as measured by precharge sense amplifier, as a function of the bit error rate obtained with individual

(1T1R) RRAM devices under the same programming conditions. The detailed methodology for obtaining this graph is presented in the body text. Bit error rate obtained

with (B) Single Error Correcting (SEC) and (C) Single Error Correcting Double Error Detection (SECDED) ECC as a function of the error rate of the individual devices.

regimes. Figure 8A presents different experiments where the
2T2R bit error rate is plotted as a function of the bit error rate
that would be obtained by using a single device programmed in
the same conditions. The different points are obtained by varying
the compliance current Ic during SET operations, and the graph
associates two types of experiments:

• The points marked as “Low Ic” are obtained using whole-
array measurement, where devices are programmed with a
low SET compliance current to ensure a high error rate. Each
device in the memory array is programmed once (following
the checkerboard configuration), and all synaptic weights are
read using the on-chip precharge sense amplifiers. The plotted
bit error rate is the proportion of weights for which the
read weight differs from the weight value targeted by the
programming operation.

• The points marked as “High Ic” are obtained bymeasurements
on a single device pair. A single 2T2R structure in the array
is programmed ten million times by alternating programming
to +1 and −1 values. The value programmed in the 2T2R
structure is read using an on-chip precharge sense amplifier
after each programming operation. The plotted bit error rate
is the proportion of read operations for which the read weight
differs from the targeted value.

We can see that the 2T2R bit error rate is always lower
than the 1T1R one. The difference is larger for a lower
bit error rate and reaches four orders of magnitude for
a 2T2R bit error rate of 10−8. The black line represents
calculations where the precharge sense amplifier is supposed to
be ideal (i.e., to follow the idealized dotted characteristics of
Figure 4C).
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FIGURE 9 | Recognition rate on the validation datasets of the fully connected

neural network for MNIST, the convolutional neural network for CIFAR10, and

AlexNet for ImageNet (Top 5 and Top 1) and in the ECG analysis task, as a

function of the bit error rate over the weights during inference. Each

experiment was repeated five times; the mean recognition rate is presented.

Error bars represent one standard deviation.

To interpret the results of the 2T2R approach in a
broader perspective, we benchmark them with standard error-
correcting codes. Figures 8B,C show the benefits of two codes,
using the same plotting format as Figure 8A: a Single Error
Correction (SEC) and a Single Error Correction Double Error
Detection (SECDED) code, presented with different degrees of
redundancy. These simple codes, formally known as Hamming
and extended Hamming codes, are widely used in the memory
field. Interestingly, we see that the benefit of these codes
are very similar to the benefit of our 2T2R approach with
an ideal sense amplifier, at equivalent memory redundancy
(e.g., SECDED(8,4)), although our approach uses no decoding
circuit and performs the equivalent of error correction directly
within the sense amplifier. By contrast, ECCs can also reduce
bit errors, to a lesser extent, using less redundancy, but the
required decoding circuits utilize hundreds to thousands of
logic gates (Gregori et al., 2003). In a context where logic and
memory are tightly integrated, these decoding circuits would
need to be repeated many times, and as their logic is much
more complicated than that of binarized neural networks, they
would be the dominant source of computation and energy
consumption. ECC circuits are also incompatible with the idea
of integrating XNOR operations within the sense amplifiers and
cause important read latency.

3.2. Do All Errors Need to Be Corrected?
Based on the results of the electrical measurements, and before
discussing the whole system, it is important to determine the
OxRAMbit error rate levels that can be tolerated for applications.
To answer this question, we performed simulations of binarized
neural networks on four different tasks:

• MNIST handwritten digit classification (LeCun et al.,
1998), the canonical task of machine learning. We use
a fully connected neural network with two 1024-neuron
hidden layers.

• The CIFAR-10 image recognition task (Krizhevsky and
Hinton, 2009), which consists of recognizing 32 × 32 color
images spread between ten categories of vehicles and animals.
We use a deep convolutional network with six convolutional
layers using kernels of 3 × 3 and a stride of one, followed by
three fully connected layers.

• The ImageNet recognition task, which consists of recognizing
224 × 224 color images out of 1000 classes. This task is
considerably more difficult than MNIST and CIFAR-10. We
use the historic AlexNet deep convolutional neural network
(Krizhevsky et al., 2012).

• A medical task involving the analysis of electrocardiography
(ECG) signals: automatic detection of electrode misplacement.
This binary classification challenge takes as input the ECG
signals of twelve electrodes. The experimental trial data are
sampled at 250 Hz and have a duration of three seconds
each. To solve this task, we employ a convolutional neural
network composed of five convolutional layers and two fully
connected layers. The convolutional kernel (sliding window)
sizes decrease from 13 to 5 in each subsequent layer. Each
convolutional layer produces 64 filters detecting different
features of the signal.

Fully binarized neural networks were trained on these tasks
on NVIDIA Tesla GPUs using Python and the PyTorch deep-
learning framework. Once the neural networks were trained, we
ran them on the dataset validation sets, artificially introducing
errors into the neural network weights (meaning some +1
weights were replaced by −1 weights, and reciprocally). Using
this technique, we could emulate the impact of OxRAM bit
errors. Figure 9 shows the resulting validation accuracy as a
function of the introduced bit error rate for the four tasks
considered. In the case of ImageNet, both the Top-1 (proportion
of validation images where the right label is the top choice of the
neural network) and the Top-5 (proportion of validation images
where the right label is within the top five choices of the neural
network) are included.

On the three-vision tasks (MNIST, CIFAR-10, and ImageNet),
we see that extremely high levels of bit errors can be tolerated: up
to a bit error rate of 10−4, the network performs as well as with no
errors. Minimal performance reduction starts to be seen with bit
error rates of 10−3 (the Top-5 accuracy on ImageNet is degraded
from 69.7% to 69.5%). At bit error rates of 0.01, the performance
reduction becomes significant. The reduction is more substantial
for harder tasks: MNIST accuracy is only degraded from 98.3%
to 98.1%, CIFAR-10 accuracy is degraded from 87.5% to 86.9%,
while ImageNet Top-5 accuracy is degraded from 69.7% to 67.9%.

The ECG task also shows extremely high bit error tolerance,
but bit errors have an effect more rapidly than in the vision tasks.
At a bit error rate of 10−3, the validation accuracy is reduced from
82.1% to 78.7%, and at a bit error rate of 0.01, to 68.4%. This
difference between vision and ECG tasks probably originates in
the fact that ECG signals carry a lot less redundant information
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FIGURE 10 | Dark blue circles: MNIST validation accuracy as a function of the inference energy of our Binarized Neural Network hardware design. Light blue squares:

same, as a function of the energy used for arithmetic operation in a real-valued neural network employing eight-bit fixed-point arithmetic. The different points are

obtained by varying the number of hidden neurons in (A) a one hidden layer neural network and (B) a two hidden layers neural network. Insets: number of synapses in

each situation.

than images. Nevertheless, we see that even for ECG tasks, high
bit error rates can be accepted with regards to the standards of
conventional digital electronics.

4. DISCUSSION

4.1. Projection at the System Level
4.1.1. Impact of In-Memory Computation
We now use all the paper results to discuss the potential of
our approach. Based on our ASIC design, using the energy-
evaluation technique described at the end of theMethods section,
we find that our system would consume 25 nJ to recognize one
handwritten digit, using a fully connected neural network with
two hidden layers of 1,024 neurons. This is considerably less
than processor-based options. For example, Lane et al. (2016)
analyses the energy consumption of inference on CPUs and
GPUs: operating a fully connected neural network with two
hidden layers of 1,000 neurons requires 7 to 100 millijoules
on a low-power CPU (from NVIDIA Tegra K1 or Qualcomm
Snapdragon 800 systems on the chip) and 1.3 millijoules on a
low-power GPU (NVIDIA Tegra K1).

These results are not surprising due to the considerable
overhead for accessing memory in modern computers. For
example, Pedram et al. (2017) shows that accessing data in a
static RAM cache consumes around fifty times more energy
than the integer addition of this data. If the data is stored in
the external dynamic RAM, the ratio is increased to more than
3,000. Binarized Neural Networks require minimal arithmetic:
no multiplication and only integer addition with a low bit width.
When operating a Binarized Neural Network on a CPU or GPU,
almost the entirety of the energy is used to move data, and

the inherent topology of the neural network is not exploited
to reduce data movement. Switching to in-memory or near-
memory computing approaches therefore has the potential to
reduce energy consumption drastically for such tasks. This is
especially true as, in inference hardware, synaptic weights are
static and can be programmed to memory only once if the circuit
does not need to change function.

4.1.2. Impact of Binarization
We now look specifically at the benefits of relying on Binarized
Neural Networks rather than real-valued digital ones. Binarized
Neural Networks feature considerably simpler architecture than
conventional neural networks but also require an increased
number of neurons and synapses to achieve equivalent accuracy.
It is therefore essential to compare the binarized and real-
value approaches.

Most digital ASIC implementations of neural networks have
an inference function with eight-bit fixed-point arithmetic,
the most famous example being the tensor processing units
developed by Google (Jouppi et al., 2017). At this precision, no
degradation is usually seen for inference with regards to 32- and
64-bis floating-point arithmetic.

To investigate the benefits of Binarized Neural Networks,
Figure 10 looks at the energy consumption for inference over
a single MNIST digit. We consider two architectures: a neural
network with a single hidden layer (Figure 10A) and another
with two hidden layers (Figure 10B), and we vary the number of
hidden neurons. Figures 10A,B plot on the x-axis the estimated
energy consumption of a Binarized Neural Network using our
architecture based on the flow presented in the Methods section.
It also plots the energy required for the arithmetic operations
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(sum and product) of an eight-bit fixed-point regular neural
network, neglecting the overhead that is considered for the
Binarized Neural Network. For both types of networks, the y-
axis shows the resulting accuracy in the MNIST task. We see
that at equivalent precision, the BinarizedNeural Network always
consumes less energy than the arithmetic operations of the real-
valued one. It is remarkable that the energy benefit depends
significantly on the targeted accuracy and should therefore be
investigated on a case-by-case basis. The highest energy benefits,
a little less than a factor ten, are seen at lower targeted precision.

Binarized Neural Networks have other benefits with regards to
real-valued digital networks: if the weights are stored in RRAM,
the programming energy is reduced due to the lower memory
requirements of Binarized Neural Networks. The area of the
overall circuit is also expected to be reduced due to the absence of
multipliers, which are high-area circuits.

4.1.3. Comparison With Analog Approaches
As mentioned in the introduction, a widely studied approach
for implementing neural networks with RRAM is to rely on
an analog electronics strategy, where Ohm’s law is exploited
for implementing multiplications and Kirchoff’s current law
for implementing additions (Prezioso et al., 2015; Serb et al.,
2016; Shafiee et al., 2016; Ambrogio et al., 2018; Li et al.,
2018; Wang et al., 2018). The digital approach presented in
this paper cannot be straightforwardly compared to the analog
approach: the detailed performance of the analog approach
depends tremendously on its implementation details, device
specifics, and the size of the neural network. Nevertheless, several
points can be raised.

First, the programming of the devices is much simpler in our
approach than in the analog one: one only needs to program a
device and its complementary device in LRS and HRS, which
can be achieved by two programming pulses. It is not necessary
to verify the programming operation, as the neural network has
inherent bit-error tolerance. Programming RRAM for analog
operation is a more challenging task and usually requires a
sequence of multiple pulses (Prezioso et al., 2015), which leads
to higher programming energy and device aging.

For the neural network operation, the analog approach and
ours function differently. Our approach reads synaptic values
using the sense amplifier, which is a highly energy-efficient
and fast circuit that can operate at hundreds of picoseconds in
advanced CMOS nodes (Zhao et al., 2014). This sense amplifier
inherently produces the multiplication operation, and then the
addition needs to be performed using a low bit-width digital
integer addition circuit. The ensemble of a read operation and the
corresponding addition typically consumes fourteen femtojoules
in our estimates in advanced node. In the analog approach,
the read operation is performed by applying a voltage pulse
and inherently produces the multiplication through Ohm’s law
but also the addition though Kirchoff law. This approach is
attractive, but, on the other hand, requires the use of CMOS
analog overhead circuitry such as an operational amplifier, which
can bring high energy and area overhead. Which approach is
the most energy-efficient between ours and the analog one will

TABLE 1 | RRAM Properties with different programming conditions.

Programming

condition

Strong

(Figure 6)

Optimized

endurance

(Figure 7)

Optimized

programming

energy

SET compliance current 200µA 200µA 200µA

RESET voltage 2.5V 1.5V 2V

Programming time 1µs 1µs 100 ns

2T2R bit error rate

(before aging)

< 10−7 < 10−4 < 10−5

Programming energy 200 ∼ 400pJ 150 ∼ 400pJ 20 ∼ 30pJ

(SET/RESET)

Cyclability (number of

cycles at BER < 10−3)

> 108 > 1010 > 108

probably depend tremendously on memory size, application, and
targeted accuracy.

Another advantage of the digital approach is that it is much
simpler to design, test, and verify as it relies on all standard
VLSI design tools. On the other hand, an advantage of the
analog approach is that it may, for a small memory size, function
without access transistors, resulting in higher memory densities
(Prezioso et al., 2015).

4.1.4. Impact in Terms of Programming Energy and

Device Aging
A last comment is that the bit error tolerance of binarized
neural networks can have considerable benefits at the system
level. Table 1 summarizes the measured properties of RRAM
cells under different programming conditions, chosen from
those presented in Figure 5. We consider only the conditions
with bit error rates below 10−3 (i.e., corresponding to a “<
1” data point in Figure 5), as this constraint makes them
appropriate for use for all tasks considered in section 3.2. The
“strong” programming conditions are the ones presented in
Figure 6. They feature a low bit error rate before aging but high
programming energy. The other two columns correspond to two
optimized choices. The conditions optimized for programming
energy are the conditions of Figure 5 with bit error rates below
10−3 and the lowest programming energy. They use a lower
RESET voltage (2.0V) than the strong conditions and a shorter
programming time (100 ns). The cyclability of the device—
defined as the number of programming cycles a cell can perform
while retaining a bit error rate below 10−3—remains comparable
to the strong programming conditions. The conditions optimized
for endurance are, by contrast, the conditions of Figure 5 with a
bit error rate below 10−3 and the highest cyclability: more than
1010 cycles, as already evidenced in Figure 7. These conditions
use a low RESET voltage 1.5V but require a programming time
of 1µs.

4.2. Conclusion
This work proposes an architecture for implementing binarized
neural networks with RRAMs and incorporates several
biologically plausible ideas:
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• Fully co-locating logic memory,
• Relying only on-low precision computation (through the

Binarized Neural Network concept),
• Avoiding multiplication altogether, and
• Accepting some errors without formal error correction.

At the same time, our approach relies on conventional
microelectronics ideas that are non-biological in nature:

• Relying on fixed-point arithmetic to compute sums, whereas
brains use analog computation,

• Using sense amplifier circuits, which are not brain-inspired,
and

• Using a differential structure to reduce errors, a traditional
electrical engineering strategy.

Based on these ideas, we designed, fabricated, and extensively
tested a memory structure with its peripheral circuitry and
designed and simulated a full digital system based on this
memory structure. Our results show that this structure allows
neural networks to be implemented without the use of Error-
Correcting Codes, which are usually used with emerging
memories. Our approach also features very attractive properties
in terms of energy consumption and can allow that use of RRAM
devices in a “weak” programming regime, where they have low
programming energy and outstanding endurance. These results
highlight that although in-memory computing cannot efficiently
rely on Error-Correcting Codes, it can still function without
stringent requirements on device variability if a differential
memory architecture is chosen.

When working on bioinspiration, drawing the line between
bio-plausibility and embracing the differences between the
nanodevices of the brain and electronic devices is always
challenging. In this project, we highlight that digital electronics
can be enriched by biologically plausible ideas. When working
with nanodevices, it can be beneficial to incorporate device
physics questions into the design, and not necessarily to target
the level of determinism that we have been accustomed to
by CMOS.

This work opens multiple prospects. On the device front, it
could be possible to develop more integrated 2T2R structures to
increase the density of the memories. The concept of this work
could also be adapted to other kinds of emerging memories, such
as phase-change memories and spin torque magnetoresistive
memories. At the system level, we are now in a position to
fabricate larger systems and to investigate the extension of our
concept to more varied forms of neural network architecture
such as convolutional and recurrent networks. In the case
of convolutional networks, a dilemma appears between taking
the in-memory computing approach to the fullest degree, by
replicating physically convolutional kernels or implementing
some sequential computation to minimize resources, as works
have started to evaluate already. These considerations open the
way for truly low-energy artificial intelligence for both servers
and embedded systems.
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