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The exponential modality of linear logic associates a commutative comonoid !A to every formula A, this enabling to duplicate the formula in the course of reasoning. Here, we explain how to compute the free commutative comonoid !A as a sequential limit of equalizers in any symmetric monoidal category where this sequential limit exists and commutes with the tensor product. We apply this general recipe to a series of models of linear logic, typically based on coherence spaces, Conway games and niteness spaces. This algebraic description unies for the rst time the various constructions of the exponential modality in spaces and games. It also sheds light on the duplication policy of linear logic, and its interaction with classical duality and double negation completion.

(1) This logical restriction enables to represent the logic in monoidal categories, along the idea that every formula denotes an object of the category, and every proof of the sequent (1)

Introduction

Linear logic is based on the principle that every hypothesis A i should appear exactly once in a proof of the sequent

A 1 , . . . , A n B. A d G G A ⊗ A symmetry G G A ⊗ A = A d G G A ⊗ A .
When linear logic was introduced by Jean-Yves Girard, twenty years ago, it was soon realized by Robert Seely (among a few others) that the multiplicative fragment of the logic should be interpreted in a * -autonomous category, or at least, a symmetric monoidal closed category C ; and that the category should have nite products in order to interpret the additive fragment of the logic, see [START_REF] Seely | Linear logic, * -autonomous categories and cofree coalgebras[END_REF]. A more dicult question was to understand what categorical properties of the exponential modality " ! " were exactly required, in order to dene a model of propositional linear logic... that is, a model including the multiplicative, the additive and the exponential components of the logic.

However, Yves Lafont formulated in his PhD thesis [START_REF] Lafont | Logique, catégories et machines[END_REF]) a simple and quite general way to dene a model of linear logic. Recall that a comonoid morphism between two comonoids (C 1 , d 1 , u 1 ) and (C 2 , d 2 , u 2 ) is dened as a morphism f : C 1 -→ C 2 such that the two diagrams

C 1 f G G d1 C 2 d2 C 1 ⊗ C 1 f ⊗f G G C 2 ⊗ C 2 C 1 f G G u1 E E C 2 u2
q q 1 commute. One says that the commutative comonoid !A is freely generated by an object A when there exists a morphism ε : !A -→ A such that for every morphism f : C -→ A from a commutative comonoid C to the object A, there exists a unique comonoid morphism

f † : C - → !A such that the diagram !A ε C f H H f † F F A (2)
commutes. So, from the point of view of provability, !A is the largest comonoid below the object A. Lafont noticed that a model of propositional linear logic follows automatically from the existence of a free commutative comonoid !A for every object A of a symmetric monoidal closed category C . Remember that this is not the only way to construct a model of linear logic. A folklore example is the coherence space model, which admits two alternative interpretations of the exponential modality: the original one, formulated by Girard [START_REF] Girard | Linear logic[END_REF] where the coherence space !A is dened as a space of cliques, and the free construction, where !A is dened as a space of multicliques (cliques with multiplicity) of the original coherence space A.

In this paper, we explain how to construct the free commutative comonoid in the symmetric monoidal categories C typically encountered in the semantics of linear logic.

To that purpose, we start from the well-known formula dening the symmetric algebra

SA = n∈N A ⊗n / ∼ n (3) 
generated by a vector space A. Recall that the formula (3) computes the free commutative monoid associated to the object A in the category of vector spaces over a given eld k.

The group Σ n of permutations on {1, . . . , n} acts on the vector space A ⊗n , and the vector space A ⊗n / ∼ n of equivalence classes (or orbits) modulo the group action is dened as the coequalizer of the n! symmetries

A ⊗n symmetry G G ••• symmetry G G A ⊗n coequalizer G G A ⊗n / ∼ n
in the category of vector spaces. Since a comonoid in the category C is the same thing as a monoid in the opposite category C op , it is tempting to apply the dual formula to (3) in order to dene the free commutative comonoid !A generated by an object A in the monoidal category C . Although the idea is extremely naive, the resulting formula is surprisingly close to the solution we are aiming at. Indeed, one key observation of the article is that the equalizer A n of the n! symmetries

A n equalizer G G A ⊗n symmetry G G ••• symmetry G G A ⊗n (4)
exists in many traditional models of linear logic, and that it provides there the n-th layer of the free commutative comonoid !A generated by the object A. This general principle will be nicely illustrated in Section 3 by the equalizer A n in the category of coherence spaces, which contains the multicliques of cardinality n in the coherence space A ; and in Section 4 by the equalizer A n in the category of Conway games, which denes the game where Opponent may open up to n copies of the game A, one after the other, in a sequential order.

Of course, the construction of the free exponential modality does not stop here: one still needs to combine the layers A n together in order to dene !A properly. As we already mentioned, one obvious solution is to apply the dual of formula (3) and to dene !A as the innite cartesian product

!A = n∈N A n / ∼ n .
(5)

This formula works perfectly well in any symmetric monoidal category C where the innite product commutes with the tensor product, in the sense that the canonical morphism

X ⊗ n∈N A n - → n∈N ( X ⊗ A n ) (6)
is an isomorphism. This logical degeneracy occurs in particular in the relational model of linear logic, where the free exponential !A is thus dened according to formula (5)

as the set of nite multisets of A, each equalizer A n describing the set of multisets of cardinality n.

On the other hand, the formula ( 5) is far too optimistic in general, because the canonical morphism ( 6) is not reversible in the typical models of linear logic, based on coherence spaces, or on sequential games. In order to understand better what this means, it is quite instructive to apply the formula (5) to the category of Conway games: it denes a game !A where the rst move by Opponent selects a component A n , and thus decides the number n of copies of the game A played subsequently. This departs from the free commutative comonoid !A which we shall dene in Section 4, where Opponent is allowed to open a new copy of the game A at any point of the interaction. So, there remains to understand how the various layers A n should be combined together inside !A in order to perform this particular copy policy. This puzzle has a very simple solution: one should glue every layer A n inside the next layer A n+1 so as to enable the computation to transit from one layer to the next in the course of interaction. As we will see, one simple way to perform this glueing operation is to introduce the notion of pointed (or ane) object. A pointed object in a monoidal category C is dened as a pair (A, u) consisting of an object A and of a morphism u : A -→ 1 to the monoidal unit. So, a pointed object is something like a comonoid without a multiplication. The category C • has the pointed objects as objects, and as morphisms

(A, u) - → (B, v) the morphisms f : A - → B of the category C making the diagram below commute: A f G G u 1 1 ? ? ? ? ? ? ? ? ? B v 1
So, the category C • of pointed objects coincides in fact with the slice category C ↓ 1. It is folklore that the category C • is symmetric monoidal, with monoidal structure inherited from the category C , and more specically, the fact that the monoidal unit 1 is a commutative monoid. The category C • is moreover ane in the sense that its monoidal unit 1 is terminal in the category.

Plan of the paper. The main purpose of this paper is to compute the free commutative comonoid !A as a sequential limit of equalizers in various models of linear logic. The construction is excessively simple and works every time the sequential limit exists, and commutes with the tensor product in the underlying category C . We start by describing the limit construction (in Section 1) and by explaining how this formula computes the free commutative comonoid !A as a Kan extension along a change of symmetric monoidal theory (in Section 2). Then, we establish that the construction works in the expected way in the category of coherence spaces (in Section 3) and in the category of Conway games (in Section 4). This establishes that the two modalities are dened in exactly the same way in the two models of linear logic. So, the two modalities have the same genotype, although their phenotypes dier. The discovery is unexpected, but immediately counterbalanced by the observation that the limit construction does not work in every model of linear logic. As a matter of fact, we exhibit the instructive counterexample of the niteness space model introduced by Thomas Ehrhard [START_REF] Ehrhard | Finiteness spaces[END_REF]. We explain (in Section 5) why the limit construction fails in this particular model of linear logic. This counterexample leads us to study more closely the interaction (and possible interference) between the free construction of the exponential modality on the one hand, and the double negation completion to classical linear logic on the other hand. In particular, we introduce (in Section 6) a symmetric monoidal category of conguration spaces whose full subcategory of objects coincides with the category of coherence spaces. We explain (in Section 7) how the free exponential modality of the coherence space model is inherited from the free exponential modality of conguration space model by a series of monoidal adjunctions.

We then repeat the procedure (in Section 8) for niteness spaces, this enabling us to recover the free exponential modality of the niteness space model as the double negation completion of the free exponential modality of a conguration space model. We conclude and indicate future research directions (in Section 9).

The limit construction in three easy steps

The construction of the free exponential modality proceeds along a simple recipe in three steps, which we choose to describe here in the most direct and pedestrian way. We then turn in the next Section to the conceptual reasons which justify the construction.

First step. The rst step of the construction requires to make the mild hypothesis that the object A of the category C generates a free pointed object (A • , u) in the category C • . This means that there exists a morphism

ε A : A • - → A
such that for every pointed object (B, v) and every morphism f : B → A, there exists a unique morphism h : B → A • making the two diagrams below commute:

B h G G v 1 1 ? ? ? ? ? ? ? ? ? A • u ~~~~~~~~1 B h G G f 1 1 ? ? ? ? ? ? ? ? ? A • ε A }} } } } } } } } A
This typically happens when the forgetful functor C • -→ C has a right adjoint. Informally speaking, the purpose of the pointed object A • is to contain one copy of the object A, or no copy at all. This free pointed object exists in most models of linear logic, in particular when the underlying category has nite products: in the case of coherence spaces, it is the space A • = A & 1 obtained by adding a point to the web of A with u : A & 1 → 1 dened as the second projection ; in the case of Conway games, it is the game A • = A itself, at least when the category of Conway games is restricted to Opponent-starting games.

Second step. The object A ≤n is then dened (when it exists) as the equalizer (A

• ) n of the diagram A ≤n equalizer G G A ⊗n • symmetry G G ••• symmetry G G A ⊗n • (7)
in the category C . Note that A ≤n is computed as the equalizer on the n-th tensorial power of the pointed object A • . The purpose of A ≤n is thus to describe at the same time all the layers A k of k copies of A, for k ≤ n. Typically, the equalizer A ≤n computed in the category of coherence spaces coincides with the space of all multicliques in A of cardinality less than or equal to n; the equalizer A ≤n computed in the category of Opponent-starting Conway games coincides with the game where n copies of the game A are played in parallel, and where Opponent is not allowed to play an opening move in the copy A i+1 until all the previous copies A 1 , . . . , A i have been opened.

Third step. The universal property of equalizers in the category C ensures that there exists a canonical morphism

A ≤n A ≤n+1 o o
induced by the unit u : A • → 1 of the pointed object A • , for every natural number n. This enables to dene the object A ∞ (when it exists) as the sequential limit of the sequence

1 A ≤1 o o A ≤2 o o • • • o o A ≤n o o A ≤n+1 o o • • • o o (8)
with limiting cone dened by projection maps

A ∞ projection G G A ≤n .
This recipe in three steps denes the free commutative comonoid !A as the sequential limit A ∞ , at least when the object A satises the limit properties described in the next statement.

Proposition 1. Consider an object A in a symmetric monoidal category C . Suppose that the object A generates a free pointed object (A • , u) in the sense explained above. Suppose moreover that the equalizer (7) and the sequential limit (8) exist in the category C , and that they commute with the tensor product, in the sense that for every object X of the category C , (a) the morphism

X ⊗ A ≤n X⊗ equalizer G G X ⊗ A ⊗n • denes an equalizer of the diagram X ⊗ A ⊗n • X⊗ symmetry G G ••• X⊗ symmetry G G X ⊗ A ⊗n •
for every natural number n, and (b) the family of morphisms

X ⊗ A ∞ X⊗ projection G G X ⊗ A ≤n denes the limiting cone of the diagram X ⊗ 1 X ⊗ A ≤1 o o X ⊗ A ≤2 o o • • • o o X ⊗ A ≤n o o X ⊗ A ≤n+1 o o • • • o o .
In that case, the object A generates a free commutative comonoid !A in the symmetric monoidal category C , dened as the sequential limit A ∞ .

A model-theoretic account of the construction

Although Proposition 1 is extremely simple to state, one needs to climb a few steps in the conceptual ladder in order to establish the property, using the methods of functorial model theory initiated by Lawvere [START_REF] Lawvere | Functorial Semantics of Algebraic Theories and Some Algebraic Problems in the context of Functorial Semantics of Algebraic Theories[END_REF]). To that purpose, one starts by identifying the limit construction A → A ∞ as the computation of a right Kan extension of the object A (seen as a functor) along a change of symmetric monoidal theory going from the trivial theory to the theory of commutative comonoids. The simplest possible PROP is provided by the category B with nite ordinals [n] = {0, . . . , n -1} as objects, and with bijections as morphisms. Note that B is a the free symmetric monoidal category generated by the category with one object. Consequently, every object A of a symmetric monoidal category C induces a model (also noted A) of the theory B in the category C , dened as

A : [n] → A ⊗n . In particular, one has A([0]) = 1, A([1]) = A, A([2]) = A ⊗2
and so on. The resulting functor from the category C to the category M od(B, C ) denes an equivalence of categories, this meaning that a model of the theory B is essentially the same thing as an object of the underlying category C . This is the reason why the category B is often called the trivial symmetric monoidal theory. Now, consider the category F with nite ordinals [n] = {0, . . . , n-1} as objects and with functions [p] → [q] as morphisms. It appears that its opposite category F op denes the symmetric monoidal theory of commutative comonoids, in the sense that the category of commutative comonoids and comonoid morphisms in any symmetric monoidal category C is equivalent to the category M od(F op , C ). In particular, every model M of the theory F op Free models computed as Kan extensions. One substantial benet of this functorial approach to model theory is that the forgetful functor U transporting a commutative comonoid (C, d, u) to its underlying object C in the category C is reformulated as the functor

U : M od(F op , C ) → M od(B, C )
which transports (a) every model M : F op → C to the model M • i : B → C obtained by precomposing M with the symmetric monoidal functor i : B → F op dened as the identity on objects, and (b) every morphism θ : M → N of models of F op to the morphism θ • i :

M • i → N • i of models of B.
Computing the free commutative comonoid !A generated by an object A in the category C amounts then to computing the right Kan extension of the model A : B → C along the inclusion functor i : B → F op in the 2-category SMCat of symmetric monoidal categories, symmetric monoidal functors, and monoidal natural transformations.

C B i G G A c c ⇐ F op RaniA=!A C C C C C C C C
The whole point of the construction is that, by denition of Kan extensions, the resulting commutative comonoid !A satises the unique lifting property expressed in Diagram 2. Now, it is folklore that the right Kan extension of A along j may be computed in the 2-category Cat of categories and functors as the end formula

!A = [n]∈B F op ([1], [n]) • A ⊗n = [n]∈B A ⊗n (9)
where E •C denotes the cotensor product of an object C of the category C by a set E, see [START_REF] Kelly | Basic Concepts of Enriched Category Theory[END_REF] for details. This is precisely the reason why we considered this end formula in the introduction, formulated there as the innite product of equalizers (5). The theorem established in [START_REF] Melliès | Free models of T-algebraic theories computed as Kan extensions[END_REF] ensures that the right Kan extension Ran i A computed in the 2-category Cat denes a right Kan extension in the 2-category SMCat, as long as one additional condition is satised: the tensor product of the category C should commute with the end formula. This means that the end formula (9) denes the free commutative comonoid generated by the object A when the canonical morphism

X ⊗ [n]∈B A ⊗n - → [n]∈B X ⊗ A ⊗n (10) 
is an isomorphism for every object X of the category C . This justies to apply the limit formula (9) whenever this commutation property holds, typically in the category of sets and relations, or in the category of modules over a commutative ring.

Performing the Kan extension in two steps. However, we observed in the introduction that the canonical morphism (10) is not an isomorphism in most models of linear logic. This diculty is resolved by decomposing the computation of the right Kan extension of A in two independent steps, taking advantage of the fact that the functor i : B → F op factors as

B j -→ I op k -→ F op
where I denotes the category with nite ordinals [n] = {0, . . . , n -1} as objects, and injections [p] → [q] as morphisms, and j and k denote the obvious identity-on-object functors. Note that the opposite category I op denes the PROP for pointed objects.

In particular, its category of models M od(I op , C ) is equivalent to the category C • of pointed object dened earlier. Hence, the rst assumption of Proposition 1 means that the pointed object (A • , u) denes the right Kan extension of the object A along the functor j : B → I op in the 2-category SMCat, as depicted below:

C B j G G A c c ⇐ I op RanjA=(A•,u) B B B B B B B B
Recall that Kan extensions may be composed in any 2-category, and in particular in the 2-category SMCat. From this follows that the right Kan extension Ran k (A • , u) of the pointed object (A • , u) along the functor k (when it exists in the 2-category SMCat) denes the right Kan extension of the object A along the functor i = k • j in the same 2-category SMCat, as depicted below:

C I op k G G (A•,u) b b | | | | | | | | ⇐ F op Ran k (A•,u)=RaniA C C C C C C C C
Since the right Kan extension of A along i in the 2-category SMCat denes the free commutative comonoid !A generated by the object A, there remains to compute the Kan extension Ran k (A • , u). In the same way as previously, it is well-known that the right Kan extension is computed in the 2-category Cat as the end formula:

A ∞ = n∈I op F op ([1], [n]) • (A • ) ⊗n = n∈I op (A • ) ⊗n . ( 11 
)
It is not dicult to see that this end exists and coincides with the sequential limit (8)

when the equalizers (7) and the sequential limit (8) exist in the category C . This is precisely the second assumption of Proposition 1. This enables to apply the general theorem of [START_REF] Melliès | Free models of T-algebraic theories computed as Kan extensions[END_REF] which ensures that the Kan extension in the 2category Cat coincides with the Kan extension in the 2-category SMCat as soon as the canonical morphism

X ⊗ [n]∈I op A ⊗n - → [n]∈I op X ⊗ A ⊗n
is an isomorphism for every object X of the category C . This property follows from the last assumption of Proposition 1 which states that the tensor product commutes with the equalizers (7) and the sequential limit (8) in the category C . This establishes that the end formula (11) and thus the sequential limit (8) computes the free commutative comonoid generated by the object A, whenever the assumptions of Proposition 1 are satised.

Coherence spaces

In this section, we apply the recipe described in Section 1 to the category of coherence spaces introduced by Jean-Yves Girard [START_REF] Girard | Linear logic[END_REF]) and establish that it does indeed compute the free exponential modality in this category. Recall that a coherence space E = (|E|, ) consists of a set |E| called its web equipped with a binary reexive and symmetric relation called its coherence relation. A clique u of E is dened as a set of pairwise coherent elements of the web:

∀e 1 , e 2 ∈ u, e 1 e 2 .
The coherence relation induces an incoherence relation ˚dened as e 1 ˚e2 ⇐⇒ ¬(e 1 e 2 ) or e 1 = e 2 .

We recall below the denition of the category Coh of coherence spaces, together with the interpretation of the logical connectives which appear in the construction of the free exponential modality.

Product. On the other hand, it is easy to see that the tensor product does not commute with nite products. Typically, the canonical morphism

E ⊗ (1 & 1) - → (E ⊗ 1) & (E ⊗ 1)
is not an isomorphism. This explains why formula (5) does not work in the category of coherence spaces. Hence, the construction of the free exponential modality proceeds along the recipe in three steps described in Section 1.

First step: compute the free ane object.Computingthefreepointedobject(E • , u)

generated by a coherence space E is straightforward because the category Coh has nite products: the pointed object is thus dened as

E • = E & 1 equipped with the second projection u : E & 1 → 1.
Recall that a multiclique of the coherence space E is dened as a multiset on |E| whose underlying set is a clique of E. It is useful to think of E &1 as the space of multicliques of E with at most one element, this dening (as we will see) the very rst layer of the construction of the free exponential modality. In that respect, the unique element * of the web of 1 denotes the empty clique, while every element e of E denotes the singleton clique [e].

Second step: compute the symmetric tensor power. We would like to compute the equalizer of the n! symmetries

(E & 1) ⊗n symmetry G G ••• symmetry G G (E & 1) ⊗n (12)
on the coherence space (E & 1) ⊗n in the category of coherence spaces. We claim that this equalizer is provided by the coherence space E ≤n dened as follows: 

[e 1 , • • • , e n ] e 1 ⊗ • • • ⊗ e n where [e 1 , • • • , e n ] is a multiclique of n elements in E & 1.
X S G G E ≤n equalizer G G (E & 1) ⊗n
where S is dened as the clique

S = { x [e 1 , . . . , e n ] | x e 1 ⊗ • • • ⊗ e n ∈ R }.
This factorization is moreover unique, this establishing that E ≤n is the equalizer of the diagram (12). The recipe described in Section 1 requires also to check that this equalizer commutes with the tensor product, in the sense that the morphism

X ⊗ E ≤n X⊗ equalizer G G X ⊗ (E & 1) ⊗n (13)
denes the equalizer of the n! symmetries on the coherence space X ⊗ (E & 1) ⊗n for every coherence space X. So, suppose that a morphism 

Y R G G X ⊗ (E & 1)
Y R G G X ⊗ (E & 1) ⊗n X⊗symmetry G G ••• X⊗symmetry G G X ⊗ (E & 1) ⊗n
In that case, it is easy to see that the morphism R factors as

Y S G G X ⊗ E ≤n X⊗ equalizer G G X ⊗ (E & 1) ⊗n
where the morphism S is dened as the clique

S = { y x ⊗ [e 1 , • • • , e n ] | y x ⊗ e 1 ⊗ • • • ⊗ e n ∈ R }
where e 1 , . . . , e n are elements of the web |E & 1| = |E| { * }. This is moreover the unique way to factor R through the morphism (13). This concludes the proof that E ≤n denes the equalizer of n! symmetries in (12).

Third step: compute the sequential limit. We compute the limit of the sequential diagram

E ≤0 = 1 E ≤1 = (E & 1) o o E ≤2 o o E ≤3 • • • o o where each morphism E ≤n+1 → E ≤n is dened as the clique { [e 1 , • • • , e n , * ] [e 1 , • • • , e n ] | [e 1 , • • • , e n ] ∈ |E ≤n | }.
Note that the morphism enables to see the coherence space E ≤n as the coherence space E ≤n+1 restricted to its multisets [e 1 , • 

Y Rn G G X ⊗ E ≤n which makes the diagram X ⊗ E ≤n Y Rn Q Q Rn+1 B B X ⊗ E ≤n+1
y y commute for every natural number n. In that case, every morphism R n factors as

Y S G G X⊗!E X⊗πn G G X ⊗ E ≤n
where the morphism S is dened as the clique

S = { y x ⊗ [e 1 , • • • , e n ] | y x ⊗ [e 1 , • • • , e n ] ∈ R n }
where e 1 , • • • , e n are elements of the web of the original coherence space E. Moreover, there exists a unique such morphism S satisfying the equality R n = (X ⊗π n )•S for every natural number n. This establishes that the assumptions of Proposition 1 are satised, and consequently, that the sequential limit !E denes the free commutative comonoid generated by the coherence space E in the category Coh.

Conway games

In this section, we apply the recipe described in Section 1 to the category of Conway games introduced by André Joyal in [START_REF] Joyal | Remarques sur la théorie des jeux à deux personnes[END_REF] and establish that, just as in the case of coherence spaces, it computes the free exponential modality in this category.

Conway games. A Conway game

A is an oriented rooted graph (V A , E A , λ A ) consisting of (a) a set V A of vertices called the positions of the game; (b) a set E A ⊂ V A × V A of edges called the moves of the game; (c) a function λ A : E A → {-1, +1} indicating
whether a move is played by Opponent (-1) or by Proponent (+1). We write A for the root of the underlying graph. A Conway game is called negative when all the moves starting from its root are played by Opponent.

A play s = m 1 • m 2 • . . . • m k-1 • m k of a Conway game A is a path s : A x k starting from the root A s : A m1 --→ x 1 m2 --→ . . . m k-1 ---→ x k-1 m k --→ x k .
Two paths are parallel when they have the same initial and nal positions. A play is

alternating when ∀i ∈ {1, . . . , k -1}, λ A (m i+1 ) = -λ A (m i ).
We note Play A the set of plays of a game A.

Dual. Every Conway game A induces a dual game A * obtained simply by reversing the polarity of moves.

Tensor product. The tensor product A⊗B of two Conway games A and B is essentially the asynchronous product of the two underlying graphs. More formally, it is dened as:

V A⊗B = V A × V B ,
its moves are of two kinds :

x ⊗ y → z ⊗ y if x → z in the game A x ⊗ z if y → z in the game B,
the polarity of a move in A ⊗ B is the same as the polarity of the underlying move in the component A or the component B.

The unique Conway game 1 with a unique position and no move is the neutral element of the tensor product. As usual in game semantics, every play s of the game A ⊗ B can be seen as the interleaving of a play s |A of the game A and a play s |B of the game B.

Strategies. Remark that the denition of a Conway game does not imply that all the plays are alternating. The notion of alternation between Opponent and Proponent only appears at the level of strategies (i.e. programs) and not at the level of games (i.e. types).

A strategy σ of a Conway game A is dened as a non empty set of alternating plays of even length such that (a) every non empty play starts with an Opponent move; (b) σ is closed by even length prex; (c) σ is deterministic, i.e. for all plays s, and for all moves

m, n, n , s • m • n ∈ σ ∧ s • m • n ∈ σ ⇒ n = n .
The It appears that the category Conway does not have nite nor innite products [START_REF] Melliès | Asynchronous Games 3: An Innocent Model of Linear Logic[END_REF]. For that reason, we compute the free exponential modality in the full subcategory Conway of negative Conway games, which is symmetric monoidal closed and has products. The linear implication A B is obtained by restricting the plays of A * ⊗ B to opponent starting plays. We explain in a later stage how the free construction on the subcategory Conway induces the free construction on the whole category.

First step: compute the free pointed object. The monoidal unit 1 is terminal in the category Conway . In other words, every negative Conway game may be seen as an ane object in a unique way, by equipping it with the empty strategy t A : A → 1. In particular, the free ane object A • is simply A itself.

Second step: compute the symmetric tensor power. We would like to compute the equalizer of the n! symmetries

A ⊗n symmetry G G ••• symmetry G G A ⊗n (14)
on the coherence space A ⊗n in the category of negative Conway games. We claim that this equalizer is provided by the Conway game A ≤n dened as follows the positions of the game A ≤n are the nite words w = x 1 • • • x n of length n, whose letters are positions x i of the game A, and such that for every 1 ≤ i < n, the position x i+1 is the root A of the game A whenever the position x i is the root A of the game A, its root is the word A ≤n = A • • • A where the n the positions are at the root A of the game A, a move w → w is a move played in one copy:

w 1 x w 2 → w 1 y w 2
where x → y is a move of the game A. Note that the condition on the positions implies that when a new copy of A is opened (that is, when x = A ) no position in w 1 is at the root, and all the positions in w 2 are at the root, the polarities of moves are inherited from the game A in the obvious way.

It is equipped with the morphism

A ≤n equalizer G G A ⊗n dened as the strategy containing every even play s of A ≤n A ⊗n such that ∀t ≺ even s , t

|A ≤n = t |A ⊗n
where ≺ even is the prex order restricted to even plays and t |A ⊗n is the play of the game A ≤n obtained by reordering the copies of A so that every occurrence of A appears at the end of each position of the play.

It is not dicult to establish that A ≤n denes the expected equalizer. Simply observe that a strategy

X σ G G A ⊗n
equalizes the n! symmetries precisely when σ factors as

X τ G G A ≤n equalizer G G A ⊗n
where τ is dened as the strategy containing every even play s of X A ≤n such that ∀t ≺ even s , ∃t ∈ σ, t |A ≤n = t |A ⊗n and

t |X = t |X .
This factorization is moreover unique, this establishing that A ≤n is the equalizer of the diagram (14). The recipe described in Section 1 requires also to check that this equalizer commutes with the tensor product. So, suppose that a morphism

Y σ G G X ⊗ A ⊗n
equalizes the n! symmetries. In that case, it is easy to see that the morphism σ factors as

Y τ G G X ⊗ A ≤n X⊗ equalizer G G X ⊗ A ⊗n
where the morphism τ is dened as the strategy containing every even play s of the game Y X ⊗ A ≤n such that This is moreover the unique way to factor σ through the morphism X ⊗ equalizer. This concludes the proof that A ≤n denes the equalizer of n! symmetries in ( 14).

Third step: compute the sequential limit. We compute the limit of the sequential diagram

A ≤0 = 1 A ≤1 = A o o A ≤2 o o A ≤3 o o • • • o o
where each morphism A ≤n+1 → A ≤n is dened as the partial copycat strategies A ≤n ← A ≤n+1 identifying A ≤n as the subgame of A ≤n+1 where only the rst n copies of A can be played. It is easy to check that the limit of this diagram in the category Conway is the Conway game A ∞ dened as follows:

the positions of the game A ∞ are the innite words w = x 1 • x 2 • • • for which there exists an n such that

x 1 • • • x n ∈ V A ≤n and x i is the root A for all i ≥ n, its root is the innite word A ∞ = ω
A where every position is at the root of A, a move w → w is a move played in one copy:

w 1 x w 2 → w 1 y w 2
where x → y is a move of the game A, the polarities of moves are inherited from the game A in the obvious way together with the family of projections π n : A ∞ → A ≤n dened as the strategy containing every even play s of A ∞ A ≤n such that ∀t ≺ even s , t |A ∞ = t |A ≤n ∞ .

In the equation above, we use the fact that the game A ≤n can be seen as a sub game of A ∞ (obtained by expanding every nite word with ω A ) and we note -∞ this embedding.

At this point, there simply remains to check that the sequential limit commutes with the tensor product. Consider a family of morphisms

Y σn G G X ⊗ A ≤n which makes the diagram X ⊗ A ≤n Y σn Q Q σn+1 B B X ⊗ A ≤n+1
y y commute for every natural number n. In that case, every morphism σ n factors as

Y τ G G X ⊗ A ∞ X⊗πn G G X ⊗ A ≤n
where the morphism τ is dened as the strategy containing every even play s of the game

Y X ⊗ A ∞ such that ∀t ≺ even s , ∃t ∈ σ, t |A ∞ = t |A ≤n ∞ and t |X = t |X and t |Y = t |Y .
Moreover, τ is the unique morphism satisfying the equality σ n = (X ⊗ π n ) • τ for every natural number n. This establishes that the assumptions of Proposition 1 are satised, and consequently, that the sequential limit A ∞ denes the free commutative comonoid generated by the negative Conway game A in the category Conway .

The free exponential in the whole category Conway. It is worth observing that the free construction in the category Conway extends in fact to the whole category of Conway games. The reason why is that every commutative comonoid K in the category of Conway games is in fact an Opponent-starting game. The proof is extremely simple:

suppose that there exists an initial Player move m in a commutative comonoid (K, d, u).

In that case, the equality

K d G G K ⊗ K K⊗u G G K = K id G G K
ensures that the strategy d : K 1 → K 2 ⊗ K 3 reacts to the move m played in the component K 1 by playing a move n in the component K 2 or K 3 . Then, the equality

K d G G K ⊗ K σ G G K ⊗ K = K d G G K ⊗ K
implies that the strategy d reacts by playing the same move n in the other component K 3 or K 2 . This contradicts the fact that the strategy d is deterministic, and establishes that every commutative comonoid is negative. Moreover, the inclusion functor from Conway to Conway has a right adjoint, which associates to every Conway game A the negative Conway game A obtained by removing all the Proponent moves from the root A . By combining these two observations, one obtains that the game (A )

∞ is the free commutative comonoid generated by a Conway game A in the category Conway.

An instructive counterexample: niteness spaces

We have just established that the very same limit formula enables to compute the free exponential modality in the coherence space model as well as in the Conway game model.

Interestingly, this does not mean that the formula works in every model of linear logic. This is precisely the purpose of this section: we explain why the formula does not work in the niteness space model of linear logic, an important relational model introduced by Thomas Ehrhard [START_REF] Ehrhard | Finiteness spaces[END_REF]). Our purpose is not only to analyze the reasons for the defect, but also to pave the way for the solution based on conguration spaces developed in the subsequent Sections 6 and 8.

The category of niteness spaces

The denition of a niteness space is based on the notion of an orthogonality relation, dened as follows. Let E be a countable set. Two subsets u, u ⊆ E are called orthogonal precisely when their intersection u ∩ u is nite:

u ⊥ fin u ⇐⇒ u ∩ u nite. (15) 
The orthogonal of a set of subsets F ⊆ P(E) is then dened as:

F ⊥ = { u ⊆ E | ∀u ∈ F, u ⊥ fin u } .
A niteness space E = (|E|, F(E)) consists of a countable |E| called its web and of a set F(E) ⊆ P(|E|) called its niteness structure. One requires moreover that the niteness structure is equal to its biorthogonal:

F(E) ⊥⊥ = F(E).
The elements of F(E) (resp. F(E) ⊥ ) are called nitary (resp. antinitary).

Finite product. The product E 1 &E 2 of two niteness spaces E 1 and E 2 is dened by its

web |E 1 &E 2 | = |E 1 | |E 2 | and by its niteness structure F (E 1 & E 2 ) = F (E 1 ) F (E 2 ).
Tensor product. The tensor product E 1 ⊗ E 2 of two niteness spaces E 1 and E 2 is 

dened by |E 1 ⊗ E 2 | = |E| 1 × |E 2 | and by F (E 1 ⊗ E 2 ) = w ⊆ |E| 1 × |E 2 | Π E1 (w) ∈ F (E 1 ) , Π E2 (w) ∈ F (E 2 ) where Π E1 (w) = {e 1 ∈ |E 1 | | ∃e 2 ∈ |E 2 |, (
| × |E 2 | such that ∀u ∈ F(E 1 ), R(u) = e 2 ∈ |E 2 | ∃e 1 ∈ u, e 1 R e 2 ∈ F(E 2 ), ∀v ∈ F(E 2 ) ⊥ , t R(v ) = e 1 ∈ |E 1 | ∃e 2 ∈ v , e 1 R e 2 ∈ F(E 1 ) ⊥ .
The linear implication E 1 E 2 is dened as the niteness space with web |E 1 E 2 | = |E| 1 × |E 2 | and with niteness structure F (E 1 E 2 ) the set of nitary relations.

The exponential modality. The exponential modality ! is dened as follows: given a niteness space E, the niteness space !E has its web |!E| = M fin (|E|) dened as the set of nite multisets µ : |E| → N and its niteness structure dened as

F(!E) = { M ⊆ M fin (|E|) | Π E (M ) ∈ F(E) },
where the support Π E (M ) of a set of nite multisets M ∈ M fin (|E|) is dened as

Π E (M ) = { e ∈ |E| | ∃µ ∈ M, µ(e) = 0 }.
The category of niteness spaces. The category Fin of niteness spaces has niteness spaces as objects and nitary relations as morphisms, composed in a relational way.

Observe in particular that the identity relation on the web |E| of a niteness space E denes a nitary relation between E and itself, and that relational composition of two nitary relations denes a nitary relation. The category Fin of niteness spaces is * -autonomous and provides a model of propositional linear logic.

The counter-example

Christine Tasson observes in her PhD thesis that the exponential modality ! dened by Ehrhard associates to every niteness space E its free commutative comonoid !E in the category Fin, see [START_REF] Tasson | Sémantiques et syntaxes vectorielles de la logique linéaire[END_REF] for details. On the other hand, it appears that the niteness space E ∞ computed by the limit formula (9) does not coincide with the niteness space !E, and in fact, does not dene (in any obvious way) a commutative comonoid in the category Fin. So, let us proceed along the recipe explained in Section 1, and see where the construction goes wrong. The rst step of the construction is to compute the free pointed object E • generated by a niteness space E. Since the category Fin has cartesian products, the object E • is simply dened as

E • = E & 1.
The second step of the construction is to compute the symmetric tensor power E ≤n of the niteness space E, dened as the equalizer of the n! symmetries over the niteness space (E • ) ⊗n . A simple computation shows that the web of E ≤n is equal to the set of multisets of elements of |E| of cardinality less than n:

|E ≤n | = M ≤n fin (|E|)
and that its niteness structure is equal to

F(E ≤n ) = { M n ⊆ M ≤n fin (|E|) | Π E (M n ) ∈ F(E) }.
Moreover, this equalizer commutes with the tensor product in the expected sense. This completes the second step of the construction.

The third and last step in order to compute the limit formula ( 9) is to take the sequential limit E ∞ of the niteness spaces E ≤n . The web of this sequential limit is equal to the set |E ∞ | = M fin (|E|) of nite multisets of elements of |E|, and its niteness structure to:

F (E ∞ ) = M ∈ M fin (|E|) ∀n ∈ N, M n = M ∩ M ≤n fin (|E|), Π E (M n ) ∈ F(E).
.

Note that the webs of !E and of E ∞ are equal, and coincide in fact with the free exponential in the relational model. However, the niteness structures of !E and E ∞ do not coincide in general:

F(!E) F (E ∞ ) .
We illustrate that point on the niteness space Nat whose web |Nat| = N is the set of natural numbers and whose niteness structure F (Nat) is the collection P n (N) of nite subsets. Note that Nat is the interpretation of the formula (!1) ⊥ in the category Fin.

It is easy to see that the niteness spaces !Nat and Nat ∞ have the same web M fin (N), but dierent niteness structures:

F (!Nat) = M ⊆ M fin (N) Π Nat (M ) nite = M ⊆ M fin (N) ∃N ∈ N, M ⊆ M fin ({0, . . . , N }) , F (Nat ∞ ) = M ⊆ M fin (N) ∀n ∈ N, Π Nat (M ∩ M n fin (N)) nite .
For instance, let µ n = [0, • • • , n] be the set of all natural numbers k ≤ n seen as a multiset. Then, the set of all these multisets

M = { µ n | n ∈ N }
is an element of F (Nat ∞ ) but not an element of F (!Nat). Considering the content of Proposition 1, the reason for the failure of the construction is that the sequential limit (8)

does not commute with the tensor product. Let us illustrate that interesting point by comparing Nat ⊗ Nat ∞ with the sequential limit lim (Nat ⊗ Nat ≤n ) of the diagram of niteness spaces:

Nat ⊗ 1 Nat ⊗ Nat ≤1 o o • • • o o Nat ⊗ Nat ≤n o o Nat ⊗ Nat ≤n+1 o o • • • o o
The two niteness spaces Nat ⊗ Nat ∞ and lim (Nat ⊗ Nat ≤n ) have the same web N × M fin (N) but dierent niteness structures:

F (Nat ⊗ Nat ∞ ) = {M ⊆ N × M fin (N) | ∃N, M ⊆ {0, . . . , N } × M fin ({0, . . . , N })} , F lim (Nat ⊗ Nat ≤n ) = {M | ∀n ∈ N, ∃N n , M n ⊆ {0, . . . , N n } × M fin ({0, . . . , N n })}, where M n = M ∩ (N × M n fin (N)
) denotes the subset of M made of pairs whose second component is a multiset containing exactly n elements. Typically, the set of pairs

M = { (n, µ n ) | n ∈ N } is an element of F lim (Nat ⊗ Nat ≤n ) but not of F (Nat ⊗ Nat ∞ )
because its projection on the rst component Nat has the innite support N. This subtle phenomenon comes from the fact that an innite directed union of nitary sets in a niteness space E

is not necessarily nitary in that space. This departs from the coherence space model where an innite directed union of cliques of a space E is a clique of that space, this explaining the success of the recipe in the coherence model.

Remark. The interested reader will check that Formula (5) computes the same niteness space E ∞ as Formula ( 9) because the niteness space E ≤n coincides in fact with the cartesian product of E k for k ≤ n.

The next two sections are devoted to a resolution of that question, achieved by embedding the category of niteness spaces in a larger category of conguration spaces, and performing the free commutative comonoid construction in that larger universe.

Conguration spaces

As a preliminary training exercise before attacking (in Section 8) the question of niteness spaces, we come back to the coherence space model, and explain how the free exponential modality may be constructed in a larger universe of conguration spaces where negation is not involutive anymore. More specically, we show that the limit formula described in Section 1 computes the free commutative comonoid in the category of conguration spaces. Then, we explain (in Section 7) how to recover the category of coherence spaces, its tensor product, its cartesian product, and its exponential modality, by restricting the category of conguration spaces to its self-dual objects. This provides an alternative construction of the exponential modality in the category of coherence spaces, as well as a precious guide towards the construction of the exponential modality in niteness spaces, which will be performed along the same lines in Section 8.

The category of conguration spaces. A conguration space is dened as a pair

E = (|E|, Config(E))
consisting of a countable set |E| called the web of E and of a set Config(E) ⊆ P(|E|) whose elements are called the congurations of E. Every conguration space is required moreover to satisfy the following covering condition:

∀x ∈ |E|, ∃u ∈ Config(E) such that x ∈ u.
The category Config has conguration spaces as objects, and its morphisms

R : E 1 - → E 2 are the binary relations R ⊆ |E 1 | × |E 2 | satisfying the two properties:
R transports congurations forward:

∀u ∈ Config(E 1 ), R(u) ∈ Config(E 2 ),
R is locally injective:

∀u ∈ Config(E 1 ), ∀e 1 , e 1 ∈ u, ∀e 2 ∈ |E 2 |, e 1 R e 2 and e 1 R e 2 ⇒ e 1 = e 1 .
Here, R(u) is dened as

R(u) = { e 2 ∈ |E 2 | | ∃e 1 ∈ u, e 1 R e 2 }.
The identity and composition laws are dened as in the category of sets and relations.

Note in particular that the identity relation satises the two properties, just stated, about morphisms between conguration spaces, and that relational composition preserves them.

Finite product. 

Config(E 1 & E 2 ) = { u 1 u 2 | u 1 ∈ Config(E 1 ), u 2 ∈ Config(E 2 ) }.
Its unit is the terminal object of the category Config, the conguration space with an empty web, and the empty set as its unique conguration: Config( ) = {∅}.

Finite coproduct. 

Config(E 1 ⊕ E 2 ) = { u 1 ∈ Config(E 1 ) } ∪ { u 2 ∈ Config(E 2 ) }.
Its unit is the initial object of the category Config, the conguration space 0 with an empty web, and with no conguration: Config(0) = ∅.

Tensor product. The tensor product E 1 ⊗ E 2 of two conguration spaces is dened by

its web |E 1 ⊗ E 2 | = |E 1 | × |E 2 |
and by its congurations:

Config(E 1 ⊗ E 2 ) = { (u 1 , u 2 ) | u 1 ∈ Config(E 1 ), u 2 ∈ Config(E 2 ) }.
The monoidal unit 1 is the conguration space with a singleton web |1| = { * } and two congurations: Config(1) = {∅, { * }}. This equips the category Config with the structure of a symmetric monoidal category.

First step: compute the free ane object. Every conguration space E generates the free pointed object dened as

E • = E & 1.
Its web contains all the elements of the web of E together with an additional point denoted * . Its congurations are the same as the congurations of E, except that every conguration u ∈ Config(E) is augmented with the point * :

Config(E & 1) = { u { * } | u ∈ Config(E) }.
Second step: compute the symmetric tensor power. The equalizer E ≤n of the n! symmetries on the conguration space (E & 1) ⊗n is the conguration space whose support is the set of multisets of cardinality at most n:

|E ≤n | = { [e 1 , . . . , e n ] | ∃u ∈ Config(E) s.t. ∀i ≤ n, e i ∈ u { * } },
whose congurations u ≤n are deduced from the congurations u of E,

Config(E ≤n ) = { u ≤n ⊆ |E ≤n | | u ∈ Config(E) },
where the conguration u ≤n is dened as

u ≤n = { [e 1 , . . . , e n ] | ∀i ≤ n, e i ∈ u { * } } = { [e 1 , . . . , e p , * , . . . , * n-p ] | for some p ∈ N, ∀i ≤ p, e i ∈ u }.
Note in particular that the congurations of E ≤n are in a one-to-one relationship with the congurations of E.

Third step: compute the sequential limit. For every conguration space E, let !E denote the conguration space whose web is the set of multisets whose support are included in the congurations:

|!E| = { µ ∈ M fin (|E|) | ∃v ∈ Config(E) such that Π E (µ) ⊆ v }.
and whose congurations u † are generated by the congurations of E:

Config(!E) = { u † | u ∈ Config(E) }, where u † = { [e 1 , . . . , e p ] | ∀i ≤ p, e i ∈ u }.
We claim that the conguration space !E is the limit of the sequential diagram in the category Config:

1 E • ι0 o o E ≤2 ι1 o o E ≤3 ι2 o o • • • ι3 o o (16) 
where

[e 1 , . . . , e p , * , . . . , *

n+1-p ] ι n [f 1 , . . . , f q , * , . . . , * n-q
] ⇐⇒ p = q and [e 1 , . . . , e p ] = [f 1 , . . . , f q ].

For every n ∈ N, let π n : !E → E ≤n denote the following binary relation:

[e 1 , . . . , e p ] π n [f 1 , . . . , f q , * , . . . , * n-q ] ⇐⇒ p = q [e 1 , . . . , e p ] = [f 1 , . . . , f q ]
The relation π n is locally injective and satises

∀u ∈ Config(E), π n (u † ) = u ≤n .
This shows that π n is a morphism of conguration spaces. Moreover, the diagram

E ≤n !E πn H H πn+1 E E E ≤n+1 ιn y y
commutes in the category Config, for every natural number n. Now, consider another family of morphisms R n : X → E ≤n making the diagram

E ≤n X Rn H H Rn+1 E E E ≤n+1 ιn y y (17) 
commute for every natural number n. The binary relation S :

|X| → |!E| is dened as x S [e 1 , • • • , e n ] ⇐⇒ x R n [e 1 , • • • , e n ]
where e 1 , • • • , e n are elements of the web of E. We establish that the binary relation S denes in fact a morphism S : X → !E of conguration spaces. We start by the easiest and less interesting part, and show that S is locally injective. Suppose that two elements

x 1 , x 2 ∈ |X| of a conguration w ∈ Config(X) are related by the relation S to the same element [e 1 , • • • , e n ] ∈ |!E|.
We know that, by denition of S, the two elements x 1 and x 2 are related to [e 1 , • • • , e n ] by the relation R n . The equality x 1 = x 2 follows from the local injectivity of R n . This proves that the relation S is locally injective. The next step is the most interesting part of the proof: it consists in establishing that the relation S transports every conguration w of X to a conguration R(w) of !E. So, let w be such a conguration of X. The relation R 1 : X → E is a morphism of conguration space, and thus transports the conguration w to a conguration R 1 (w) of E. By denition of E &1, the conguration R 1 (w) is of the form u { * } for a conguration u of space E. Now, we establish by induction on n that R n (w) = u ≤n for all n. This is true for n = 0 because the singleton conguration is the unique conguration of the unit 1. This is also true for n = 1. Now, suppose that R n (w) = u ≤n for a given natural number n. We establish that R n+1 (w) = u ≤n+1 by observing that the relation R n+1 : X → !E is a morphism of conguration spaces, and this transports the conguration w to a conguration R n+1 (w) of the space E ≤n+1 . By denition of E ≤n+1 , the conguration R n+1 (w) is necessarily of the form v ≤n+1 for a conguration v of E. Now, we apply our induction hypothesis together with the fact that the diagram (17) commutes, and deduce that ι n (v ≤n+1 ) = u ≤n . From this follows immediately that u ≤n = v ≤n , since v ≤n = ι n (v ≤n+1 ). Hence, u = v since u and v may be recovered as the set of singleton multisets in u ≤n and v ≤n . This concludes our proof by induction that R n (w) = u ≤n . From this follows that

S(w) = n∈N R n (w) = n∈N u ≤n = u † .
Then, we observe that every morphism R n factors as π n •S, and that every other relation T such that R n = π n • T is equal to S. This concludes the proof that !E is the limit of the sequential diagram (16). In order to complete the third step of the recipe, we also need to show that the sequential limit commutes with the tensor product. Consider a 

family of morphisms R n : Y → X ⊗ E ≤n making the diagram X ⊗ E ≤n Y Rn P P Rn+1 C C X ⊗ E ≤n+1
R n : Y S G G X⊗!E X⊗πn G G E ≤n .
This elementary argument concludes the proof that all the assumptions of Proposition 1 are satised, and thus, that the conguration space !E denes the free commutative comonoid generated by E in the category Config of conguration spaces.

Remark. The careful reader will notice that the morphisms ι n play a fundamental role in the construction of the space !E. They ensure in particular that a conguration of !E is entirely determined by its projection on each level E ≤n , and thus, that the congurations of the form u † are the only congurations of the sequential limit !E. In particular, the computation of !E would not work with the more primitive denition (5) of the exponential modality as an innite product of symmetric powers. This unexpected discovery (together with its later application to niteness spaces) is the main additional contribution of the article with respect to the extended abstract published in the ICALP conference [START_REF] Melliès | An explicit formula for the free exponential modality of linear logic[END_REF].

Conguration spaces and coherence spaces

Now that the symmetric monoidal category Config is equipped with a free exponential modality, we would like to provide it with a suitable notion of negation. The simplest way to achieve this is to deduce negation from a relevant choice of false object provided by a carefully selected conguration space ⊥. As we will see, the resulting notion of negation (A → ¬A) enables to identify the category Coh as the full subcategory of selfdual objects in the category Config. The two categories are related by an adjunction

Config L 8 8 ⊥ Coh R g g (18)
where the embedding functor R is fully faithful and injective on objects, and the left adjoint functor L transports every conguration space E to its double negation ¬¬E.

This claries the categorical content of an old observation by Jean-Yves Girard, see for instance [START_REF] Girard | Le point aveugle: Cours de logique: Tome 1, vers la perfection[END_REF], which has become folklore in the linear logic circles: it says that a coherence space can be alternatively described 

∀u, v ⊆ |E|, u ⊥ v ⇐⇒ #(u ∩ v) ≤ 1 (19)
where #(u ∩ v) denotes the cardinality of the set u ∩ v. Here, the orthogonal X ⊥ of a set X of subsets of |E| is dened as

X ⊥ = { u | ∀v ∈ X, u ⊥ v }.
The categorical construction may be also seen as a particular instance of the glueing construction described by Hyland and Schalk in [START_REF] Hyland | Games on graphs and sequentially realizable functionals[END_REF].

The dialogue category of conguration spaces.Thecongurationspace⊥isdened as the space with a singleton web |⊥| = { * } and the two sets ∅ and { * } as congurations, that is, Config(⊥) = {∅, { * }}. The conguration space ⊥ is exponentiable in the category Config, in the sense that for every conguration space E the presheaf

F → Config(E ⊗ F, ⊥)
on the category Config is representable by an object noted ¬E together with a family of bijections

ϕ E,F : Config(E ⊗ F, ⊥) ∼ = Config(F, ¬E)
natural in F . Here, ¬E is dened as the conguration space with the same web as the conguration space E, and with set of congurations dened as:

Config(¬E) = { u | ∀v ∈ Config(E), u ⊥ v } = Config(E) ⊥
where orthogonality is dened as in ( 19). This induces a dialogue category where negation denes a functor 

¬ : Config - → Config op ( 
f 1 ˚E f 2 ⇒ e 1 ˚E e 2
follows from the fact that the morphism S : R(E) → R(F ) of conguration spaces is locally injective. This establishes that the elements e 1 f 1 and e 2 f 2 of the relation R are pairwise coherent, and thus, that R is a clique in the coherence space E F . This concludes the proof that the functor R is fully faithful. The functor R being also injective on objects, this enables to see the category Coh as a full subcategory of the category Config of conguration spaces.

The functor L from conguration spaces to coherence spaces. There remains to characterize the coherence spaces among the conguration spaces. Interestingly, the solution will come from the notion of linear negation on conguration spaces dened above. Observe indeed that every conguration space ¬E is of the form R(F ) for the coherence space F with same web as E, and with coherence relation dened as:

f 1 ¨F f 2 ⇐⇒ ∀v ∈ Config(E), {f 1 , f 2 } ⊥ v. (21) 
This ensures in particular that the congurations of ¬E which are dened as the sets orthogonal to Config(E), are the same as the cliques of F . This establishes that the image of the negation functor (20) lies in the full subcategory Coh. In the particular case of the dialogue category Config, this double negation monad T is idempotent, this meaning that the multiplication µ : T • T → T is an isomorphism. In the case of a dialogue category, this reduces to the fact that the morphism

¬E η ¬E G G ¬¬¬E ¬η E G G ¬E
is equal to the identity for every object E. The category Coh coincides with the category of algebras of the double negation monad, which is equivalent to the kleisli category because the monad is idempotent.

A reconstruction of the coherence space model. It is possible to transfer along the right adjoint functor R the symmetric monoidal structure as well as the cocartesian structure of the category Config in order to recover the structure of symmetric monoidal category with nite sums described earlier (in Section 3) on the category Coh of coherence spaces. In this reconstruction, the tensor product of two coherence spaces E and F is recovered as:

E ⊗ Coh F = L (R(E) ⊗ R(F )) (22) 
with associated unit 1 Coh = L (1), while the coproduct of two coherence spaces E and F is recovered as:

E ⊕ Coh F = L (R(E) ⊕ R(F ))
with associated unit 0 Coh = L (0). This enables to see the structure of * -autonomous category with nite coproducts of the category Coh as inherited from the category Config.

In particular, in that reconstruction, the fact that the category Coh has nite products follows from the existence of nite coproducts, and self-duality. One distinctive point of the reconstruction is that the exponential modality of coherence spaces may be recovered in the same way as:

! Coh E = L ! R (E). (23) 
There is a nice conceptual explanation behind that formula, which is that the free exponential modality ! on the category Config factors as ! = U • F where F is right adjoint to the forgetful functor U from the category Comon of commutative comonoids to the category of conguration spaces:

Comon U @ @ ⊥ Config F g g (24) 
This adjunction may be composed with the adjunction (18) in the following way

Comon U @ @ ⊥ Config F g g L 8 8 ⊥ Coh R g g (25) 
this dening a third adjunction, establishing that the functor L • U is left adjoint to the functor F • R. The exponential modality ! Coh coincides then with the comonad L • U • F • R on the category of coherence spaces induced by the adjunction. Moreover, the category Comon is cartesian, with structure provided by the tensor product on conguration spaces, this ensuring that the adjunction U F is symmetric monoidal.

Hence, in order to establish that the adjunction ( 25) denes an exponential modality on the category of coherence spaces, it is sucient to check that the adjunction ( 18) is symmetric monoidal. This follows from the denition (or the reconstruction) of the tensor product on coherence spaces as performed in ( 22). Alternatively, the reader may also observe that the adjunction ( 18) is symmetric monoidal because the double negation monad is idempotent in the category of conguration spaces.

This reconstruction of the coherence space model should be understood as a categorical counterpart of the double negation translation underlying the phase space model of linear logic [START_REF] Girard | Linear logic[END_REF][START_REF] Girard | Le point aveugle: Cours de logique: Tome 1, vers la perfection[END_REF] or the double orthogonal construction [START_REF] Hyland | Games on graphs and sequentially realizable functionals[END_REF]. In particular, the transfer of structure may be reformulated in purely logical terms, as follows:

E ⊗ Coh F = ¬¬(E ⊗ F ) 1 Coh = ¬¬1 E ⊕ Coh F = ¬¬(E ⊕ F ) 0 Coh = ¬¬0
together with:

! Coh E = ¬¬ ! E.
This last equality reformulates equation ( 23) which we nd useful to clarify before the end of the section. The equation relies on the denition of L as double negation, together with the explicit description of the coherence space ¬E associated to a conguration space E provided in equation ( 21). This leads to the following description of the coherence space L (E) associated to a conguration space E:

e 1 ¨L (E) e 2 ⇐⇒ ∃v ∈ Config(E), {e 1 , e 2 } ⊆ v. (26) 
Let E be a coherence space. By denition, the congurations of R(E) are the cliques of E.

The web of the conguration space ! R(E) is thus dened as the set of multisets µ whose support is included in a clique of E. This establishes already that the two coherence spaces ! Coh E and L ! R(E) have the same web. There remains to check that their coherence relations coincide. By equation ( 26), two elements of L ! R(E) are coherent precisely when there exists a conguration u † of ! R(E) which contains them both, where u is a clique of E. This happens precisely when their support is contained in u, and thus precisely when they are coherent in the sense of ! Coh E. This establishes equation ( 23).

Conguration spaces and niteness spaces

In the two previous sections, we have shown how to reconstruct the coherence space model of linear logic, from the conguration space model of tensorial logic where negation is not involutive. This reconstruction includes in particular the exponential modality. In this section, we explain how to apply the same recipe to the niteness space model. This enables us to recover the exponential modality of niteness spaces dened by Ehrhard [START_REF] Ehrhard | Finiteness spaces[END_REF] from the free exponential modality computed in a relevant category of conguration spaces. The whole point of the approach is that it enables us to compute the free exponential modality on conguration spaces as the sequential limit described in Section 1, in contrast to what happens in the original category of niteness spaces, as we observed in Section 5. We start the section by dening the category Confin of conguration spaces adapted to niteness spaces.

The category of conguration spaces and locally nite relations. The category Confin has the conguration spaces as objects, and its morphisms R :

E 1 → E 2 are the relations R ⊆ |E 1 | × |E 2 | such that
R transports congurations forward:

∀u ∈ Config(E 1 ), R(u) ∈ Config(E 2 ), R is locally nite: ∀u ∈ Config(E 1 ), ∀e 2 ∈ |E 2 |, { e 1 ∈ u | e 1 R e 2 } is nite.
The denition of the tensor product, of the cartesian product, of the cartesian sum and of the exponential modality are the same in the category Confin as in the category Config described in Section 6. This provides the category Confin with the structure of a symmetric monoidal category with nite products and coproducts. The proof of that last point works as in the case of the category Config, except that locally injective relations are replaced by locally nite relations. Now, we would like to relate the categories Fin and Confin in the same way as we related the categories Coh and Config in the previous Section 7. To that purpose, we dene the functor R : Fin -→ Confin which transports every nitary space E = (|E|, F (E)) to the conguration space R(E) with the same web, and whose congurations are the nitary subsets of E. It appears that the functor R is full and faithful, just as it is the case with coherence spaces. This enables us to see the category Fin as a full subcategory of Config. Moreover, the functor R has a left adjoint, obtained by applying twice the negation functor dened below.

Negation. Negation is dened in the same way as in the category Config, but this time with respect to the orthogonality relation ⊥ fin described in equation ( 15). Namely, the negation ¬E of a conguration space E is the conguration space with the same web as E, and whose congurations are orthogonal to the congurations of E: This implies in particular that the tensor product ⊗ Fin on niteness spaces E and F may be recovered from the tensor product ⊗ Confin in the same way as in the case of coherence spaces:

Config(¬E) = { u ⊆ E | ∀v ∈ Config(E), u ⊥ fin v }.
E ⊗ Fin F = L ( R(E) ⊗ Confin R(F ) )
thanks to the equation E = L • R (E). The nite coproducts on niteness spaces E and F may be similarly recovered with the equations:

E ⊕ Fin F = L ( R(E) ⊕ Confin R(F ) ) 0 Fin = L ( 0 Confin )
Exponential modality. The free commutative comonoid ! Confin E generated by a conguration space E is computed in the category Confin by applying the general recipe of Section 1. In particular, the conguration space ! Confin E is the limit of the same

sequential diagram 1 E • ι0 o o E ≤2 ι1 o o E ≤3 ι2 o o • • • ι3 o o
as in the category Config, see Section 6 for details. The key point is that this limit commutes with the tensor product in Confin for the same reasons that it commutes with the tensor product in Config. This induces a pair of symmetric monoidal adjunctions 

! Fin E = L ! Confin R (E)
coincides with the exponential modality ! Fin described in [START_REF] Ehrhard | Finiteness spaces[END_REF].

Conclusion and future works

This investigation on the algebraic nature of the exponential modality leads to interesting remarks of a purely logical nature. First of all, the computation of the free commutative comonoid !A as a sequential limit

1 A ≤1 o o A ≤2 o o • • • o o A ≤n o o A ≤n+1 o o • • • o o
where the space A ≤n of k ≤ n copies of the space A is glued inside the space A ≤n+1 of k ≤ n + 1 copies reects the fact that an intuitionistic proof (or a recursive program) opens new copies of its argument A on the y, in the course of interaction. In particular, the number of copies of A is chosen dynamically, and not statically at the beginning of the interaction, as it would be the case with the denition of !A as the innite cartesian product:

!A = n∈N A n / ∼ n .
It is also quite puzzling that the sequential limit is not expressible (at least apparently)

as the construction of a recursive type. However, there should be a way to extend type theory in order to incorporate such constructions, possibly starting from the modeltheoretic approach described in Section 2. This is an interesting topic for future work.

Another fascinating issue enlightened in this work is the status of duality in logic. The following slogan appears at the end of the survey [START_REF] Melliès | Categorical Semantics of Linear Logic. À paraître dans Panoramas et Synthèses[END_REF]): logic = data structure + duality.

Here, the exponential modality is obviously on the side of data structure. As such, its construction has no reason to interfere with negation and duality. This drastic philosophy of logic provided a surprisingly fruitful guideline in this work. On the one hand, it oered a conceptual explanation for the failure of the sequential limit construction in the selfdual category of niteness spaces. On the other hand, it led to the resolution of this issue in the larger category of conguration spaces, where the exponential construction and the negation are carefully separated. Much remains to be claried on negation and duality at this point, and it is certainly a bit too soon to judge. For instance, it is nearly immediate to adapt the construction of Section 8 to the vectorial version of niteness spaces dened by Ehrhard [START_REF] Ehrhard | On Köthe sequence spaces and linear logic[END_REF]. Adapting the approach to Köthe spaces requires much more care, and is left for future work. More generally, one would like to understand the status of negation on topological vector spaces, and more specically the relationship to topological completion, without necessarily starting from a basis on the vector space, as in the current presentation of niteness spaces and Köthe spaces.

  induces a commutative comonoid C = M ([1]) in the category C , whose comultiplication d : C → C ⊗2 and counit u : 1 → C are provided by the image of the (unique) morphisms [1] → [2] and [1] → [0] in the category F op .

  constraints. In particular, identity and composition are dened in the same way as in the category of sets and relations. The category Coh is * -autonomous and denes a model of the multiplicative and additive fragment of linear logic.

  its web |E ≤n | = M ≤n fin (|E|) contains the multicliques of E with at most n elements, seen equivalently as the multicliques of n elements in E & 1, two elements u and v are coherent in E ≤n precisely when their union u v is a multiclique together with the morphism E ≤n equalizer G G (E & 1) ⊗n dened as the clique containing all the elements of the form

  category of Conway games. The category Conway has Conway games as objects, and strategies σ of A * ⊗ B as morphisms σ : A → B. The composition is based on the usual parallel composition plus hiding technique and the identity is dened by a copycat strategy. The resulting category Conway is compact-closed in the sense of (Kelly & Laplaza 1980).

  natural number n, and dene the relation S : |Y | → |X⊗ !E| as follows: y S (x ⊗ [e 1 , . . . , e n ]) ⇐⇒ y R n (x ⊗ [e 1 , . . . , e n ]) where e 1 , • • • , e n are elements of the web of E. It is easy to check that S denes the unique morphism S : Y -→ X⊗!E of conguration spaces such that every morphism R n factors as

  (a) as a web |E| equipped with a coherence relation ¨E as in Section 3, or (b) as a web |E| equipped with a set C of congurations u ⊆ |E| closed under biorthogonality C = C ⊥⊥ for the following notion of orthogonality:

  20) in a canonical way, thanks to the Yoneda lemma. See[START_REF] Melliès | Categorical Semantics of Linear Logic. À paraître dans Panoramas et Synthèses[END_REF]) for a discussion on the alternative denitions of a dialogue category.The functor R from coherence spaces to conguration spaces. It is easy to see that every coherence space E = (|E|, ¨E) induces a conguration space R(E) with the same web |R(E)| = |E| and with Config(R(E)) dened as the set of cliques of E. In particular, the conguration space R(E) satises the covering condition because every element of its web |R(E)| is an element of the conguration {e} ∈ Config(R(E)). This denes a functor R : Coh -→ Config which transports every morphism S : E → F of coherence spaces to the morphism R(S) : R(E) → R(F ) of conguration space with the same underlying relation S : |E| → |F |. Note in particular that the relation S : |E| → |F | denes a morphism R(E) → R(F ) of conguration spaces because the relation S transports every clique u of E into a clique S(u) of F , and because S satises the following local injectivity property: ∀e 1 , e 2 ∈ |E|, ∀f ∈ |F |, e 1 ¨E e 2 and e 1 S f and e 2 S f ⇒ e 1 = e 2 . The functor R is obviously faithful. Although this is less obvious, the functor R is also full, because every morphism S : R(E) → R(F ) of conguration spaces is dened as a binary relation R : |E| → |F | which denes at the same time a morphism R : E → F of coherence spaces. Hence, R(R) = S. Let us explain why. Suppose that e 1 f 1 and e 2 f 2 are two elements of a binary relation R : |E| → |F | underlying a morphism S : R(E) → R(F ) of conguration spaces. We establish that e 1 f 1 and e 2 f 2 are coherent in the coherence space E F . First of all, the statement e 1 E e 2 ⇒ f 1 F f 2 comes from the fact that the morphism S transports the conguration u = {e 1 , e 2 } of R(E) into a conguration S(u) of R(F ) which contains the elements f 1 and f 2 , which are thus coherent in F , since S(u) is a clique of the coherence space F . The second statement

  This denes a dialogue category, with a negation functor from Config to its opposite category. By denition of niteness spaces as double negated objects, every conguration space ¬E is of the form RF for the niteness space F = ¬E. The left adjoint functor L : Confin -→ Fin is then dened as the double negation functor L : E → ¬¬E. One obtains a Fin and Confin, just as in the case of coherence spaces. In particular, one has the natural isomorphismsL (E) ⊗ Fin L (F ) ∼ = L (E ⊗ Confin F ) 1 Fin ∼ = L (1 Confin )

where

  Comon denotes the category of commutative comonoids and homomorphisms associated to the category Confin. The symmetric monoidal adjunction Comon the two adjunctions denes an exponential modality on the category of niteness spaces. Moreover, the induced comonad

  Linear implication. The linear implication E 1 E 2 of two coherence spaces E 1 and E 2 is dened as the coherence space whose web |E 1E 2 | = |E 1 | × |E 2 | is equalto the cartesian product of the two webs |E 1 | and |E 2 | with the following coherence relation: where e 1 e 2 is a convenient notation for the pair (e 1 , e 2 ) in the web |E 1 E 2 |. The category of coherence spaces. The category Coh of coherence spaces has coherence spaces as objects and cliques of E 1 E 2 as morphisms from E 1 to E 2 . Note that the web of E 1 E 2 is equal to the cartesian product |E 1 | × |E 2 |. This enables to see a morphism as a relation between the sets |E 1 | and |E 2 | satisfying additional consistency

	e 1	e 2 E1 E2 e 1	e 2 ⇐⇒	 	e 1 E1 e 1	⇒ and	e 2 E2 e 2
					e 2 ˚E2 e 2	⇒	e 1 ˚E1 e 1

The product E 1 & E 2 of two coherence spaces E 1 and E 2 is dened as the coherence space whose web

|E 1 & E 2 | = |E 1 | |E 2 | is

the disjoint union of the two webs |E 1 | and |E 2 |, and where two elements (e, i) and (e , j) for i ∈ {1, 2} are coherent when i = j or when i = j and e Ei e . Tensor product. The tensor product E 1 ⊗ E 2 of two coherence spaces E 1 and E 2 is dened as the coherence space whose web |E 1 ⊗ E 2 | = |E 1 | × |E 2 | is equal to the cartesian product of the two webs |E 1 | and |E 2 | with the following coherence relation: e 1 ⊗ e 2 E1⊗E2 e 1 ⊗ e 2 ⇐⇒ e 1 E1 e 1 and e 2 E2 e 2 where e 1 ⊗ e 2 is a convenient notation for the pair (e 1 , e 2 ) in the web |E 1 ⊗ E 2 |.

  Here, we take advantage of the fact that every multiclique [e 1 , • • • , e n ] may be seen alternatively as a clique of p ≤ n elements in E, completed by n -p occurrences of the element * . It is not dicult to establish that E ≤n denes the expected equalizer. Simply observe that a clique X

R

G G (E & 1) ⊗n equalizes the n! symmetries precisely when R factors as

  • • , e n , * ] containing k ≤ n elements of the original coherence space E. It is nearly immediate that this limit is provided by the coherence space !E dened as follows: its web |!E| = M fin (|E|) contains the nite multicliques of E, two elements u and v are coherent in !E precisely when their union u v is a multiclique together with the family of projections π n : !E → E ≤n dened by restricting the coherence space !E to its multisets containing k ≤ n elements of the original coherence space E. At this point, there simply remains to check that the sequential limit commutes with the tensor product. Consider a family of morphisms

  ∀t ≺ even s , ∃t ∈ σ, t |A ≤n = t |A ⊗n

and t |X = t |X and t |Y = t |Y .

  e 1 , e 2 ) ∈ w}. The unit of the tensor is dened by |1| = { * }, and F (1) = {∅, { * }}. Note that the denition of the tensor product is valid because the set F (E 1 ⊗ E 2 ) is equal to its biorthogonal, see[START_REF] Ehrhard | Finiteness spaces[END_REF] for details. Linear implication. A nitary relation R between two niteness spaces E 1 and E 2 is dened as a subset of |E 1

  The productE 1 & E 2 of two conguration spaces E 1 and E 2 is dened by its web |E 1 & E 2 | = |E 1 | |E 2 |and by its congurations:

  The coproductE 1 ⊕ E 2 of two conguration spaces E 1 and E 2 is dened by its web |E 1 ⊕ E 2 | = |E 1 | |E 2 |and by its congurations:
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