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Template games and differential linear logic
Paul-André Melliès

CNRS and Université Paris Diderot

Abstract—We extend our template game model of
multiplicative additive linear logic (MALL) with an
exponential modality of linear logic (LL) derived from
the standard categorical construction Sym of the free
symmetric monoidal category. We obtain in this way
the first game semantics of differential linear logic
(DiLL). Its formulation relies on a careful and healthy
comparison with the model of distributors and gen-
eralised species designed ten years ago by Fiore,
Gambino, Hyland and Winskel. Besides the resolution
of an old open problem of game semantics, the study
reveals an unexpected and promising convergence
between linear logic and homotopy theory.

I. INTRODUCTION

Looking backwards into the history of the field, there
is little doubt that the bicategorical interpretation
of linear logic based on distributors and generalised
species [10] has been a turning point in the mathemat-
ical semantics of linear proofs and programs. In this
model of linear logic, every formula A is interpreted as
a small category [[A]] and every derivation tree

π
...

A1 , . . . , An ` B

is interpreted as a distributor (or profunctor)

[[π]] : [[A1]] ⊗ . . . ⊗ [[An]] [[B]].|

This interpretation of linear logic may be understood
as a “categorification” of the original relational seman-
tics of the logic, where sets are replaced by categories,
and relations by distributors. Recall that a distributor

M : A B|

is defined as a functor

M : A×B op Set

where Set denotes the category of sets and func-
tions. The bicategory Dist of small categories and dis-
tributors is symmetric monoidal with tensor product
A,B 7→ A⊗B of small categories defined as their usual
cartesian product A,B 7→ A × B in the category Cat
of small categories and functors, and with tensorial
unit 1 defined as the terminal category. The bicategory
Dist is moreover ∗-autonomous (and in fact compact
closed) with linear negation defined as the operation
A 7→ A op of turning a category A into its opposite

category A op. This means that there exists a family of
isomorphisms between the categories of distributors

ϕA,B,C : Dist(A⊗B,C) � Dist(B,A op ⊗ C)

natural in A, B and C, which provides a form of linear
currification to the bicategory Dist.

A. The exponential modality Sym
One nice aspect of the categorified semantics is that

the exponential modality A 7→ !A of linear logic is
interpreted using the 2-monad

Sym : Cat Cat (1)

which transports every small category A to the free
symmetric monoidal category SymA generated by A.
The category SymA has objects defined as the finite
sequences (or words) w = a1 . . . an of objects a1, . . . , an
of the category A, and morphisms

(σ, f1 . . . fn) : a1 . . . an b1 . . . bn

defined as pairs (σ, f1 . . . fn) consisting of a permuta-
tion σ ∈ Sn on the set of n elements, together with a
sequence (or word) of morphisms of the category A

fk : ak bσ(k) for 1 ≤ k ≤ n.

As a strict monoidal category, the category SymA
comes equipped with a pair of functors

⊗A : SymA× SymA SymA

IA : 1 SymA
(2)

with the tensor product ⊗A defined as concatenation,
and the tensor unit IA defined as the empty word.
Equipped with this structure, SymA defines a monoid
in the category Cat, which is only commutative up to a
natural isomorphism noted γ and called the symmetry
of the monoidal category:

SymA× SymA SymA× SymA

SymA

(21)

⊗A ⊗A

γ (3)

where the functor (21) denotes the symmetry of the
cartesian category Cat.



B. The symmetric monoid and comonoid structures
The exponential modality A 7→ !A of linear logic is

interpreted in Dist by turning and extending the 2-
monad (1) into a 2-comonad

Sym : Dist Dist (4)

using a distributivity law between Sym and the
presheaf construction in Cat, see [10] for details. Then,
one makes great usage of the following basic observa-
tion: every functor between small categories

F : A B

induces an adjoint pair LF a RF of distributors

LF : A B RF : B A| |

in the bicategory Dist, where the distributors are
defined as the functors (or presheaves) below:

LF (b, a) = B(Fb, a) : Bop ×A Set

RF (a, b) = B(a, Fb) : Aop ×B Set

The comonoid structure (SymA, dA, eA) of the expo-
nential modality (4) is then defined by the distributors

dA = R⊗A : SymA SymA⊗ SymA

eA = RIA : SymA 1

|

|

right adjoints to the functors ⊗A and IA defining the
monoidal structure of SymA in (2). This reveals an
important difference between the bicategorical model
in Dist and more traditional categorical models of lin-
ear logic: the comonoid (SymA, dA, eA) is not commu-
tative as one would expect, but only symmetric in the
symmetric monoidal bicategory Dist. This means that
SymA is only commutative up to the isomorphism (5)
obtained by transposing the isomorphism (3) from Cat
to Dist in the following way:

SymA

SymA⊗ SymA SymA⊗ SymA

dA dA

(21)

γ (5)

where the distributor (21) denotes in this context the
symmetry of the tensor product in Dist.

C. The Seely equivalence
The fact that one needs to relax in (5) an equation

like commutativity into a natural isomorphism like
symmetry is an important and fascinating aspect of
the model of distributors. Interestingly, the same bi-
categorical phenomenon occurs when one considers the
well-known Seely isomorphism of linear logic:

! (A&B) � !A⊗ !B. (6)

In order to interpret this equation of linear logic as
a distributor, one starts by considering the concatena-
tion functor

concatA,B : SymA× SymB Sym (A+B) (7)

which takes two sequences u = a1 · · · ap and v = b1 · · · bq
of objects of A and of B and concatenates them into the
sequence

concatA,B(u, v) = a1 · · · ap · b1 · · · bq (8)

of objects of A + B. The distributor interpreting the
Seely isomorphism

Sym (A&B) SymA ⊗ SymB| (9)

is then defined as the right adjoint of the concatenation
functor, where we write A&B = A+B for the disjoint
union of the categories A and B. The important point
is that the functor concatA,B is an equivalence of
categories (moreover injective on objects), but not an
isomorphism of categories. The reason is that an object
w ∈ Sym (A + B) generally consists of a sequence of
objects of A and B shuffled in an arbitrary order, while
concatA,B transports a pair (u, v) ∈ SymA × SymB
into a sequence (8) where all the objects of A appear
before the objects of B. From this follows that the
distributor (9) is not an isomorphism in the bicategory
Dist, but simply an equivalence. In other words, the
traditional Seely isomorphism (6) is replaced by a
Seely equivalence (9) in the model of distributors.

D. A model of differential linear logic

Once the exponential modality of linear logic has
been interpreted as A 7→ SymA, it appears that the
model of distributors does not just provide a mathe-
matical interpretation of linear logic (LL) but also of
differential linear logic (DiLL). One main reason is
that the exponential modality SymA comes equipped
with a monoid structure in Dist

mA = L⊗A : SymA⊗ SymA SymA

uA = LIA : 1 SymA

|

|

whose multiplication and unit are the left adjoint dis-
tributors associated to the monoid structure of SymA
in Cat mentioned in (2). It is worth stressing the fact
that the monoid structure (SymA,mA, uA) and the
comonoid structure (SymA, dA, eA) are the left and
right adjoint avatars in Dist of the very same monoid
structure (SymA,⊗A, IA) in Cat. As required by a
model of DiLL, the monoid and comonoid structure of
SymA define together a bimonoid (also called bialge-



bra) structure in Dist. Again, this bimonoid structure
is only up to an invertible natural transformation:

Sym A

(Sym A)⊗2 (Sym A)⊗2

(Sym A)⊗4 (Sym A)⊗4

dAmA

dA⊗dA

(1324)

mA⊗mA

∼

where we write (SymA)⊗n for the n-th tensorial power
of SymA, and (1324) for the expected distributor in the
symmetric monoidal category Dist. One explanation
for this structure of bimonoid is the following one: the
disjoint sum A+B of two small categories A and B is
at the same time their cartesian sum A⊕B and their
cartesian product A&B, in an appropriate bicategorical
sense. Every object A thus comes equipped with a
monoid and a comonoid structure, with multiplication
and comultiplication

∇A : A⊕A A

∇0
A : 0 A

|

|

∆A : A A⊕A

∆0
A : A 0

|

|

defined as the left and right adjoint distributors asso-
ciated to the canonical functors A+A→ A and 0→ A
in Cat, where 0 denotes the empty category and initial
object of Cat. By the universal nature of their defini-
tion, the multiplication ∇A and the comultiplication
∆A are equipped with a bimonoid structure in Dist,
once again up to an invertible natural transformation:

A

A⊕2 A⊕2

A⊕4 A⊕4

∆A∇A

∆A⊕∆A
(1324)

∇A⊕∇A

∼

Now, the important point to notice is that the expo-
nential modality A 7→ SymA together with the family
of Seely equivalences

Sym (A⊕n) (SymA)⊗n|

defines a (lax and oplax) symmetric monoidal bifunctor

Sym : (Dist,⊕,0) (Dist,⊗,1)

which transports the “additive” monoid, comonoid and
bimonoid structure of A in (Dist,⊕,0) to the “multi-
plicative” monoid, comonoid and bimonoid structure of
SymA in (Dist,⊗,1). One recognizes here a familiar
pattern already in the relational semantics of DiLL.

E. A model of differential linear logic (continued)
At this stage, one would like to understand how

the differential of DiLL is interpreted in the model
of distributors. To that purpose, one starts from the
families of functors

ηA : A SymA (10)

defining the unit of the 2-monad A 7→ SymA in Cat.
The functor may be post-composed with the functor ⊗A
in order to obtain the functor

appendA : A× SymA SymA (11)

which transports a pair (a, u) ∈ A × SymA to the
sequence a·u ∈ SymA where the object a ∈ A has been
appended to the word u ∈ SymA. The differential is
then interpreted in Dist as the left adjoint distributor

∂A : A⊗ SymA SymA|

associated to the functor (11) just defined. The codere-
liction and dereliction morphisms

coderA : A SymA| derA : SymA A|

are interpreted as the left and right adjoint distrib-
utors associated to the functor (10) respectively. The
composite of the codereliction with the comultiplica-
tion

A SymA SymA⊗ SymA
coderA dA

is equal to the disjoint sum of the two distributors

A SymA SymA⊗ SymA

A SymA SymA⊗ SymA

coderA uA⊗SymA

coderA SymA⊗uA

Here, the disjoint sum of two distributors

M,N : A B|

is the distributor M + N defined using the convolu-
tion product associated to the “additive” comonoid and
monoid structures of A and B:

A A⊕A B ⊕B B
∆A M⊕N ∇B

or more directly defined as the presheaf

M +N : (b, a) 7→ M(b, a) ]N(b, a)

where ] denotes the disjoint union of sets. This prop-
erty of the codereliction ensures that the Leibniz rule
is satisfied, in the technical sense that the composite
distributor

A⊗ SymA SymA SymA⊗ SymA
∂A dA

is isomorphic to the sum of the two distributors ob-
tained by precomposing the distributor

A⊗ SymA A⊗ SymA⊗ SymA
A⊗dA

with the two (different) distributors represented below:

A⊗ SymA⊗ SymA SymA⊗ SymA

~

SymA⊗A⊗ SymA

∂A⊗SymA

symmetry SymA⊗ ∂A



F. What this paper is about

Our main purpose in the present paper will be to
revisit and refine the exponential modality A 7→ SymA
of the model of distributors just discussed, in order
to adapt it to our recent template game semantics
of multiplicative additive linear logic (MALL). The
exercise is particularly instructive, since we obtain
in this clean and principled way the first game se-
mantics of differential linear logic (DiLL). As we will
see, one main difference between the two models
(distributors and games) is that template games are
based on functorial spans between categories, instead
of distributors. Shifting from distributors to functorial
spans will reveal a number of fundamental structures
hidden in the model of distributors. Surprisingly, these
structures are related to the homotopical nature of cat-
egories, and more specifically to the canonical Quillen
model structure (also called folk model structure) on
the category Cat. This model structure is based on the
following classification of functors between categories:

weak equivalences: categorical equivalences
fibrations: isofibrations
cofibrations: functors injective on objects

A hint of this unexpected convergence between linear
logic and homotopy theory lies already in the fact men-
tioned earlier that the concatenation functor concatA,B
defining the Seely equivalence (9) is a categorical
equivalence injective on objects, and thus an acyclic
cofibration (= weak equivalence and cofibration) in the
Quillen model structure on Cat. This basic observation
will play an important role in the construction of
the model since it indicates that the interpretation of
proofs as interactive strategies should be considered
up to homotopy of simulations, see §III for details.

G. Template games

The notion of template game was recently intro-
duced by the author as a unified framework to con-
struct various ∗-autonomous bicategories Games(�)
of games, strategies and simulations, see [20]. One
main advantage and novelty of the framework is that
each bicategory Games(�) is constructed in a uniform
manner, using a synchronization template as param-
eter. The template is noted with the symbol � and
also called anchor for that reason. The purpose of the
template � is to express in a simple and concise way
the scheduling policy of a specific regime of games
and strategies. By way of illustration, three different
templates were introduced and studied in the original
paper, each of them designed to reflect a particular
scheduling policy:

�alt for sequential alternating games,
�conc for concurrent non-alternating games,
�span for functorial spans with no scheduling.

One guiding principle of template games is that the
higher algebraic structure of the bicategory Games(�)
mirrors the simpler combinatorial structure of the
underlying template �. Typically, the construction of
the bicategory Games(�) relies on the hypothesis that
the template � defines an internal category in a given
category S with finite limits, typically chosen as S =
Cat. In order to shorten and simplify the terminology,
we call

S-category, S-functor, natural S-transformation

what is traditionally called internal category, internal
functor and internal natural transformation in a given
category S with finite limits. Accordingly, we write

Cat(S)

for the 2-category of S-categories, or internal categories
in S. The fact that the bicategory Games(�) is ∗-
autonomous is derived from the following theorem
established in [20] which relates the world of bicat-
egories to the world of synchronization templates:

Theorem [20] The bicategory Games(�) of games,
strategies and simulations is ∗-autonomous when the
S-category � is span-monoidal ∗-autonomous.

One benefit of using templates instead of working
directly on bicategories of games and strategies is that
it is much easier to check that an S-category � of
interest is span-monoidal ∗-autonomous than it is to
establish that the associated bicategory Games(�) is
∗-autonomous. This general principle is illustrated in
[20] by simple and purely combinatorial proofs that
the three synchronization templates

� = �alt,�conc,�span (12)

are span-monoidal ∗-autonomous in the category S =
Cat. From this follows that in each case, the bicategory
Games(�) is ∗-autonomous, and has finite products
and coproducts. The bicategory Games(�) thus defines
in each case a specific game semantics (sequential,
concurrent, span-relational) of multiplicative additive
linear logic (MALL).

H. A game semantics of differential linear logic
In the present paper, we describe at an axiomatic

level what structure should be added to a given syn-
chronization template � in order to extend the asso-
ciated model of MALL with an interpretation of the
exponential modality A 7→ !A. We are guided in that
quest by the notion of span-monoidal structure on a S-
category � formulated in [20] as a pair of S-categories
�⊗ and �I together with a pair of spans of S-functors

� �⊗ �×�

� �I 1

pickpince

pickpince
(13)



where 1 denotes the terminal S-category, and satisfy-
ing a number of coherence properties. One asks more-
over that the S-functors pick are acute in the sense of
[20]. A simple recipe summarised by the sentence

pullback along pick and postcompose with pince

enables one to derive a bifunctor

⊗ : Games(�)×Games(�) Games(�).

which turns Games(�) into a monoidal bicategory,
with unit derived from (13). We would like to extend
and adapt this idea in order to interpret the expo-
nential modality in the template game model. To that
purpose, we start by observing that the 2-monad Sym
preserves pullbacks in the category S = Cat. From
this follows that the image Sym (�) of an internal
category � is again an internal category. This enables
us to define a exponential modality on � as a span of
internal functors

� �! Sym (�)pince pick (14)

satisfying a number of coherence properties, see §V
for details. As we will see, one instructive outcome of
this work is the unexpected discovery that in order to
interpret the exponential modality A 7→ !A of linear
logic, one should replace the original ∗-autonomous
bicategory Games(�) by a “homotopy-friendly” bicat-
egory Games(F,�) where composition of strategies is
defined by homotopy pullbacks instead of usual (and
potentially incorrect) categorical pullbacks, see §III.

I. Related works
The idea of connecting linear logic and homotopy

theory was explored for the first time by Egger in
his PhD thesis, see [7]. The motivation at the time
was to construct a ∗-autonomous category C equipped
with a Quillen model structure ( W, C,F) where the
mix rule A ⊗ B → A M B is a weak equivalence, and
to obtain in this way a compact closed category Ho C
as homotopy category. To the author’s knowledge, the
connection between homotopy theory and the expo-
nential modality A 7→ !A of linear logic appears for
the first time in the present paper. It provides the
latest insight in a long tradition of works devoted
to the structure of symmetries between copies in the
exponential modality of linear logic, starting from [1]
and including [21], [17], [6], [4]. The fact that in the
case of S = Cat, one requires that every strategy
σ = (S, s, t, λσ) of the model is defined by isofibrations
A ← S → B means that every “symmetry” appearing
in the games A and B lifts to the support S of the
strategy. This homotopy-theoretic assumption is thus
reminiscent of the idea advocated in [2], [4] that one
should only consider the strategies which are satu-
rated modulo the action of the symmetric group Σn

on the tensorial powers A⊗n of n copies of the game A.
As additional precursor to this work, let us mention
the game semantics of the differential λ-calculus, the
intuitionistic fragment of DiLL, designed in [16] and
based on the nondeterministic pointer game semantics
formulated by Harmer and McCusker [13].

J. Synopsis of the paper
After this long and detailed introduction, we recall

in §II how the ∗-autonomous bicategory Games(�) is
constructed in [20]. We then explain in §III why homo-
topy theory plays a central role in our interpretation of
the exponential modality from distributors to template
games. This leads us to an axiomatic description in §IV
of the basic assumptions on the homotopy structure of
the underlying category S and of the 2-monad Sym .
A general construction of the exponential modality
is described in §V. The fact that it defines a model
of differential linear logic is established in §VI. We
illustrate the construction by defining in §VII an ex-
ponential modality for the template �alt of alternating
games and strategies. We then conclude in §VIII.

II. THE BICATEGORY OF GAMES AND STRATEGIES

A. Internal categories
We suppose given a category S with finite limits,

whose objects we find convenient to call spaces. An
internal graph � in such a category S with finite limits
is defined as a pair of spaces (= objects in S)

�[0] � [1] (15)

called the space �[0] of objects and the space �[1] of
maps, together with a pair of morphisms

�[0] �[1] �[0]s t (16)

called the source and target morphisms. Typically, an
internal graph � in the category S = Set of sets and
functions is just the same thing as a graph. Every
internal graph � comes equipped with the space �[2]
of composable maps defined as the pullback

�[2]

�[1] pb �[1]

�[0] �[0] �[0]

π1 π2

t

s
s

t

(17)

computed in the category S of spaces. An internal
category � is defined as an internal graph equipped
with two morphisms

�[2] �[1]m �[0] �[1]e (18)

called composition and identity respectively, and satis-
fying a number of coherence properties expressing the
fact that composition is associative and that identity



maps are neutral elements. Note that an internal
category � in the category S = Set is just the same
thing as a small category.

B. The bicategory of games and strategies
Given an internal category � in the category S

with finite limits, the bicategory Games(�) of games,
strategies and simulations is defined in the following
way. Its objects are the pairs (A, λA) consisting of an
object A of the category S together with a map

λA : A �[0]

Its maps (called strategies)

σ = (S, s, t, λσ) : (A, λA) (B, λB)| (19)

are defined as the spans

A S B
s t

with support S, together with a map λσ : S → �[1]
making the diagram below commute:

A S B

�[0] �[1] �[0]

λA

s

λσ

t

λB

s t

(20)

The 2-cells of the bicategory Games(�) are the simu-
lations

θ : σ τ : A B| (21)

defined as maps θ : S → T making the diagram below
commute:

S T

A

θ

s s

S T

�[1]

θ

λσ λτ

S T

B

θ

t t

where S is the support of σ and T is the support of τ .
Two maps (or strategies)

σ = (S, sS , tS , λσ) : A B|

τ = (T, sT , tT , λτ ) : B C|

of Games(�) are composed in the following way:

S ×B T

S �[2] T

A �[1] �[1] C

�[0] �[1] �[0]

π1 π2λσ ‖λτ
π2

sS
λσ

π1 π2

m

λτ
tT

λA
s t λC

ts

Here, λσ‖λτ denotes the map of S induced by the
pullback diagram (17) and uniquely determined by the
equations

λσ ◦ π1 = π1 ◦ (λσ‖λτ ) λτ ◦ π2 = π2 ◦ (λσ‖λτ )

The identity map

idA = (A, idA, idA, e ◦ λA) : A A|

is constructed in the following way:

A

�[0]

A A

�[0] �[1] �[0]

id

λA

id

e
id id

λA λA

s t

III. THE EMERGENCE OF HOMOTOPY

In this section, we explain why homotopy theory
plays a central and necessary role in order to interpret
the exponential modality A 7→ !A of linear logic in our
template game models. To that purpose, we find con-
venient to work in the special case where S = Cat is
the category of small categories. We start by observing
in §III-A that the hom-category Games(�)(A,B) is in
fact a 2-category when the underlying category S is a
2-category, as it is the case for S = Cat. Moreover, in
the special case when S = Cat, every isomorphism (26)
of functors is interpreted as a cospan (27) of weak
equivalences between strategies in Games(�)(A,B).
In order for composition to preserve these weak equiv-
alences, we explain in §III-B and §III-C that one needs
to compose strategies by homotopy pullbacks instead
of usual pullbacks. Finally, we give a brief description
in §III-D of the main contribution of the paper, which
is to provide an axiomatic homotopy framework for
template games.

A. A troublesome and remarkable phenomenon
As explained in the introduction (§I-C), one funda-

mental benefit of shifting to a 2-categorical model of
linear logic like the model of distributors is that the
Seely isomorphism (6) is replaced there by a more in-
formative and precise Seely equivalence (9). In the case
of Dist, this equivalence (9) is provided by the right
adjoint distributor associated to an equivalence (7) of
categories living in Cat. The situation becomes even
more interesting and subtle when one shifts from Dist
to the bicategory Games(�) of games, strategies and
simulations associated to a S-category �, and more
specifically when S is a 2-category and not just a cat-
egory. In this situation, the category Games(�)(A,B)



of strategies and simulations between two games A
and B becomes a 2-category, with 2-cells

α : θ1 θ2 : σ τ : A B| (22)

between simulations of the form (21) defined as 2-cells

α : θ1 θ2 : S T

of the underlying 2-category S. In the important
case S = Cat, we are confronted to this unex-
pected and troublesome fact that the 2-cells (22) of
Games(�)(A,B) are not preserved by pullbacks of
spans in the 2-category S = Cat. In particular, we
cannot expect to turn the bicategory Games(�) into
something like a tricategory of games, strategies and
simulations, even when S is a 2-category like Cat.

B. The emergence of cylinder categories
Luckily, this phenomenon of a purely 2-categorical

nature remains invisible in the construction of the
∗-autonomous bicategory Games(�) because the con-
struction of Games(�) relies only on the categorical
structure of S, see [20] for details. The phenomenon
is likely to reappear however when one decides to
equip the bicategory Games(�) with an exponential
modality. In order to explain why, we find convenient
to consider the simple case when � = �span denotes
the terminal S-category in S = Cat. In that case,
the bicategory Games(�) coincides with the bicategory
Span(S) of spans in S = Cat, whose exponential
modality is defined as the 2-functor

Sym : Span(Cat) Span(Cat) (23)

obtained by lifting the functor Sym in (1), using the
fact that it preserves pullbacks in Cat. In order to turn
the 2-functor (23) just formulated into an exponential
modality, we proceed by analogy with Dist, and ob-
serve that every functor F : A → B between small
categories induces an adjoint pair LF a RF of spans

LF : A B RF : B A| |

in the bicategory Span(Cat). The two spans LF and
RF are respectively defined as:

A A B B A A.
FidA idAF

As in the case of the model of distributors, this family
of adjoint pairs LF a RF enables us to equip every
category of the form SymA with a comonoid structure

dA = R⊗A : SymA SymA⊗ SymA

eA = RIA : SymA 1

|

|
(24)

as well as with a monoid structure

mA = L⊗A : SymA⊗ SymA SymA

uA = LIA : 1 SymA

|

|
(25)

Here, the tensor product A ⊗ B of two small cate-
gories A and B is defined as their usual (cartesian)
product A × B, in the same way as in Dist. At this
stage, one would like to carry on the analogy with Dist
and lift the symmetry (3) of the monoidal category
SymA in the same way as it was lifted in §I-B to
the symmetry (5) in the bicategory Dist. However, and
this is the whole beauty and novelty of the situation,
it turns out that a natural isomorphism ϕ : F ⇒ G
between functors in Cat

A B

F

G

ϕ (26)

is not transported to a pair of reversible 2-cells

Lϕ : LF LG Rϕ : RG RF

as it is the case for distributors. Instead, the natural
isomorphism ϕ : F ⇒ G is transported to a pair of
cospans of 2-cells (or simulations) in Span(Cat)

LF L̃ϕ LG RF R̃ϕ RG (27)

defined as follows
A

A Cyl(A) B

A

inl
FidA

proj ϕ

inr
GidA

A

B Cyl(A) A

A

inl
idAF

ϕ proj

inr
idAG

Here, Cyl(A) denotes the cylinder category defined as

Cyl(A) = J×A

where the interval category J is defined as the category
with two objects 0 and 1 and a unique isomorphism
0→ 1 between them. Note that the interval category J
comes equipped with three functors

1 J 1
0

1

p

The three functors inl, inr and proj are deduced from
that structure on the interval category J in the follow-
ing way:

inl = 0×A inr = 1×A proj = p×A.

The spans L̃ϕ and R̃ϕ are respectively defined as

A Cyl(A) B B Cyl(A) A
ϕproj projϕ

where the functor ϕ : Cyl(A)→ B internalizes the nat-
ural isomorphism (also noted ϕ) between the functors
F,G : A→ B and thus satisfies the two equations:

F = ϕ ◦ inl G = ϕ ◦ inr

required for inl and inr to define simulations in (27).



C. A notion of weak equivalence
What is remarkable here is that the model of func-

torial spans (and more generally of template games)
reveals an unexpected connection between linear logic
and homotopy theory, which remained invisible in the
original model of distributors. Indeed, the reversible
nature of the natural transformation ϕ : F ⇒ G in (26)
is reflected in the model of functorial spans by the fact
that the two functors

inl, inr : A Cyl(A)

are equivalences of categories. In order to stress the
connection to homotopy theory, we find useful to call
weak equivalence any simulation of the form (21)
whose underlying morphism θ : S → T is a categorical
equivalence in S = Cat. Note that the definition works
for every internal category � in S = Cat. So, given two
template games A and B, we write WA,B for the class
of weak equivalences in the category Games(�)(A,B).
Using that terminology, the fact that F and G are
isomorphic functors in Cat is reflected in our template
game semantics by the fact that the cospans (27) of
simulations are made of weak equivalences (indicated
by the symbol ∼ in diagrams)

LF L̃ϕ LG RF R̃ϕ RG
∼∼ ∼∼

living either inside the category Games(�)(A,B) or
inside the category Games(�)(B,A). The ongoing dis-
cussion convinces us to replace the original category

Games(�)(A,B)

of strategies and simulations between two template
games A and B by the homotopy category

HoGames(�)(A,B) = Games(�)(A,B)[ WA,B ] (28)

obtained by localizing the category Games(�)(A,B)
at the weak equivalences, in other words, by formally
inverting the maps (simulations) in WA,B . We will see
very soon that, thanks to this localization of the hom-
categories Games(�)(A,B) of strategies and simula-
tions, we can lift the symmetry (3) into a symmetry of
Span(Cat) in the just same way as we previously did
in the bicategory Dist.

D. A game model of linear logic up to homotopy
One main contribution and technical achievement of

the paper is to construct for any good synchronization
template � a ∗-autonomous bicategory HoGames(�)
together with an exponential modality

! : HoGames(�) HoGames(�) (29)

based on these axiomatic ideas coming homotopy the-
ory. To that purpose, we will make the assumption that
our original category S with finite limits is equipped

with a Quillen model structure ( W, C,F) describing
the weak equivalences, cofibrations and fibrations of
the category S. Typically, in the case of S = Cat, we
consider the canonical model defined as follows:

W categorical equivalences
C functors injective on objects
F isofibrations

From this, one deduces a Quillen model structure
( WA,B , CA,B ,FA,B) on the category Games(�)(A,B) of
strategies and simulations between two games A and
B, where every simulation θ : S → T of the form (21)
inherits its classification

WA,B weak equivalences in Games(�)(A,B)
CA,B cofibrations in Games(�)(A,B)
FA,B fibrations in Games(�)(A,B)

from the classification of the morphism θ : S → T in
the category S. In order to define composition in the
bicategory HoGames(�) with hom-categories

HoGames(�)(A,B) = Games(�)(A,B)[ WA,B ]

localized at the weak equivalences of WA,B , one needs
to replace usual categorical pullbacks by homotopy
pullbacks computed in the Quillen model structure S.
In order to make our life simpler and avoid unneces-
sary complications, we will make the assumption that
the Quillen model structure ( W, C,F) is right proper.
The assumption tells that the pullback of a weak
equivalence w ∈ W along a fibration f ∈ F is a weak
equivalence w′ ∈ W. This assumption ensures more
generally that every (usual categorical) pullback along
a fibration f ∈ F computes in fact a homotopy pullback
in the model category S. This is in particular the case
of the category Cat equipped with its canonical model
structure ( W, C,F).

IV. BASIC ASSUMPTIONS ON S

In this section, we assume that the category S comes
equipped with a monad Sym and describe what ax-
iomatic properties they should both satisfy. We start by
describing in §IV-A the homotopy structure required of
S and �, and then explicate in §IV-B how the monad
Sym should behave and interact with it.

A. A Quillen model structure

We suppose that the category S is equipped with
a right proper Quillen model structure ( W, C,F). We
suppose that the S-category � satisfies the following
homotopy properties:

Property A. The two spaces �[0] and �[1] in (15) of
the internal category � are fibrant objects in S, and
its structural S-morphisms s, t, m, e in (16) and (18)
are fibrations in S.



Recall that an object A is fibrant in the category S
when the canonical morphism A → 1 to the terminal
object is a fibration. At this stage, we find convenient
to define F as the subcategory of S consisting of fibrant
objects and fibrations A → B between them. This
enables us to define

Games(F,�)

as the sub-bicategory of Games(�) consisting of
• the games (A, λA) whose morphism λA : A→ �[0]

is a fibration in the category S,
• the strategies σ = (S, s, t, λσ) whose morphisms s,
t, λσ are fibrations in the category S,

• the simulations θ : σ ⇒ τ are the same as in
Games(�).

Given two games A and B, we write WF
A,B for the

class of weak equivalences between strategies in
Games(F,�)(A,B). It appears that the category

HoGames(F,�)(A,B) = Games(F,�)(A,B)[ WF
A,B ]

obtained by inverting the weak equivalences of
Games(F,�)(A,B) is equivalent to the category
HoGames(�)(A,B) defined in (28). Moreover, by our
assumption that the underlying model structure on S
is right proper, the pullbacks of spans in Games(F,�)
are pullbacks along fibrations, and thus homotopy
pullbacks. In particular, composition of strategies in
the bicategory Games(F,�) preserves weak equiva-
lences between them. As such, the construction pro-
vides an answer and solution to the observations made
in §III. Accordingly, we ask that

Property B. All the objects and morphisms defining
the ∗-autonomous span-monoidal structure of � are
fibrant objects and fibrations in S.

We make a last assumption on the category S, which
ensures that the bicategory Games(F,�) has finite
products provided by the finite sums (+,0) of the
underlying category S.

Property C. The finite sum of fibrant objects is fi-
brant, and for every fibration f : S → A1 + A2 where
S, A1 and A2 are fibrant objects, there exists a unique
pair of fibrant objects S1 and S2 and a unique pair
of fibrations f1 : S1 → A1 and f2 : S2 → A2 up to
isomorphism such that the sum S1 + S2 is isomorphic
to S and the fibration f : S → A1 + A2 is induced
by universality property from the fibrations f1 and f2.
Similarly, every fibration f : S → 0 is an isomorphism.

B. The monad Sym and its properties
Besides the homotopy structure on S , we ask that

the category S comes equipped with a monad

(Sym , η, µ) : S S (30)

One requires that

Property D. The monad Sym is cartesian.
This means that the functor Sym preserves pullbacks,
and that the unit η and multiplication µ of the monad
define pullbacks:

A B

SymA SymB

f

ηA ηB

Sym f

Sym SymA Sym SymB

SymA SymB

Sym Sym f

µA µB

Sym f

for every morphism f : A→ B in S. From Property D.
we derive the fact that Sym lifts to a functor

Sym : Cat(S) Cat(S) (31)

One also requires that
Property E. The monad Sym transports fibrations
to fibrations and fibrant objects to fibrant objects.
Moreover, every morphism ηA and µA is a fibration.
Note that Property E. implies that the monad Sym
restricts to a monad

(Sym , η, µ) : F F (32)

on the subcategory F of fibrant objects and fibrations.
Finally, we require as last assumption on Sym that

there exists a family of weak equivalences interpreting
the Seely isomorphism in the category S. Note that cat-
egory S has finite sums (+,0) as a category equipped
with a Quillen model structure.
Property F. There exists a family of weak equiva-
lences

SymA× SymB Sym (A+B)∼ 1 Sym 0∼

making the expected coherence diagrams of a lax
symmetric monoidal structure commute up to left ho-
motopy ∼l in the Quillen model structure. See [15] for
a definition of left homotopy, and its relationship to the
notion of cylinder object already encountered in §III-B.

V. THE EXPONENTIAL MODALITY

Here, we fix a right proper Quillen category S to-
gether with a monad Sym and a symmetric span-
monoidal S-category � satisfying the Properties A–F
formulated in §IV. The main purpose of the section
is to introduce the notion of exponential modality on
the synchronization template �. We have seen that the
construction of the exponential modality Sym on the
bicategory of distributors relies on the fact that every
functor F : A → B induces a pair LF a RF of adjoint
distributors. We proceed similarly here, and establish
a similar property for strategies in Games(F,�).



A. Adjunctions
Suppose given two games (A, λA) and (B, λB) whose

morphisms λA and λB are fibrations in the category S,
and thus objects in the slice category F/�[0]. In that
case, every morphism (and thus fibration) f : (A, λA)→
(B, λB) of the category F/�[0] induces an adjoint pair
of strategies

Lf : (A, λA) (B, λB)

Rf : (B, λB) (A, λA)

|

|
(33)

in the bicategory Games(F,�). The strategies are re-
spectively defined as the morphisms of spans

A A B

�[0]

�[0] �[1] �[0]

λA

idA f

λA

λB

e

s t

B A A

�[0]

�[0] �[1] �[0]

λB

f idA

λA

λA

e

s t

B. The exponential modality (functorial part)
We are now ready to formulate the functorial part

of our definition of exponential modality.

Definition 1 (exponential premodality): An exponen-
tial premodality is defined as a S-category �! together
with a span of S-functors

� �! Sym (�)pickpince (34)

in Cat(S), where the S-functors pick and pince are
acute in the sense of [20]. One requires moreover that
the objects and morphisms defining the S-category �!

and the S-functors pick and pince are fibrant objects
and fibrations in the category S.

From these assumptions, one obtains a functor

![0] : S/�[0] S/�[0] (35)

defined by transporting every morphism λA : A→ �[0]
to the pullback of SymA along pick[0] postcomposed
with pince[0], in the following way:

![0]A SymA

pb

�[0] �![0] Sym � [0]

θA

![0]λA SymλA

pick[0]
pince[0]

(36)

From this definition, it follows that the morphisms θA :
![0]A→ SymA are fibrations in the category S and turn
the diagram

![0]A SymA

![0]B SymB

θA

![0]f Sym f

θB

into a pullback diagram in the category S for every
morphism f : A → B. From this, one deduces easily
that the functor (35) transports fibrations into fibra-
tions and fibrant objects into fibrant objects ; and that
the functor (35) is moreover cartesian, in the sense
that it transports every pullback diagram of S/�[0]
into a pullback diagram. The span (13) of S-functors
induces by the same procedure applied to pick[1] and
pince[1] a functor

![1] : S/�[1] S/�[1] (37)

Note that the two functors ![0] and ![1] are related by a
pair of natural transformations

S/�[1] S/�[1]

S/�[0] S/�[0]

![1]

S/s S/s

![0]

![s]

S/�[1] S/�[1]

S/�[0] S/�[0]

![1]

S/t S/t

![0]

![t] (38)

where the functors S/s and S/t are the expected func-
tors defined by postcomposition with s, t : �[1]→ �[0].
From these structures, one deduces a functor

! : Cat(S)/� Cat(S)/� (39)

which transports every S-category A equipped with a
S-functor F : A→ � to the internal S-category

(!A) [0] = ![0](A[0]) (!A) [1] = ![1](A[1])

equipped with a S-functor F † : !A → � derived from
the S-functor F . As a form of categorical bootstrap,
one obtains in that way the equation �! = ! � where
� comes equipped as an object of Cat(S,�) with the
identity S-functor id : �→ � while its image !� comes
equipped with the S-functor pince : �! → �.

C. The exponential modality (monadic part)
At this point, we want to turn the functor (35) into

a monad on the category F/�[0]. To that purpose, we
extend the previous definition (Def. 1) of exponential
premodality in the following way:

Definition 2 (exponential modality): An exponential
modality is an exponential premodality equipped with
two S-functors unit : � → !� and mult : !!� → !�
whose components are fibrations of the category S, and
defining the pullback diagrams below:

�[0] �[0]

pb

! �[0] Sym �[0]

id

unit[0] η�[0]

pick[0]

!!�[0] Sym !�[0]

pb

!�[0] Sym �[0]

pick′[0]

mult[0] Sym pince[0]

pick[0]

(40)



From this additional structure, one deduces that ![0]
defines a monad

![0] : F/�[0] F/�[0] (41)

whose unit and multiplication morphisms

ηA : (A, λA) ![0] (A, λA)

µA : ![0]![0] (A, λA) ![0] (A, λA)

are moreover fibrations between fibrant objects in the
category S/�[0]. The counit and comultiplication of the
exponential modality

εA : ![0] (A, λA) (A, λA)

δA : ![0] (A, λA) ![0]![0] (A, λA)

|

|

are then defined in the bicategory Games(F,�) as the
right adjoint strategies (33) associated to the fibrations
ηA and µA. In order to ensure that εA and δA are
natural, one requires moreover that the diagram below
is a pullback

!!� [0] Sym !� [0] Sym Sym � [0]

pb

!� [0] Sym � [0]

pick′[0]

mult[0]

Sym pick[0]

µ�[0]

pick[0]

where pick′[0] is the fibration of S defined in the
pullback diagrams (40). The very same axioms should
be required at the degree 1 in order to ensure that
the functor (37) defines a monad in S/�[1] and that it
behaves properly.

VI. THE LINEAR-NON-LINEAR ADJUNCTION

At this point, we are ready to construct the linear-
non-linear adjunction between bicategories

RepGames(F, �, �!) ⊥ Games(F, �)

Lin

Mult

which defines our model of differential linear logic up
to homotopy (= localization of the weak equivalences).

A. The Kleisli bicategory
The bicategory of replicated games

RepGames(F,�,�!)

plays the role of Kleisli bicategory in our construction.
It has the same objects as the bicategory Games(F,�).
Then, a map (also called mixed strategy)

σ = (S, s, t, λσ) : A B| (42)

is defined as a span of fibrations

![0]A S B
s t (43)

together with a fibration

λσ : S �[1] (44)

making the diagram below commute:

![0]A S B

!�[0]

�[0] �[1] �[0]

![0]λA

s

λσ

t

λB

pince[0]

s t

(45)

The notion of simulation between mixed strategies
is immediate. Composition of mixed strategies is de-
fined using the comonadic structure of the exponential
modality. Property C. ensures that the bicategory has
finite products noted (&,>) provided by the finite sums
(+,0) of objects in the original category S.

B. The two pseudofunctors Lin and Mult

The pseudofunctor Lin transports every mixed strat-
egy (42) in the Kleisli bicategory to the strategy

Lin(σ) : ![0]A ![0]B| (46)

with support ![1]S defined as the span of fibrations

![0]A ![0]![0]A ![1]S ![0]B
µA ![0]s◦![s] ![t]

together with the fibration

λLin(σ) : ![1]S !�[1] �[1]
![1]λσ pince[1]

Conversely, the pseudofunctor Mult transports every
strategy (19) in the bicategory Games(F,�) to the
mixed strategy

Mult(σ) : A B|

with same support S and defined as the span

![0]A A S ![0]B
ηA s t

with same underlying fibration λMult(σ) = λσ.

C. The linear-non-linear adjunction
The adjunction Lin a Mult between Lin and Mult

relies on the fact that the categories are isomorphic

Games(F,�)(Lin(A), B)
� RepGames(F,�,�!)(A,Mult(B))

for every pair of games A and B whose underlying
morphisms λA : A → �[0] and λB : B → �[0] are



fibrations. Moreover, by Property F. the left adjoint Lin
comes equipped with a family of morphisms

LinA⊗ LinB Lin(A&B) 1 Lin>

which interpret the Seely isomorphism, and which
become bicategorical equivalences in HoGames(�),
after localization of the simulations which are weak
equivalences in Games(F,�). Note that the pseudo-
functor (29) mentioned in §III-D is simply defined as
the composite:

! = Mult ◦ Lin : HoGames(�) HoGames(�)

on the homotopy bicategory HoGames(�) associated
to the bicategory Games(F,�).

D. A model of differential linear logic

In order to establish that HoGames(�) defines a
model of differential linear logic, we adapt to bicat-
egories the description by Fiore [11] of a categorical
semantics of DiLL, see also [5], [9]. First, one observes
that the bicategory HoGames(�) has finite biproducts
(⊕,0) since its finite sums and products coincide. The
multiplication and comultiplication of !A are then de-
fined using the Seely equivalence as done in Def 3.4 of
[11] while the differential operator ∂A : A⊗ !A→ !A is
defined just as in the model of distributors in §I-E.

We are ready now to formulate the main result of
the paper, a soundness theorem for differential linear
logic. In order to establish the soundness property, we
suppose given a right proper Quillen model category
S equipped with a functor Sym and a span-monoidal
∗-autonomous S-category � satisfying the Properties
A–F formulated in §IV. We also suppose given an
exponential modality in the sense of §V-C (Def. 2).

Theorem (Soundness): Every formula A of proposi-
tional linear logic (LL) is interpreted as a template
game [[A]], and every derivation tree of differential
linear logic (DiLL)

π
...

A1, . . . , An ` B
is interpreted as a strategy

[[π]] : [[A1]]⊗ . . .⊗ [[An]] [[B]]|

in the bicategory HoGames(�) of template games and
strategies modulo homotopy. Moreover, two derivation
trees π and π′ of DiLL related by a cut-elimination step
π −→ π′ define isomorphic interpretations [[π]] � [[π′]] in
the bicategory HoGames(�).

VII. ILLUSTRATION: ALTERNATING GAMES

We recall in the Appendix the definition of the inter-
nal category �alt for alternating games and strategies,
defined for S = Cat. The category �alt[0] is the cate-
gory with two objects freely generated by the graph

〈	〉 〈⊕〉
P

O

and an alternating game (A, λA) is thus defined as a
category A equipped with a functor λA : A → �alt[0].
The purpose of the objects 〈⊕〉 and 〈	〉 is thus to
provide a positive or negative polarity to every object
(or position) of the alternating game A, while the edge
O and P are here to indicate the polarity of the tra-
jectories and moves in the game. The free symmetric
monoidal category Sym �alt [0] is the category with
objects of the form w = ε1 · · · εn where εi ∈ {〈⊕〉, 〈	〉}
for 1 ≤ i ≤ n. The category �!

alt[0] is simply defined
as the full subcategory of Sym �alt [0] consisting of the
objects w containing at most one negative polarity 〈	〉.
The functor

pick[0] : �!
alt[0] Sym �alt [0]

is defined as the inclusion functor while the functor

pince[0] : �!
alt[0] �alt[0]

transports every word w = ε1 · · · εn to the polarity 〈⊕〉
when w contains only positive polarities 〈⊕〉 and to the
polarity 〈	〉 when w contains one (and thus exactly
one) negative polarity 〈	〉. The categories �!

alt[1] and
functors pick[1] and pince[1] are defined in a similar
way. One checks that the resulting structure defines
an exponential modality in the sense of §V for the
canonical model structure on S = Cat. Note that
the functor pick is designed to ensure the usual se-
quentiality requirement that at most one copy of the
alternating game A is of negative polarity 〈	〉 in each
position a1 · · · an of the alternating game ![0]A.

VIII. CONCLUSION

We have constructed the first game model of differ-
ential linear logic (DiLL) by defining an exponential
modality for the synchronization template � = �alt
of alternating games and strategies. The construction
is guided by a careful comparison with the model of
generalised species, or distributors. It should be noted
that a very similar (and even simpler) definition of the
exponential modality A 7→!A for the template �conc of
concurrent games produces a concurrent game model
of DiLL with synchronous copycat strategies, and sim-
ilarly for the template �span of functorial spans. The
construction of the model of DiLL reveals moreover a
deep and unexpected connection between linear logic
and homotopy theory, whose combinatorics will be
explored in future work.
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APPENDIX A
THE TEMPLATE OF ALTERNATING GAMES

We describe the synchronization template �alt for
alternating games and strategies. The category called
the template of games

�game = �alt[0]

is defined as the category with two objects 〈⊕〉 and 〈	〉
freely generated by the oriented graph

〈	〉 〈⊕〉
P

O
(47)

The category called the template of strategies

�strat = �alt[1]

is defined as the category freely generated by the graph

〈	,	〉 〈⊕,	〉 〈⊕,⊕〉
Os

Ps

Pt

Ot
(48)

Each of the four labels Os, Ps, Ot and Pt is here to
describe a specific kind of Opponent and Player move:

Os : Opponent move played in the source game
Ps : Player move played in the source game
Ot : Opponent move played in the target game
Pt : Player move played in the target game

The four edges Ps, Os, Pt and Ot of the graph (48) may
be depicted as follows:

P O Ps s t

The morphisms of the category �strat are called
scheduling trajectories. Typically, the scheduling tra-
jectory

〈⊕,⊕〉 〈⊕,	〉 〈	,	〉 〈⊕,	〉 〈⊕,⊕〉Ot Ps Os Pt

is depicted as follows in this graphical notation:

O

P

O

P

s

s

t

t

The category �strat comes equipped with a span of
functors

�game �strat �game
s t (49)

where the functor s is defined as the “projection” on
the first component:

〈	,	〉 7→ 〈	〉
〈⊕,	〉 , 〈⊕,⊕〉 7→ 〈⊕〉

Os 7→ P Ps 7→ O
Ot , Pt 7→ id〈⊕〉

and the functor t is defined as the “projection” on the
second component:

〈⊕,⊕〉 7→ 〈⊕〉
〈	,	〉 , 〈⊕,	〉 7→ 〈	〉

Ot 7→ P Pt 7→ O
Os , Ps 7→ id〈	〉

The source and target functors may be illustrated as
follows in our graphical notation:

O

P

O

P

s

s

t

t

O

P

O

P

source target

The category �int called the template of interactions

�int = �alt[2]

is defined by the pullback diagram below:

�int

�strat pb �strat

�game �game �game

π1 π2

t

s
s

t

An easy computation shows that the category �int has
four objects

〈	,	,	〉 〈⊕,	,	〉 〈⊕,⊕,	〉 〈⊕,⊕,⊕〉

and is freely generated by the following graph:

〈	,	,	〉 〈⊕,	,	〉 〈⊕,⊕,	〉 〈⊕,⊕,⊕〉
Os P |O

Ps

Pt

O|P Ot

The six edges of the graph may be depicted as follows
in our graphical language:

Ot

Pt

O P

OP

Ps

Os

so that a typical trajectory of interactions between two
alternating strategies is represented as follows:



Ot

Pt

O P

OP

Ps

Os

The category �int of interactions comes equipped with
a functor

m = hide : �int �strat (50)

which makes the diagram below commute:

�strat �int �strat

�game �strat �game

(1)

(12) (23)

hide (2)

(1) (2)

(51)

and thus defines a map of functorial spans. The functor
hide is defined as the “projection” on the first and third
components, and is noted (13) for that reason:

〈	,	,	〉 7→ 〈	,	〉
〈⊕,	,	〉 , 〈⊕,⊕,	〉 7→ 〈⊕,	〉

〈⊕,⊕,⊕〉 7→ 〈⊕,⊕〉

Os 7→ Os Ps 7→ Ps
O|P , P |O 7→ id〈⊕,	〉
Os 7→ Os Ps 7→ Ps

The action of the functor hide on the interaction trajec-
tory above is represented as follows in our graphical
language:

Ot

Pt

O P

OP

Ps

Os

Ps

Os

O

P

O

P

s

s

t

t

id

id

hide

There also exists a functor

e = copycat : �game �strat (52)

which makes the diagram below commute:

�game

�game �game

�strat

id id

copycat

(1) (2)

(53)

The functor copycat is defined as follows on the objects
and morphisms of the category �game:

〈	〉 7→ 〈	,	〉 O 7→ Ot · Ps
〈⊕〉 7→ 〈⊕,⊕〉 P 7→ Os · Pt

The pair of categories

�game = �alt[0] �strat = �alt[1]

together with the functors s, t,m, e defines an internal
category �alt in S = Cat.



APPENDIX B
HOMOTOPY PULLBACKS AND DIFFERENTIAL LINEAR

LOGIC

Here, we illustrate the fact that shifting from pull-
backs to homotopy pullbacks is necessary in order
to interpret differential linear logic in our template
game model, and more specifically, to ensure that
every exponential object !A comes equipped with the
expected structure of a bimonoid (= bialgebra). As we
did in §III-B, we suppose here that S = Cat and
that � = �span. Imagine that one decides to compute
directly in the bicategory Games(�) = Span(Cat) the
composite

Sym A ⊗ Sym A Sym A Sym A ⊗ Sym A| |

of the two spans defining comultiplication dA and
multiplication mA and formulated in (24) and (25). To
that purpose, one starts by computing in S = Cat the
pullback of the diagram

Sym A × Sym A Sym A Sym A × Sym A
⊗A ⊗A

Because of the sequential nature of words and concate-
nation, the result consists of three components instead
of four as one would expect of a bimonoid (or bialgebra)
!A in a model of differential linear logic. In order to
recover the appropriate form of composition, one needs
to compute instead the homotopy pullback (or in that
specific case, isopullback) of the diagram. One simple
way to proceed is to observe that the functor

Sym∇A : Sym (A+A) SymA

is an isofibration which happens to define the fibrant
replacement of the functor ⊗A defined in (2). Then, the
homotopy pullback may be computed as the (usual)
pullback

Sym (A + A + A + A)

Sym (A + A) pb Sym (A + A)

Sym A

Sym∇(13)(24) Sym∇(12)(34)

Sym∇A Sym∇A

obtained as the image by the cartesian 2-monad Sym
of the pullback diagram computed in Cat. This shows
that the construction of a model of differential lin-
ear logic based on Span(Cat) and more generally
Games(�) requires to introduce ideas coming from
homotopy theory, and to replace the usual pullbacks
in S by homotopy pullbacks in (S, W, C,F).
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