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The extension of number systems from natural to rational and real numbers and related arithmetic is 
a prominent theme in mathematics from primary to upper secondary education. In parallel to the 
development of the number concept and the extension of number systems, students need to proceed 
from arithmetic to algebra. Students’ difficulties in mastering both, the extension from one number 
system to another and the progression from arithmetic to algebra are well documented. The paper 
focuses on the extension from natural numbers to integers with a particular interest in the relationship 
to the progression from arithmetic to algebra. Continuities and discontinuities in the alignment of 
these two parallel curricular developments are analyzed from three different perspectives, namely an 
epistemological, a psychological, and a pedagogical perspective. This analysis will include work 
from TWG02 “Arithmetic and Number Systems”, which gives a flourishing account of the 
multifaceted issues related to the teaching and learning of different number systems since its 
foundation at CERME7 in 2011 and also draws on the work of TWG03 “Algebraic Thinking”. 
Finally, conclusions will be drawn from the analysis of the relationship between the extension from 
natural numbers to integers and algebraic thinking in terms of the construction of a more coherent 
curriculum regarding these two developments.  
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Introduction 
From the beginning of their lives and throughout schooling, students have to develop their number 
concept and related number sense. The extension of number systems from natural numbers to rational 
and real numbers1 and related arithmetic is an endeavor that students are involved in from primary to 
upper secondary education in mathematics. In parallel to the development of the number concept and 
the extension of number systems, students need to proceed from arithmetic to algebra, i.e. from 
operating with known quantities to operating with unknowns, from the particular to the general, from 
numbers to symbols.  

A large body of research shows that learners experience gaps and discontinuities related to both, the 
learning of number systems (Van Dooren, Lehtinen, & Verschaffel, 2015) and the learning of algebra 
(Hodgen, Oldenburg, & Strømskag, 2018; Kaput, 2008). In terms of the development of the number 
concept the transition from natural numbers to non-negative rational numbers (i.e. fractions and 
decimals) has received much attention. Research has unraveled the problems students encounter at 

 
1 There are ambiguities in the use of the terms natural number, rational number, and integers in the literature. I use the 
term natural number to refer to set ℕ = {1, 2, 3, …}. The term integer is used to refer to the set ℤ comprising positive 
natural numbers including zero and their additive inverses, while with the term rational number, I refer to the set ℚ 
comprising all positive and negative fractions and decimals respectively (and therefore also ℕ and ℤ).  



 

 

this transition. In particular, it shows that the extension from natural numbers to non-negative rational 
numbers requires changes in the basic understanding of what numbers can do and what effect 
operations have on numbers. The problems at this transition exemplify that natural number 
knowledge on the one hand is a prerequisite for the learning of other number systems, but on the other 
hand has manifold adverse effects (Vamvakoussi, 2015). This phenomenon is so pervasive that it has 
been termed the whole or natural number bias (Ni & Zhou, 2005). Consequently, students’ prior 
knowledge that was developed with respect to the set of natural numbers has to be reorganized in 
such a substantial way that Vosniadou and Verschaffel (2004) speak of a “conceptual change” that is 
necessary at the transition from natural numbers to non-negative rational numbers. 

In terms of the transition from arithmetic to algebra, the difficulties that students experience with 
operating on the unknown led Linchevski and Herscovics (1996) to speak of a “cognitive gap” 
between arithmetic and algebra. Kaput (2008) calls the separation of arithmetic and algebra in terms 
of “a computational approach to school arithmetic and an accompanying isolated and superficial 
approach to algebra” the “algebra problem”. The answer to this problem has been to foster what has 
been termed algebraic thinking, relational thinking, functional thinking, or early algebra in the 
context of arithmetic, in order to provide students with ways of thinking that are crucial for school 
algebraic contexts.  

Both of these long-term developments require a careful construction of the curriculum in order to 
facilitate students’ understanding of these central mathematical ideas. However, researchers criticize 
the lack of a coherent vision for the teaching and learning of number systems and related transitions 
(Bruno & Martinon, 1999). This also seems to be the case for the link of the extension of number 
systems and the progression from arithmetic to algebra. Both, the discourse on the extension of 
number systems and the discourse on algebraic thinking only seem to be loosely related. This is also 
noticeable in CERME in that negative numbers are rarely considered in TWG03 on algebraic 
thinking.  

Therefore, the goal of this paper is to unfold the relationship between the extension of number systems 
and the progression from arithmetic to algebra in order to analyze continuities and discontinuities in 
the alignment of these two curricular progressions. For reasons that will become obvious later, I will 
focus on the extension from natural numbers to integers in my analysis. In particular, I seek to answer 
the following questions: 

1) What is relationship between the development of the negative number concept and algebra? 
2) How could the teaching and learning of the extension from natural numbers to integers be 

aligned with the teaching and learning of algebraic thinking? 

In order to answer these questions, I will analyze the transition from natural numbers to integers from 
different perspectives: a) epistemological; b) pedagogical; and c) psychological. The epistemological 
perspective will mainly serve to answer the first question. I will show that the development of the 
negative number concept and the development of algebra were mutually related. In fact, negative 
numbers play a crucial role in these two developments. The pedagogical and psychological 
perspective will yield answers to the second question.  



 

 

Based on my analysis of the relation between the extension from natural numbers to integers and the 
progression from arithmetic to algebra from the three different perspectives, I will draw conclusions 
regarding the construction of curricula, in which both, the extension of number systems and the 
progression from arithmetic to algebra are more coherently aligned.  

Epistemological perspective 
In this section, I will show that the same cognitive achievements which underlie the development of 
algebra were also crucial for the development and acceptance of the negative number concept. I start 
with a summary of the main cognitive achievements that have been pointed out as characteristic and 
crucial for the development of algebraic thinking. I will then show, how these cognitive achievements 
also have been crucial for the development of the negative number concept. However, I will not be 
able to give a comprehensive overview of this mutual related historical development of the negative 
number concept and algebra. An analysis of the obstacles in the historical development of the negative 
number concept was provided by Glaser (1981). Schubring (2005) gives an overview of the historical 
development of the negative number concept and its relation to the development of algebra.  

Hodgen et al. (2018) regard algebraic thinking as the human activity from which algebra emerges. It 
focuses on generalization and the expression of generalization in increasingly systematic and 
conventional symbol systems as one core aspect of algebra rather than on syntactically guided actions 
on symbols (Kaput, 2008). The main cognitive achievements that have been pointed out as being 
characteristic and crucial for the development of algebraic thinking and algebra are: 

1. Algebra deals with objects of indeterminate nature (unknowns, variables, parameters) 
(Radford, 2010)  

2. Indeterminate objects are dealt with in analytic manner (Radford, 2010). 
3. The development of algebraic thinking is characterized by a transition from an operational to 

a structural or relational perspective, i.e. by “reification“ (Sfard 1995) or “objectification“ 
(Radford, 2010) of processes into mathematical objects.  

4. The new mathematical objects are detached from their original content meanings and achieve 
a formal character.  

In the development of algebra and algebraic thinking, these four aspects are mutually related and 
difficult to consider in isolation. However, for the sake of clarity I elaborate on them separately.  

Algebra deals with objects of indeterminate nature  

The epistemological development of algebra is closely related to dealing with objects of indeterminate 
nature. These indeterminate objects yielded the concepts of variable and parameter. It was also in the 
realm of dealing with indeterminate objects in the context of solving (systems of) equations that 
negative numbers became relevant (Gallardo, 2002; Glaser, 1981; Hefendehl-Hebeker, 1991). 
According to Damerow (2007, p. 49) the use of variables “opens a potential means of representation 
for a higher level of meta-cognitive insights such as the recognition that the natural numbers can be 
complemented with negative numbers to the system of whole numbers”. Diophantus was one of the 
first who solved equations based on transformation methods. Applying these methods also yielded 



 

 

negative solutions. For example, in his Arithmetica, Diophantus referred to the equation 4 = 4x + 20 
as absurd, since it would give the solution x = –4.  

It was not until the second half of the 19th century that negative numbers were accepted as autonomous 
mathematical objects. However, in solving equations they were already accepted as auxiliary means, 
which had to be interpreted correctly after the equation was solved. A famous example is the problem 
discussed by D’Alembert in the article Négatif from Diderot’s Encyclopedia:  

suppose that we are looking for the value of a number x which when added to 100 yields 50 
According to the rules of algebra; we have x + 100 = 50, so that x = –50. This shows that the 
magnitude x is 50 and that instead of being added to 100 it must be subtracted. This means that 
the problem should have been formulated as follows: find a magnitude x which when subtracted 
from 100 leaves the remainder 50; if the problem had been formulated in this manner, then we 
would have 100 – x = 50 and x = 50, and the negative form of x would cease to exist. Thus, in 
computations, negative magnitudes actually stand for positive magnitudes that were guessed to be 
in the wrong position. The sign “–“ before a magnitude is a reminder to eliminate and to correct 
an error made in the assumption, as the example just given demonstrates very clearly. (D'Alembert 
as cited in Hefendehl-Hebeker, 1991).  

D’Alembert does not except the existence of a magnitude with value “–50” in his argumentation. To 
him, this solution only indicated an error made that had to be corrected.  

Another way of making sense of negative solutions was to interpret them metaphorically by the 
opposite magnitude. This metaphorical interpretation of negative solutions by the opposite magnitude 
developed into the concept of opposite quantities, which cancel each other out: 

“Quantities of the same kind which are considered under conditions that one diminishes the other 
shall be called opposite quantities. E.g., assets and debts, walking forward and walking backward. 
One of these quantities, as one likes, shall be called positive or affirmative, and its opposite 
negative or denying” (Kästner as cited in Schubring 2005, 134). 

A similar understanding as “something being opposed to something familiar” was also crucial for the 
development of the concept of variable. There, it was the dualistic opposition to a known or constant 
quantity. This concept of variable was first overcome by Euler, who replaced this dichotomy by the 
universal concept of variable (Schubring, 2005). Similarly, the concept of negative quantity was for 
a long time conceptualized as an opposite quantity and had to be overcome by the formal concept of 
number.  

Indeterminate quantities are dealt with in analytic manner 

As a second important characteristic of algebraic thinking, Radford (2010) points out that 
indeterminate quantities are dealt with in an analytic manner, i.e. it is calculated with these 
indeterminate quantities as if they were known by referring to their mutual relationships and the 
relationships to known quantities. (Hefendehl-Hebeker & Rezat, 2015; Radford, 2010). 

As negative numbers occurred in the context of solving equations they result from calculations in 
which indeterminate quantities were treated as if they were known by referring to their mutual 
relationships and the relationships to known quantities. This aspect is especially apparent in the 



 

 

formulation of the rules for calculating with negative numbers. For example, although not accepting 
negative solutions, Diophantus formulated the rules minus times minus gives plus and plus times 
minus gives minus (Tropfke, 1980). However, these rules were derived from calculating with complex 
expressions, such as (a – b) (c – d), by analyzing the internal relationships. The explanation of the 
rule for subtracting negative numbers by Bernard Lamy (1640–1715) is a revealing example. He 
explains that when subtracting complex quantities like c + f and b – d. One did not want to subtract 
from c + f the entire b, thus c + f – b, but somewhat less. One thus had to change the algebraic sign 
of d from – into +, so as to perform the operation c + f – b + d (Schubring, 2005, p. 76). Consequently, 
the expression −(−𝑏) = +𝑏 in solving the brackets is given sense in its relations to b and of (b – d) 
to (c + f).  

Reification and Objectification 

It has been pointed out that “reification” (Sfard, 1994, 1995) or “objectification” (Radford, 2010) of 
operations or—more generally—processes into mathematical objects had been crucial in the 
development of algebra. Just as the expression 4x + 20 can be seen either as a sequence of operations 
or as a mathematical object such as a representation of a number or as a function, the expression a – 
b can be seen as the operation of subtracting b from a or as the number resulting from this subtraction. 
From this perspective, the construction of negative numbers as autonomous mathematical objects 
required a transformation of mathematical processes into mathematical objects, which is visible in 
the step from carrying out the “hypothetical” subtraction a – b omitting the restriction b ≤ a and 
accepting the negative number as an own entity. In fact, it may be regarded as one of the cognitive 
roots of negative numbers (Hefendehl-Hebeker & Rezat, 2015; Sfard, 1994, 1995) that carrying out 
fictive operations such 50 – 100 was actually considered as a possibility. Peacock refers to this 
generalization of operations as the move from arithmetical to symbolical algebra (Chiappini, 2011). 
While in arithmetical algebra the operations on symbols underlie the same restrictions as in arithmetic 
(of natural numbers), the operations with symbols in symbolic algebra are defined according to the 
properties of the operations.  

According to Schubring (2005), it was Euler who first constructed the series of negative numbers by 
“perpetually subtracting unity”. Later, Hankel used the term a – b to construct negative numbers 
(Tropfke, 1980). It was also Hankel who noticed that it is sufficient to use 𝑎 = 0 and name the 
resulting number by −𝑏. 

The new mathematical objects are detached from content meanings and achieve a formal 
character.  

Descartes’ achievement to develop a symbolic language, which primarily relied on the relationships 
among the symbols and not on justifications through arithmetic or geometry is regarded to be a crucial 
step in the development of the symbolic language of algebra (Scholz, 1990). This can be understood 
as a detachment of the mathematical objects from content meanings.  

Although at a very different time, the detachment of the number concept from content meanings was 
crucial for the acceptance of negative numbers. Schubring (2005) points out that the separation 
between numbers on the one hand and quantities or magnitudes on the other is decisive for 
understanding the historical development of negative numbers. He shows that in the history of 



 

 

mathematics the epistemological limitation of the concepts of quantity and magnitude impeded the 
generalization of operations and thus the development of the negative number concept. As long as 
the concept of negative numbers was subordinated to that of magnitude, negative magnitudes were 
not accepted as autonomous mathematical objects. As already shown in the example by D’Alembert, 
the problems and their solutions were reinterpreted in the domain of positive numbers in order to 
avoid negative solutions. This view restricted the applicability of negative numbers to operations with 
“subtractive” or “opposite” quantities, which have a “natural element of opposition as giving and 
taking” (Schubring, 2005, p. 106). According to Schubring (2005), Euler was the first to consistently 
present algebra as a science of numbers and to conceptually separate numbers clearly from quantities 
and magnitudes. However, it was not until the 19th century that these obstacles imposed by the 
subordination of number to the concept of quantity and magnitude were overcome by a shift of view: 
The change consisted in the transition from the concrete to the formal viewpoint, which was advanced 
by Ohm, Peacock and Hankel. Subsequently, the concept of number could be introduced in a purely 
formal manner without consideration of the concept of magnitude. Hankel, who advanced this 
viewpoint argues: 

Thus, the condition for the construction of a general arithmetic is that it be a purely intellectual 
mathematics detached from all intuition, a pure science of forms in which what are combined are 
not quanta or their number images but intellectual objects to which actual objects, or relations of 
actual objects, may, but need not, correspond (Hankel as cited in Hefendehl-Hebeker, 1991) 

Accordingly, the underlying epistemology of justification changed from realism to that of internal 
consistency (Pierson Bishop et al., 2014). While operating with negative quantities and the related 
rules were known and used confidently already for a long time, the consistent system of rules for 
manipulating negative numbers is not deduced from reality, but from the basic rules of natural number 
arithmetic based on the permanence principle.  

Hefendehl-Hebeker (1991) argues that the “separation of the construction of number systems from 
content considerations did not mean that the extended number systems were detached from content 
meanings” (p. 31) and provides some examples were negative numbers were successfully applied to 
real phenomena. The difference is that in these cases the concept of magnitude is subordinated to that 
of number and numbers are used as modelling tools for real-life situations.  

In summary, I argued that the development of the negative number concept and the development of 
algebra are mutually related. The cognitive achievements, which have been emphasized as being 
crucial for the development of algebra, also underlie the development of the negative number concept. 
In particular, these are the possibility of carrying out fictive operations with indeterminate quantities 
in analytic ways, the “reification” (Sfard, 1994, 1995) and “objectification” (Radford, 2010) of 
mathematical processes, and the detachment of mathematical objects from content meanings and 
related formalization. According to Schubring (2005, p. 149), negative numbers “challenged the 
traditional first understanding of mathematics, its first ‘paradigm’ in Kuhn’s terms, its understanding 
of being a science of quantities: of quantities that, while being abstracted to attain some autonomy 
from objects of the real world, continued at the same time to be epistemologically legitimized by the 
latter” until a formal algebraic introduction and justification of these numbers and their operations 



 

 

was achieved. Therefore, from the epistemological perspective, negative numbers seem to play a 
crucial role in the development of number systems aligned with the development of algebraic 
thinking. This is the reason, why I focus on the case of negative numbers in my analysis of the relation 
between the extension of number systems and the transition from arithmetic to algebra. 

Psychological perspective 
Although negative magnitudes are nowadays a natural part of our daily life as relative magnitudes on 
thermometers and other scales, research has shown that students struggle with the same obstacles that 
characterize the epistemology of negative numbers. Gallardo (2002) observes the same levels of 
acceptance of negative numbers that she found in the historical development in students 
understanding of the concept. However, she points out that the levels of acceptance do not follow a 
strict chronological order in the students and that the same student might show different levels of 
understanding dependent on the context of the task. In line with the historical development of negative 
numbers, Pierson Bishop et al. (2014) identify the magnitude-based perspective on numbers together 
with their understanding as cardinal numbers as an obstacle, because then negative numbers are 
perceived in a non-tangible way as less than nothing. This is also an obstacle for the understanding 
of operations with negative numbers.  

Different studies show that students have difficulties with the order of integers. Students exhibit more 
difficulties in tasks that involve only negative numbers than in tasks with positive and negative 
numbers (Bofferding & Farmer, 2018). The main problem is that the size of a negative number is 
determined based on the absolute value or the opposite magnitude respectively. For example, students 
regard –10 as ‘bigger’ than –5, because –10 is colder than –5. This mirrors the understanding of 
negative numbers as opposite magnitudes, which was persistent throughout the historical 
development of the negative number concept. The extent to which these difficulties are shown also 
depends on the language used in comparison tasks (hottest/most hot/least cold vs. coldest/most cold/ 
least hot) (Bofferding & Farmer, 2018). Schindler, Hußmann, Nilsson, and Bakker (2017) and Yilmaz 
and Isiksal-Bostan (2017) argue that it is important to consider students reasoning related to their 
answers. Their studies show that even correct answers might be based on faulty reasoning, which 
builds on prior experiences from the natural numbers.  

Students also have difficulties with the different meanings of the minus sign. While in the set of 
natural numbers the minus sign only denotes subtraction, it additionally obtains a unary function as a 
structural signifier to denote a relative number and a symmetrical function as an operational signifier 
to denote the inverse in the set of integers. Vlassis (2004) shows that students do not assign any other 
meaning to the minus sign than that of subtraction in polynomial expressions. Their procedures of 
simplifying polynomials can be understood as strategies of making sense of the expressions and being 
able to carry out simplifications by adhering to this one meaning of the minus sign that originates 
from the natural numbers. When solving equations students have difficulties to find negative solutions 
in particular in situations with two successive signs, such as −6 ∙ 𝑥 = 24 (Vlassis, 2008). 

In summary, as in the case of the transition from natural numbers to fractions, a natural number bias 
is also apparent at the transition from natural numbers to integers. The empirical findings of students’ 
difficulties in understanding the negative number concept mirror the obstacles that characterize the 



 

 

epistemological development of the negative number concept. However, the studies aiming at 
identifying students’ obstacles vary in the degree, in which they consider students’ prior experiences 
when learning negative numbers. The participants of many studies already learned integer arithmetic. 
Consequently, how they were introduced to negative numbers might have an effect on their 
understanding of them. In order to unveil continuities and discontinuities in the learning of the number 
concept, it would be important to understand how the obstacles that students experience in the 
learning of the negative number concept relate to the way they have been introduced to the concept 
and to their prior experiences in the set of natural numbers. Referring to the results from the 
epistemological analysis, the effects of early algebra on the learning of the negative number concept 
would be a matter of particular interest. However, studies analyzing students’ understanding of 
negative numbers usually do not control for prior experiences.  

Pedagogical perspective 
In the epistemological analysis I have shown that there are parallels in the development of algebraic 
thinking and the negative number concept. Therefore, it seems natural to align the teaching and 
learning of the extension from natural numbers to integers with ideas of algebraic thinking. From the 
psychological perspective, it is not yet clear, if the teaching and learning of the negative number 
concept aligned with ideas of algebraic thinking has positive effects on students’ understanding of 
the concept. 

Algebraic thinking is promoted in mathematics curricula for the elementary grades across the world 
and thus has become an important goal in the teaching and learning of natural number arithmetic (Cai, 
Ng, & Moyer, 2011; Venkat et al., 2018). The vast majority of tasks, learning trajectories and studies 
related to algebraic thinking is carried out in the domain of natural numbers. Only rarely are integers 
and other number systems considered related to algebraic thinking. As already mentioned in the 
introduction, the scientific discourses on the extension of number systems and on algebraic thinking 
only rarely seem to be related to each other.  

Approaching the transition from natural numbers to integers from a pedagogical perspective, I seek 
to answer the question how the teaching of the transition from natural numbers to integers could be 
aligned with the teaching of algebraic thinking. In my presentation, I focus on two aspects: 1) didactic 
models, which align the extension of number systems and algebraic thinking; and 2) number sense as 
an important goal related to natural number arithmetic and algebraic thinking.  

Didactic models for integers and algebraic thinking 

Within the scope of this article, I can only briefly sketch my understanding of didactic models. Space 
does not allow to elaborate on the rich theory behind it. I refer to an understanding of didactic models 
as representations of abstract mathematical concepts or structures. Thus, they reflect essential aspects 
of the mathematical concepts or structures. By allowing students to act upon the tangible or 
symbolically represented mathematical objects, they are used as tools in the meaning of cultural 
artifacts (Wartofsky, 1979; Wertsch, 1998) to foster students’ conceptual development. I adopt the 
broad notion of models in Realistic Mathematics Education, in which models have different 
manifestations. From this perspective hands-on-materials, sketches, paradigmatic situations, 
schemes, or diagrams can serve as models (Van den Heuvel-Panhuizen, 2003). An important aspect 



 

 

with regard to transitions is that didactic models need to be flexible in order to be applied to more 
advanced, sophisticated or abstract levels and thus support vertical mathematization (Van den 
Heuvel-Panhuizen, 2003).  

Different categorizations of didactic models for integers have been suggested. Janvier (1983) 
distinguishes number-line-models and equilibrium models. While number-line models depict 
negative numbers and related operations on one continuous number line, equilibrium models 
introduce two separate (magnitude) representations for positive and negative numbers, e.g. black and 
red stones. These equilibrium models refer to the meaning of negative numbers as opposite quantities. 
Operations in equilibrium models are based on the principle of compensation between positive and 
negative numbers, i.e. the neutralization of equal amounts of opposites, e.g. of black and red stones. 
Another categorization of didactic models for integers has been suggested by Steinbring (1994). He 
distinguishes three categories: 1) real-life context as modelling structures; 2) models based on 
geometric or arithmetic permanence; 3) models providing autonomous representations of negative 
numbers. Temperatures, assets and depths, elevation, and the elevator model are typical examples of 
the first category. Freudenthal (1983) was a proponent of models of the second category, which aim 
to provide plausible reasons for the expansion of rules from the natural numbers to integers. The two 
categories distinguished by Janvier (1983) both belong to Steinbring’s (1994) third category.  

As Fischbein (2002) points out, there is no didactic model of negative numbers, which at the same 
time is intuitive and consistently represents all the algebraic properties of negative numbers. A model, 
which consistently represents the algebraic properties of negative numbers always needs to build on 
artificial conventions. Therefore, research has tried to identify the affordances and constraints of 
particular models in learning integer arithmetic (Hativa & Cohen, 1995; Linchevski & Williams, 
1999; Stephan & Akyuz, 2012). Many researchers prefer the number line model for representing 
operations with integers (Altiparmak & Özdoğan, 2010; Bruno & Martinon, 1999; Hativa & Cohen, 
1995). Other research highlights the power and importance of contextual knowledge from real-life 
situations for the understanding of negative numbers (e.g. Linchevski & Williams, 1999; Stephan & 
Akyuz, 2012). However, in real-life situations the understanding of negative numbers as opposite 
magnitudes is also identified as an obstacle (Schindler & Hußmann, 2013). Students need well 
developed mental networks that relate the opposite magnitudes and their order (Schindler & 
Hußmann, 2013; Yilmaz & Isiksal-Bostan, 2017).  

Due to the artificial conventions that are necessary to develop didactic models for negative numbers 
(Fischbein, 2002), there is a tendency to develop games (e.g. Hattermann & vom Hofe, 2015; 
Linchevski & Williams, 1999) and artificial contexts (Altiparmak & Özdoğan, 2010; Streefland, 
1996) as didactic models. As opposed to real-life contexts, artificial contexts and games facilitate the 
implementation of formal rules. On the contrary, most recent textbooks introduce negative numbers 
in real-life contexts such as temperature, assets and depts, or elevation in order to support the 
understanding of the negative number concept (Whitacre et al., 2015). Whitacre et al. (2015) show 
that students solve problems in the context of assets and depts without using negative numbers, but 
most of them were capable to relate negative numbers to the context if asked to do so. 



 

 

Only rarely are didactical models for integers discussed in terms of their affordances to foster 
algebraic thinking. A few examples are Chiappini (2011); Gallardo (2002); Peled and Carraher 
(2008); Rezat (2014); and Schumacher and Rezat (in press). These authors exploit the potential of 
particular didactic models for the learning of integers aligned with algebraic thinking. Linchevski and 
Williams (1999) do not explicitly relate to algebraic thinking, but address reification as a main 
problem of learning integers, which was shown as being equally important for both, algebraic 
thinking and understanding the negative number concept. Therefore, their approach is also relevant 
in the present context. I will exemplify the different approaches by providing an example of each. 

Gallardo (2002) builds on the historical-critical method as described by Filloy, Puig, and Rojano 
(2008). This approach is characterized by recurrent movements between the analysis of historical 
texts and empirical work in the classroom. Learning sequences are developed based on the historical 
analysis of the development of concepts. In her study, Gallardo (2002) uses word problems from 
historical sources, e.g. D’Alembert’s problem.  

Peled and Carraher (2008) criticize that most word problems, which involve negative numbers do not 
require the formal rules for manipulating negative numbers and consequently can be solved correctly 
while circumventing operations with negative numbers. Their main approach may be characterized 
by generalizing arithmetic problems in the realm of real-life contexts as modeling structures. They 
adjust problems using real-life contexts in order to foster algebraic thinking when learning integers 
and illustrate how these algebraic problems are more suited than arithmetic problems to promote 
meaningful learning of negative numbers.  

An example from Peled and Carraher (2008, p. 309f) may illustrate their approach. The example 
juxtaposes to formulations of the same problem: an arithmetical formulation and an algebraic 
formulation.  

An arithmetical trip: Anne drove 40 kilometers north from her home to an out of town meeting. She 
then drove back going 60 kilometers out to another meeting. After both meetings were over, she 
called home asking her husband, Ben to join her. 

a) How far will Ben have to go and in what direction? 
b) Write an expression for writing the length of Bens’ trip. 

An algebraic trip: Anne drove a certain number of kilometers north from her home to an out of town 
meeting. She then drove back going 60 kilometers out to another meeting. After both meetings were 
over, she called home asking her husband, Ben to join her. 

a) Write an expression for writing the length of Bens’ trip. 
b) Could Anne have driven less than 60 kilometers north on her first trip? If not, explain why. If she 

could have, give an example and explain its meaning.  

The example shows that the main idea is to formulate real-life problems in a generalized way in order 
to foster algebraic solutions which comprise negative numbers. Referring back to my epistemological 
analysis, their algebraic didactical model seems to be closer to the epistemological roots of negative 
numbers than the arithmetical counterpart. There, I pointed out that negative numbers became 
meaningful in the context involving subtractions with variables such as 𝑥 − 60. 



 

 

Chiappini (2011) exemplifies how the number line model can be used in a digital environment to 
foster algebraic thinking. He presents the algebraic line in the digital tool AlNuSet as a didactic model, 
which is supposed to mediate reification (Sfard, 1994) or objectification (Radford, 2010) of negative 
numbers in the context of the operation a – b. Different values of a and b can be chosen by dragging 
the corresponding points on the number line. The corresponding value of the expression a – b is 
shown by the system as a point on the number line (Fig. 2).  

 

 

Fig 2: Algebraic line from AlNuSet (Chiappini, 2011, p. 433) 

This didactical model focuses on the core operation, which led to the introduction of negative 
numbers in the history of mathematics and offers a representation for the result. However, it is not 
clear how this model is to be extended to other operations with integers.  

Linchevski and Williams (1999) use the double abacus related to a real-life problem and a dice game. 
They conclude that by recording scores of a dice game on the double abacus and by operating on 
them „integers are encountered as objects in social activity, before they are symbolized 
mathematically, thus intuitively filling the gap formerly considered a major obstacle to reification“ 
(Linchevski & Williams, 1999, p. 144).  

Rezat (2014) exploits the potential of a model building on the permanence principle. In an ongoing 
design research project, Rezat (2014) and Schumacher & Rezat (in press) developed a learning 
trajectory for the learning of integers and the operations with them. In the learning trajectory, they 
aim to implement a didactical model based on the permanence principle building on pattern 
generalization tasks. In this learning trajectory, negative numbers are introduced through the idea of 
counting backwards beyond zero. Based on this idea and the representation of negative numbers on 
the number line, the order of integers and the operations with integers are consecutively introduced 
in the following order: 

1. Introduction of negative numbers 
2. Order of negative numbers 
3. Subtraction of positive numbers from negative numbers 
4. Addition 
5. Subtraction of negative numbers from negative numbers 
6. Multiplication 



 

 

Each section has an analogous structure. It begins with pattern generalization tasks followed by 
analyzing and exploring task relations within and among operations.Finally, the rules of calculating 
with integers are abstracted from these explorations. I will provide a more detailed account of this 
structure using the example of subtracting negative numbers.  

Each chapter starts with pattern generalization tasks such as represented in Fig. 3.  

 

 …   

Fig. 3: Pattern generalization tasks for the subtraction of integers 

Pattern generalization tasks are widely incorporated in German textbooks for primary level. The aim 
of these tasks is to foster students’ recognition of patterns and their understanding of number relations. 
By generalizing the patterns, students can discover basic rules of arithmetic, e.g. that a difference 
remains constant when both, minuend and subtrahend are lowered or increased by the same number. 
Pattern generalization tasks are widely acknowledged to foster algebraic thinking (Radford, 2008; 
Rivera, 2013). Freudenthal (1983) also proposed to use them for learning the operations with integers. 
Although they are already used in this context, their full potential has only rarely been exploited. In 
their learning trajectory, Rezat (2014) and Schumacher & Rezat (in press) make intensive use of these 
tasks in order to support the learning of integer arithmetic aligned with algebraic thinking. 

Students are supposed to analyze the relation of the tasks, complete the empty fields in the tasks, 
solve the tasks, and describe the structure of the pattern. The first three tasks in Fig. 3 a) should be 
easily solvable for students since they ask students to perform a simple natural number subtraction. 
Whereas in the fourth task, students encounter the subtraction of a negative number from another 
number for the first time. It is expected that students draw on their prior knowledge of this task type 
and derive the solution of this unfamiliar task from the pattern that the minuend remains constant, the 
subtrahend is lowered by one, and consequently, the result increases by one. In these patterns, students 
encounter the difficult situations, which incorporate two successive signs (Vlassis, 2008). Drawing 
on the structure of the pattern, they should be able to conjecture that 3 – (–1) equals 4. In that, the 
prior knowledge of the task type provides a tool for solving tasks involving the subtraction of negative 
numbers. After more exploration and related reflection, a conjecture about the rule for the subtraction 
of negative numbers that is consistent with their prior knowledge should be possible. Deeper 
reflection reveals also new insights, such as that subtraction does not always lower the result. In other 
structures of task sequences students can encounter the different cases of the subtraction of negative 
numbers, such as the subtraction of a negative number from a negative number as shown in Fig. 3 e). 

In our empirical investigation of students’ behavior when working on these tasks we find both, 
students who solve the tasks correctly based on the pattern (Fig. 4, left) and students, who solve each 



 

 

task separately and show a natural number bias, which relates to the lowering effect of subtraction 
(Fig. 4, middle and right): 

 

     
Fig. 4. Three exemplary student solutions of the task in Fig. 3. 

After completing these pattern generalization tasks students are supposed to transfer these tasks into 
a table such as depicted in Fig. 5.  

 

 
Fig. 5: Subtraction table for negative numbers 

The table shown in Fig. 5 is an extension of the rotated diagram shown in Fig. 6 to the negative case. 
Tables such as the one shown in Fig. 6 are recommended by German mathematics educators in order 
to display the relations between all the tasks with summands up to 10 and to support effective 
memorization of the basic tasks in the early primary grades (Schipper, Ebeling, & Dröge, 2015; 
Wittmann & Müller, 1997). The structure of the table is supposed to foster students‘ understanding 



 

 

of task relations. Based on their understanding of this structure, students should be able to derive the 
result of a task from a task, which is memorized as a basic fact. For example, the solution of the task 
5 + 4 might be derived from the (memorized) doubling task 5 + 5 by diminishing the result by one, 
since one of the summands is also diminished by one. 

 

 
Fig. 6: Basic addition-table (Wittmann & Müller, 2012)  

Similarly, students are supposed to complete the table in Fig. 5 by drawing on number relations and 
thus deriving the contents of the empty fields from adjacent fields. Again, the tasks relate to familiar 
tasks from the set of natural numbers and students can relate the “new” numbers to their prior 
knowledge by relying on number relations. 

In order to explicate the rules for subtracting negative numbers, students explore number relations in 
excerpts from different tables as shown in Fig. 7.  

 

  
Fig. 7: Comparison of subtraction and addition table excerpts 

By comparing tasks and results, they can find, for example, that the two tasks 5 – (–5) and 5 + 5 both 
equal ten. By exploring and analyzing adjacent tasks they can identify the same phenomenon. 
Therefore, they can conjecture that 5 – (–5) = 5 + 5. After confirming this relation with more tasks, 



 

 

they are asked to generalize their findings and formulate a rule for the subtraction of negative 
numbers.  

The learning trajectory by Rezat (2014) and Schumacher and Rezat (in press) was evaluated in a 
comparative study with a learning trajectory based on real-life contexts as modelling structures. 
Results are going to be published elsewhere.  

Comparing the presented didactical models that introduce negative numbers aligned with algebraic 
thinking reveals that all of them relate to important cognitive achievements in the epistemology of 
negative numbers. Chiappini (2011) directly relates to the generalization of the expression a – b and 
its representation on the number line, which played a crucial role in the epistemological development 
of negative numbers. Gallardo (2002) uses historical problems and Peled and Carraher (2008) argue 
for generalizations of word problems. As was shown in the epistemological analysis, problems of this 
type and their solution played an important role in the historical development of negative numbers. 
Rezat (2014) and Schumacher and Rezat (in press) relate to the permanence principle, which was the 
cognitive achievement that led to the formal understanding of negative numbers and their final 
acceptance as numbers.  

While Chiappini (2011) and Peled and Carraher (2008) only present some isolated examples, which 
might be incorporated in a learning trajectory for negative numbers, Gallardo (2002) as well as 
Schumacher and Rezat (in press) present didactic models, which consistently make use of one core 
idea to foster the learning of negative numbers aligned with algebraic thinking.  

The epistemological analysis has shown that it was crucial in the development of the negative number 
concept to overcome the understanding of negative numbers as magnitudes. The understanding of 
negative numbers as opposite magnitudes was persistent whenever negative numbers appeared in the 
solution of real-life-problems. It was not until the formalization of the number concept in the 19th 
century that negative numbers were accepted as autonomous quantities. Therefore, it is questionable 
if the teaching of the negative number concept solely based on real-life contexts as modelling 
structures is an appropriate approach to develop an algebraic understanding of negative numbers. 
According to genetic epistemology it might be appropriate to introduce negative numbers in such 
contexts, but it equally seems important to proceed towards an algebraic understanding of negative 
numbers and their operations based on the permanence principle as Rezat (2014) and Schumacher 
and Rezat (in press) suggest. However, learning trajectories that coherently align the development of 
the negative number concept and algebraic thinking are still missing in the research literature.  

Number sense  

So far, I have analyzed the epistemological relation between the negative number concept and algebra 
as well as didactic models for negative numbers that explicitly relate to algebraic thinking. I will now 
turn to number sense, a construct that is of interest for the scope of this article for two reasons: 1. 
Like early algebra, number sense usually relates to children’s abilities with natural numbers and is 
rarely used in the context of other number systems; 2. Number sense and algebraic thinking share 
some commonalities, which are rarely related. In order to unveil continuities and discontinuities in 
the learning of the number concept, I will firstly elaborate on the question, whether it makes sense to 



 

 

consider number sense in other number domains. Secondly, I will briefly analyze the relation between 
number sense and algebraic thinking. 

The development of number sense is a commonly shared goal for the learning of natural numbers. It 
is mentioned about 50 times in the publication of the 23rd ICMI Study on whole numbers in the 
primary grades (Bartolini Bussi & Hua Sun, 2018). Many papers in TWG02 “Arithmetic and number 
systems” at CERME stress that the presented research is devoted to the development of number sense.  

The very number sense is used to denote different concepts (Rezat & Rye Ejersbo, 2018). Number 
sense in the meaning that is commonly shared in the psychological community refers to a persons’ 
foundational innate core systems to process quantities. Verschaffel elaborated on the facets of this 
psychological notion of number sense in his plenary talk at CERME 10 (Verschaffel, Torbeyns, & 
De Smedt, 2017). In mathematics education, number sense broadly refers to “the well-organized 
conceptual network that enables one to relate number and operation properties and to solve number 
problems in flexible and creative ways” (Sowder, 1992, p. 381).  

There is a fundamental difference between the two perspectives. While the psychological perspective 
considers children’s innate abilities, which are not subject to learning, the perspective on number 
sense in mathematics education relates to abilities that children can develop through learning. Sayers 
and Andrews (2015) integrate three different perspectives on number sense and offer a model that 
comprises different conceptualizations of number sense at different stages in children’s learning 
history. In this paper, I refer tothe didactical perspective on number sense.  

An aspect that has been discussed repeatedly in TWG02 at CERME related to number sense is flexible 
and adaptive use of strategies in mental calculation (Carvalho & da Ponte, 2013; Morais & Serrazina, 
2013; Rezat & Rye Ejersbo, 2018). Flexibility and adaptiveness in mental calculation require a deep 
understanding of number and operation relationships and knowledge of basic facts. These are core 
aspects of number sense (Threlfall, 2002; Rathgeb-Schnierer & Green, 2013). Therefore, number 
sense is regarded as both, a prerequisite and a goal for flexible and adaptive strategy use in mental 
calculation (Rezat & Rye Ejersbo, 2018).  

Number sense and flexible and adaptive mental calculation usually relate to children’s abilities related 
to natural numbers. According to the definition by McIntosh, Reys, and Reys (1992) it seems 
desirable to develop number sense in other number domains. In their framework of number sense, 
McIntosh et al. (1992) include the understanding of the effect of operations with fractions and 
decimals. However, flexible mental calculation and number sense have been rarely investigated in 
other number domains. A slightly increasing interest in these issues related to fractions is noticeable 
(Markovits & Pang, 2007), which was also discussed in TWG02 at CERME (e.g. Carvalho & da 
Ponte, 2013). In terms of mental calculation related to number sense these studies differentiate 
between rule-based or instrumental / procedural strategies and number-sense or conceptual strategies, 
which are based on equivalence, numerical relationships and properties of operations (Lemonidis, 
Tsakiridou, & Meliopoulou, 2018; Yang, Hsu, & Huang, 2004). Reys, Reys, Nohda, & Emori (1995) 
and Carvalho & da Ponte (2013) find that students tend to apply rule based strategies, where students 
perform the formal rule mentally. On the contrary, Yang et al. (2004) show in an intervention study 
how students are able to develop number-sense mental calculation strategies, which are based on 



 

 

equivalence, numerical relationships and properties of operations. Rezat (2011) also explored 
students’ strategies in mental calculation tasks with integers. He also finds that students transform the 
problem with integers into a problem with natural numbers and determine the sign of the result 
separately applying a procedural and rule-based strategy for calculation with integers. Consequently, 
all mental calculation tasks including integers were solved referring to mental calculation strategies 
from the set of natural numbers.  

These findings give rise to the question of the relevance of mental calculation in other number sets 
than the natural numbers. If mental calculation in other number sets is reduced to the mental 
application of the rules for calculating in these domains and by transformation to problems with 
natural numbers the relevance for fostering number sense has to be questioned. However, Yang et 
al.’s findings indicate that it is possible to foster students’ number-sense based mental calculation 
strategies related to fractions. Further investigation of mental calculation strategies, which are 
associated with number sense is needed. In general, the meaning and conceptualization of number 
sense related to fractions and integers requires further clarification and differentiation.  

I will now turn to the relation of algebraic thinking and number sense. These two constructs are rarely 
related. While number sense is situated in the discourse of the development of the number concept, 
algebraic thinking is situated in the discourse of the development of algebra. However, in the latter 
context, constructs such as structure sense (Hoch & Dreyfus, 2004, 2006) and symbol sense (Arcavi, 
1994, 2005), which seem to relate to number sense, have been suggested. Within the scope of this 
article, I am not able to analyze the relationship between number sense, structure sense, and symbol 
sense. I can only briefly outline some similarities between number sense and algebraic thinking.  

McIntosh et al. (1992) have provided a framework of generally agreed components of basic number 
sense, which gives an account of the richness of the construct. This framework distinguishes between 
three major areas of number sense: 1. Knowledge of and facility with numbers; 2. Knowledge of and 
facility with operations; and 3. Applying knowledge of and facility with numbers and operations to 
computational settings. Each of these areas is divided into several categories.  

Among the categories that characterize basic number sense we find several aspects that are repeatedly 
used to characterize algebraic thinking. In particular, these are related to knowledge of and facility 
with operations. A number of studies on early algebra focuses on students understanding of operations 
in terms of relational thinking (Bastable & Schifter, 2008; Carpenter, Colm, & Franke, 2003; Empson, 
Levi, & Carpenter, 2011; Russell, Schifter, & Bastable, 2011), i.e. “using fundamental properties of 
number and operations to transform mathematical expressions rather than simply calculating an 
answer following a prescribed sequence of procedures” (Carpenter, Levi, Franke, & Zeringue, 2005). 
An example, Carpenter et al. (2003, p. 4) provide to illustrate relational thinking is Robin’s solution 
of the open number sentence 18 + 27 = [  ] + 29: “29 is two more than twenty 27, so the number in 
the box has to be two less than 18 to make the two sides equal. So it’s 16”. This way of applying 
associativity in this context is exactly what would be expected from a child, who exhibits number 
sense.  

Due to the similarities of number sense and algebraic thinking in terms of relational thinking, Pittalis, 
Pitta-Pantazi, and Christou (2016, 2018) argue that number sense has an innate algebraic dimension. 



 

 

They have empirically validated a model of the structure and development of basic number sense by 
incorporating an algebraic dimension, which refers to algebraic arithmetic and quantitative relations. 
In their study, they validate their model, in which number sense is conceptualized as a second order 
theoretical construct made up of three first order latent factors, namely (a) elementary number sense, 
(b) conventional arithmetic, and (c) algebraic arithmetic.  

This is a first and important step in understanding the relationship between number sense and 
algebraic thinking. Further research needs to deepen this understanding by also taking constructs like 
structure sense and symbol sense and their relation to number sense into consideration.  

Conclusions 
I have focused on the relationship between the extension from natural numbers to integers and the 
transition from arithmetic to algebra. From an epistemological perspective on this transition, I have 
shown that the development of the negative number concept is closely linked to core algebraic ideas, 
such as indeterminate objects and their analytic treatment, reification and objectification, and a 
detachment from content meanings in order to proceed to a formalized view.  

The psychological analysis showed that the same obstacles characterize students‘ learning of the 
negative number concept regardless of their prior knowledge and their prior experiences in the set of 
natural numbers. So far, the effects of early algebra on students’ understanding of negative numbers 
has not been investigated.  

The analysis from the pedagogical perspective has shown that two important goals related to the 
learning of natural numbers, namely the development of algebraic thinking and the development of 
number sense, are rarely considered in the domain of integers. I presented a few didactical models 
that have been suggested in the research literature in order to align the learning of integers and the 
development of algebraic thinking. However, the alignment seems to be quite loose so far and is 
rarely developed into coherent learning trajectories for the learning of integers. An analysis of didactic 
models of negative numbers and their potential to foster algebraic thinking in textbooks might 
complement the analysis and draw a more comprehensive picture.  

In the introduction, I mentioned that the extension of number systems and the transition from 
arithmetic to algebra are two long-term developments that require a careful construction of the 
curriculum and related learning-trajectories. Many scholars stress the importance of curricular 
coherence in the construction and implementation of curricula in general (Confrey, Gianopulos, 
McGowan, Shah, & Belcher, 2017) and in particular related to goals of the number curriculum (Bruno 
& Martinon, 1999; Van den Heuvel-Panhuizen, 2008). Curricular coherence is defined differently 
according to the principles that are used in order to provide it (Confrey et al., 2017). While, for 
example, Bruner (1960) and Schmidt, Wang, and McKnight (2005) refer to the structure of the 
discipline as the means to provide curricular coherence, Confrey et al. (2017) argue for learner-
centered curricular coherence, which they define as 

an organizational means to promote a high likelihood that each learner traverses one of many 
possible paths to understanding target disciplinary ideas. The goal is that students achieve 
demonstrable and justifiable proficiency in the meanings, relationships, and utility of those target 



 

 

ideas by building on and continuously broadening and modifying their ideas and experiences. (p. 
719)  

Looking at the curriculum in terms of the extension of number systems and the transition from 
arithmetic to algebra yields that there is a close relation of arithmetic and algebraic thinking in the set 
of natural numbers. However, this close alignment does not seem to be coherently continued in the 
extension of number systems. Further development of algebraic thinking in the domain of integers 
(and also in the domain of fractions) seems to be almost suspended. In terms of curricular coherence, 
it could be important for the learning of the negative number concept and for the learning of algebra 
to continuously foster algebraic thinking throughout the extension of number systems. Continuously 
unfolding number sense aligned with algebraic thinking throughout the extension of number systems 
might also be a means to provide continuity in a content domain where students‘ experience of 
discontinuity has been substantiated by a large body of research.  
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