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ABSTRACT

The following article introduces a new parametric synthesis algo-
rithm for sound textures inspired by existing methods used for vi-
sual textures. Using a 2D Convolutional Neural Network (CNN),
a sound signal is modified until the temporal cross-correlations of
the feature maps of its log-spectrogram resemble those of a tar-
get texture. We show that the resulting synthesized sound signal
is both different from the original and of high quality, while being
able to reproduce singular events appearing in the original. This
process is performed in the time domain, discarding the harmful
phase recovery step which usually concludes synthesis performed
in the time-frequency domain. It is also straightforward and flex-
ible, as it does not require any fine tuning between several losses
when synthesizing diverse sound textures. Synthesized spectro-
grams and sound signals are showcased, and a way of extending
the synthesis in order to produce a sound of any length is also pre-
sented. We also discuss the choice of CNN, border effects in our
synthesized signals and possible ways of modifying the algorithm
in order to improve its current long computation time.

1. INTRODUCTION

The main difficulties encountered in sound texture synthesis be-
come apparent when trying to properly define them. While exam-
ples of textures easily come to mind (e.g. environmental noises
such as wind or rain, crowd hubbub, engine sounds, birds singing,
etc.), pinpointing their common factors proves much harder: ran-
domness appears to be one, along with a "background" aspect
caused by an important number of indistinguishable small audio
events happening at once. But this is not all, since we would
still tend to call a sound including small occasional events hap-
pening in the foreground a texture. Hence, the definition offered
by Saint-Arnaud [1], summed up by Schwartz [2], of "a superpo-
sition of small audio atoms overlapping randomly while following
a higher level organization" is incomplete because it only encom-
passes completely stationary textures. It can even be argued that
in reality no such texture can be observed: a synthesis algorithm
strictly following this definition would thus be incomplete and of
little practical use.

This means that a sound texture synthesis algorithm needs to
be able to synthesize small indiscernible and random events but
also singular, recognizable events, both harmonic (e.g. birds chirp-
ing) or not (e.g. crowd clapping). This extremely broad range
of sounds is precisely what makes texture synthesis complex and
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why common synthesis algorithms (for instance sinusoidal mod-
els) prove ill-suited for it, making it require dedicated ones.

Before presenting an overview of existing sound texture syn-
thesis algorithm, we will first detail more precisely what is ex-
pected from them.

In the case of textures, "re-synthesis" is a term as fitting as
"synthesis": starting from an existing texture, the goal is usually to
create a sound that is different from the original while still being
recognizable as the same kind of texture, as if it had been recorded
only moments later. Although this is the prime goal of the algo-
rithm, this obviously does not exclude the possibility of manipu-
lating the synthesized texture. For instance, it could be desirable
to allow the algorithm to synthesize texture lasting any arbitrary
length of time, or to be able to have the synthesis evolve through-
out time, altering its properties or progressively turning into an-
other texture.

To achieve such a result, a broad variety of methods have been
developed: for the needs of this article, we will split them into 3
different categories.

The first of those is physics-based synthesis. It regroups meth-
ods which goal is to first emulate the phenomenon at the source
of the texture (for instance the impact of a drop of rain on a flat
surface) via a physically informed model of it. From there one
can simulate any number of events, dimensioning and randomiz-
ing them so as to fit the target texture. The result of this is a con-
vincing physical simulation of the texture (see for instance [3]).
While this method has the potential of being extremely control-
lable and allowing the manipulation of synthesis parameters that
have a physical meaning, it also has the obvious flaw of not being
flexible at all. Each algorithm correspond to one and only one kind
of texture: a physical model of the rain will prove poorly suited to
synthesize a flock of birds twittering.

The second is granular synthesis. It regroups methods in which
the original texture is first chopped into milliseconds-long audio
particles, then reordered and concatenated to reconstruct a new
texture (see for instance [4]). While being quite versatile in the
range of texture it is capable of re-synthesizing, such a method
is also heavily dependent on the choice of atom size and requires
more complex reordering methods when one tries to synthesize a
broader array of textures. In particular, reconstructing any fore-
ground event lasting more than the size of an atom proves a hard
task.

The last synthesis category, to which our algorithm belongs, is
parametric synthesis. It regroups synthesis methods in which the
general goal is to establish a set of parameters to describe textures
with. If those parameters are properly chosen, any two textures
which parameters are equal will sound alike without necessarily
being identical. From there, one would only need to modify a
sound until its parameters are equal to those of a target texture
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in order to re-synthesize it. While in theory this method is able
to synthesize any and all kind of textures, in practice the quality
and flexibility of the synthesis entirely depend on the choice of
parameters. Those parameters need to describe the texture so as
to hold enough information to re-synthesize a similar one, while
not holding too much so as to not over-constraining the synthesis
(in which case the only way of reaching a set of parameters would
be by creating a perfect copy of the original texture). In addition
to this, the parameters must be adapted to the description of the
widest possible range of textures.

This paradigm is notably used by McDermott and Simoncelli
in [5], where a set of statistics extracted from the critical and mod-
ulation bands are used as parameters. This algorithm gives con-
vincing results for a broad range of textures, but fails when try-
ing to synthesize textures containing singular events. Inspired by
the work of Gatys et al. [6] who uses the cross-correlations be-
tween the feature maps of a trained 2D convolutional neural net-
work (CNN) as parameters to synthesize visual textures, several
attempts to convert this approach to audio have been made. In
[7], Ulyanov and Lebedev use the same principle applied to spec-
trograms, with the frequency dimension acting as color depth and
using a 1D CNN, to synthesize textures with moderate success. In
[8], Antognini et al. add to this approach several constraints aimed
at recreating rhythm with a better fidelity and increasing the diver-
sity of results. While giving convincing results, this method re-
quires fine tuning in order to balance the constraints. Since chang-
ing target texture implies tuning those synthesis parameters, this
makes the algorithm lose in flexibility. In addition to this, both
this method and Ulyanov and Lebedev’s eventually output a spec-
trogram: it is then necessary to recover its phase and invert it to
retrieve an audible time signal, using methods such as the Grif-
fin and Lim algorithm [9]. This phase recovery step is an added
burden to the synthesis as it tends to downgrade the quality of the
audio signal, even more so when working with complex sounds
such as textures.

Although not directly applied to sound texture synthesis, it
may be noted that several works such as those of Grinstein et al.
[10], Barry and Kim [11] and Tomczak [12] also use the same
parametrization extracted from the feature maps of a CNN as part
of audio style transfer processes.

In this work, we present a new parametric texture synthesis
based on the method of Gatys et al.[6]. Our synthesis algorithm
does not require any fine tuning or spectrogram inversion and works
with a wide array of textures, including those presenting strong
singular events. We also present a few examples to demonstrate its
possibilities and proceed to discuss those results.

2. METHOD

Following the principle of parametric synthesis, we first define a
set of parameters to represent a sound texture with.

2.1. Parametrization

2.1.1. Pre-processing

As our method is adapted from the work of Gatys et al. [6] on 2D
images, we require a 2D representation of our sound signal.

To this effect we work with log-spectrograms. The log-spec-
trogram S is computed using the spectrogram X , taken as the mag-
nitude of the short-term Fourier Transform (STFT) of the sound
signal:

S =
log(1 + CX)

log(1 + C)
(1)

where C a factor controlling compression: the larger C is, the
more details we will get at low amplitudes. This choice of normal-
ization is made to ensure that the spectrogram is both compressed
by the log function and comprised between 0 and 1.

In practice we work with time signals sampled at 22050 Hz,
and a choose as STFT parameters a window length of 512 and
hop-size of 256. The sound signals all have a length of 262400
samples so that their log-spectrograms are 1024 frames long, and
have a bit depth of 16. The compression factor C is set to 1000.

For the rest of this article, any time-frequency matrix will have
frequency as first axis, and time as second. For instance, S(f, t)
denotes the value of S at the f -th frequency bin and t-th time sam-
ple.

2.1.2. Network choice

Seeing as Gatys et al. use a network trained for image recognition,
our first intuition was to use an equivalent network for working
on spectrograms. As such we initially trained a simple deep 2D
CNN on recordings taken from freesound.org in scene recognition
in order to use it for synthesis. But in [13], Ustyuzhaninov et al.
show that visual textures of the same quality as those obtained by
Gatys et al. can be synthesized using a single-layer untrained CNN
with various filter size instead of a trained CNN.

This proves to still hold for sound textures: the network we
use to synthesize the textures presented in this article is a single-
layer untrained 2D CNN using filters of different sizes and ReLU
activation. Its single layer is made of 128 square filters of each of
the sizes [3, 5, 7, 11, 15, 19, 23, 27] with a stride of (1, 1) and
zero-padding so that the differently-sized convolutions can then
be stacked, followed by the rectified linear unit (ReLU) activation
layer. The weights from the filters are drawn from a uniform dis-
tribution between −0.05 and 0.05, and no bias is applied.

For generalization’s sake, the rest of the method is nonethe-
less presented with a network that has K layers (with K being
potentially more than 1), although it is still valid when using a
single-layer network.

It is worth noting that unlike the methods presented in [7,
8], we use the log-spectrograms as 2D images with time and fre-
quency replacing the two space dimensions and not as a 1D signal
with frequency as depth, hence the need for 2D convolutions.

2.1.3. Parameters computation

Let us denote F k
i,(x,y) the value of the i-th feature map of the k-

th layer at the position (x, y). In [6], Gatys et al. use the Gram
matrices of each layer of the network as parameters. The (i, j)
element of the gram matrix Gk of k-th Gram marix is defined as
the cross-correlation between the i-th and j-th feature maps of the
layer:

Gk(i, j) =
∑
(x,y)

F k
i (x, y)F

k
j (x, y) (2)

The parameter set is chosen as the list of gram matrices from
G1 to GK . Although this proves a good choice for visual tex-
tures, such parameters cannot be directly used in the case of sound
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Figure 1: Computation of the 3-dimensional parameter tensors from the temporal cross-correlations of the feature maps of a CNN, .

textures. Indeed, those Gram matrices average all spatial informa-
tion when performing a sum over all positions (x, y), thus imply-
ing that the parametrization should be invariant in both directions.
This does no translate well to sound, since sound textures behave
differently regarding time and regarding frequency: while we wish
for a pseudo-stationarity over the time dimension, there is no rea-
son for there to be any invariance to pitch-shifting. As such, we
instead use the 3-dimensional tensors Hk defined as:

Hk(i, j, x) =
∑
y

F k
i (x, y)F

k
j (x, y) (3)

Defined this way, the tensors Hk with k ∈ [1,K] that we
use as parameters do indeed average all information from the time
dimension, but keep the information regarding the frequency di-
mension intact, thus achieving our goal. The parameter extraction
process is represented in Figure 1.

2.2. Texture loss

As mentioned in Section 1, the main goal of parametric synthesis
is to create a sound which has the same parameters values as a
those of a target sound. Seeing as we now have a parameter set,
we only need to define a quantitative error function which will then
be minimized throughout the synthesis process. To that effect, we
use a simple distance function between the two sets similarly to
Ustyuzhaninov et al. [13]:

L =
∑
k

‖H̃k −Hk‖2
‖H̃k‖2

(4)

with ‖.‖2 denoting the L2 norm, and the tilde denoting the target
texture parameters.

2.3. Optimization

The last step of the synthesis process is to create a sound signal
which minimizes the texture loss. Since the chain of operations
leading to the computation of the texture loss is differentiable (de-
spite passing through the complex domain due to the STFT: see
[14] for further insight), we may use any optimization algorithm
requiring the gradient of the error function to iteratively modify a

sound until it reaches a satisfying minimum of the loss function
(similar time domain synthesis can be found in [11, 12].

We observed that performing the optimization on the log-spec-
trogram is iteration-wise faster than performing the optimization
directly on the sound signal (both of them being initialized us-
ing white noises). This seems to indicate that the texture loss
is simpler to minimize when working in the time-frequency do-
main rather than when working directly in the time domain. To
take advantage of that fact, we first perform a quick synthesis of a
log-spectrogram and invert it using a random phase matrix (which
would correspond to performing one step of the Griffin-Lim algo-
rithm): while this inversion raises the value of the texture loss, it
still makes for a good initialization of the optimization in the time
domain. This allows us to skip a major part of the optimization
process on the sound signal. Once performed this optimization re-
sults in a sound signal which minimizes the texture loss, meaning
its parameters values are close to those of the target texture. The
synthesis process is illustrated in Figure 2.

As in [6] and [8], we found that the L-BFGS algorithm (in-
troduced in [15]) converges fast and yields good audio results.
Starting from a white noise image, we perform 1000 iterations of
it in the time-frequency domain to create the initialization of the
time domain optimization. The time domain optimization is then
performed over 10000 iterations. Using a GeForce GTX 1080 Ti
GPU, the whole process takes around an hour.

3. EXPERIMENTS

3.1. Experimental results

The log-spectrograms of both target and synthesized textures are
shown in Figure 3 for three sounds: a wildlife scene with crickets
chirping in the background and a bird singing in the foreground
(recognizable to its inverted "v"-shaped patterns), birds singing
both in the background and in the foreground (with one strongly
standing out the mid-frequency range), and the hubbub of a crowd
chatting. The audio signals of all three are available for listen-
ing online 1 along with other textures such as wind, bees and fire
sounds.

1See http://recherche.ircam.fr/anasyn/caracalla/
dafx19/synthesis/
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Figure 2: Organization of the texture synthesis algorithm: a quick optimization on a log-spectrogram is performed in the time-frequency
domain and its result is inverted. It then serves as initialization for the main optimization performed on a sound signal.

3.2. Discussion

3.2.1. Results analysis

The strength of this texture synthesis algorithm lies in the fact that
it manages to both synthesize background and foreground events
convincingly. The crowd chatter, which includes no singular events,
is as well recreated as the bird singing loudly in front of a flock.

Another advantage to it is the absence of any parameter tuning:
unlike the method presented by Antognini et al. [8] where three
losses need to be balanced through the optimization process and
potentially from one texture to another, the texture loss used here
is straightforward and requires no tuning. This way the algorithm
can effectively be used without needing to take into account which
texture is being synthesized.

In addition to this, because the final optimization is performed
on the time signal our algorithm does not end with a spectrogram
inversion (the harm a phase retrieval process could bring is clearly
noticeable when inverting spectrograms of existing texture and
comparing the resulting signal to the original).

3.2.2. Untrained vs. trained network

As mentioned in Section 2.1.2, both trained and untrained network
have been used in visual texture synthesis with success. The main
argument in [6] is that the CNN trained for image recognition has
learned filters adapted to common shapes encountered in images.
This, coupled with the depth of the network, is what supposedly
allows the network to recreate a large array of shapes when trying
to reproduce the cross-correlations between the activations of its
filters once the network has been fed an image (in this case, a visual
texture). This argumentation is challenged by Ustyuzhaninov et al.
in [13], who demonstrate that a single-layered untrained CNN can
perform as well as a trained network given enough filters. This
would tend to imply that given enough random filters, the space of

shapes recreated when synchronizing some of those filters is wide
enough to compensate for the lack of training.

This translates seamlessly to sound textures: while we first
worked with networks trained for acoustics scene recognition in
an attempt to emulate the process of [6], experiments with un-
trained network show that they perform just as well. This being
said, it could be interesting to explore the difference between the
use of the two further: for instance, trained CNN might require
less filters than untrained ones, thus making our parameter ten-
sors lighter and the computations faster. The depth of the trained
CNN might also help it capture correlations across distant events
in the spectrogram. This would indeed be useful, seeing as birds
textures from Figure 3 show that while the algorithm manages to
reproduce the local pattern of bird cries well, it fails to reproduce
the larger pattern of groups of cries separated by gaps of a few
seconds. This is also quite audible when listening to the attempt
at (non-texture) singing voice synthesis: since the human voice is
rich in harmonics, it spans over a large portion of the frequency
spectrum. Because our algorithm does not enforce long-distance
correlations, the upper harmonics are not synchronized with the
lower ones, thus creating another high-pitched voice speaking on
its own. In the fire synthesis, this is also clearly noticeable when
looking at impacts: since those short and sharp events span over
most frequencies, the algorithm has trouble generating them and
mostly manages to recreate impacts that only span over part of
the frequency axis, resulting in less convincing synthesized tex-
tures. This could potentially be solved even when using untrained
network by choosing bigger filters, which would then "see" larger
chunks of the log-spectrogram at once.

3.2.3. Border effect

Our texture synthesis presents one intriguing property: at the start
and end of the sound, the synthesized texture is identical to the
original one (for instance, this is slightly visible at the start of the
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Figure 3: Log-spectrograms of both originals textures (on the left) and synthesized textures (on the right) using the method presented in this
article.

log-spectrogram of the birds texture from Figure 3). In all of our
synthesis, the leftmost and rightmost frames present exactly the
same patterns in both original and synthesized textures. Although
this effect is interesting, it dissipates quickly and only affects the
time dimension: this means that even if we were to not get rid of
this artifact, slightly cropping the start and end of the synthesized
texture does completely discard it.

Gatys et al. [6] notice a similar effect in his visual texture syn-
thesis where a distinctive part of the image is always reproduced
around the same spot, and suggest that this effect originated from
the zero-padding used in the convolution layers. To test this the-
ory we experimented with synthesizing textures using only "valid"
convolutions (i.e. without any padding): our results still presented
the same border artifacts, which would indicate that they do not
originate from the zero-padding. We do not have any alternative
explanation to present at the moment.

It is worth noticing that this effect lasts around the length of
the biggest filter used (in our case, 27 frames): for now, this means
that we need to choose a filter size large enough to ensure the good
reproduction of correlations between events, while small enough
so that the border effect does not spoil too much of the interior of
the synthesized texture.

3.2.4. Computation time

As mentioned in Section 2.1.3, computation time is for now far be-
hind real-time since it takes around an hour to synthesize 12 sec-
onds of audio with one GPU. While tedious for now, this process
could potentially be alleviated by removing as much redundant in-
formation from the target parameters as possible (as of now, we
have around ∼100M parameters in the parameter tensors Hk).

Using the same network as described in Section 2.1.2, we re-
moved all cross-correlations between filters of different size from
the parameter tensor: this dropped the number of parameters to
∼16M without altering the quality of synthesized textures. An-
other lead is to use a trained CNN instead of an untrained one,
seeing as trained filters should prove efficient at describing pat-

terns without needing to be as numerous as in an untrained CNN.
We believe it should also be possible to drop the number of param-
eters even lower, for instance by using principal component analy-
sis to select which cross-correlations need to be imposed over the
synthesized signal as Gatys et al. [6] did.

Another potential lightening of the algorithm could come from
changing signal representation: so far we have used log-spectro-
grams, but using another time-frequency representation could be
greatly beneficial. For instance, using mel bands instead of the
raw frequency bins of the spectrogram would reduce the number
of parameters while staying perceptually sensible.

3.2.5. Extension

The basis for the texture synthesis having been set, it is also possi-
ble to develop on it and add ways of creatively alter the synthesized
texture. An example of manipulation is the creation of an indefi-
nitely long sound texture.

In order to do so, we use a principle resembling the "exquisite
cadaver" game, where one has to continue the drawing of someone
else while only seeing the border of the other’s drawing. In our
case we first synthesize an initial sound texture from a given target
and copy the end of it onto the start of a white noise signal: we
then perform another synthesis using this signal as initialization
and keeping the same target texture. While doing this, we also
prevent the optimization to be performed on the section that was
copied from the previous synthesis. This results in a continuous
texture seamlessly extending on the copied part, thus being able
to perfectly follow where the previous synthesis left off. We only
need to concatenate the newly generated texture to the previous
one to create a longer sound texture. This process can obviously
be repeated any number of times so as to obtain a texture of any
desired length. One iteration of this process is shown on figure 4,
while an example of such a synthesis is available online.2

2See http://recherche.ircam.fr/anasyn/caracalla/
dafx19/extended_synthesis/
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Figure 4: Extension of a first synthesis by copying its end onto the start of a white noise signal. This signal is then used as initialization of
another synthesis, while preventing the common part from being modified. The tiles are then concatenated to form a longer texture. Sound
signals are represented by their log-spectrogram for explanation’s sake.

4. CONCLUSIONS

We introduced a new parametric texture synthesis based on the
work of Gatys et al. [6] in visual textures: using the temporal
cross-correlations between the feature maps of a CNN as param-
eters, we iteratively modify a sound signal until the values of its
parameters reach those of a target texture. While the input of the
CNN is the log-spectrogram of the sound, the optimization pro-
cess is made directly in the time domain so as to avoid any phase
recovery step in the synthesis.

The algorithm yields convincing results on a wide array of tex-
ture, even if they include singular events in the foreground. It
can be straightforwardly applied without requiring the fine tun-
ing of synthesis parameters from one texture to another. Its major
flaws as of now lie in its long computation time and its trouble
re-synthesizing correlations of events far apart in the log-spectro-
gram. A number of possible ways to address the first issue have
been presented, for instance by subsampling the parameters tensor
and altering the time-frequency representation. As for the second,
the influence of the CNN architecture, and most notably the shape
of its filters, are currently being investigated.
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