
HAL Id: hal-02436247
https://hal.science/hal-02436247v2

Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary set systems and totally balanced hypergraphs
Célia Châtel, François Brucker, Pascal Préa

To cite this version:
Célia Châtel, François Brucker, Pascal Préa. Binary set systems and totally balanced hypergraphs.
Discrete Applied Mathematics, 2021, 295, pp.120-133. �hal-02436247v2�

https://hal.science/hal-02436247v2
https://hal.archives-ouvertes.fr

Binary set systems and totally balanced hypergraphs∗†

Célia Châtel‡ François Brucker§ Pascal Préa¶
{celia.chatel, francois.brucker, pascal.prea}@lis-lab.fr

Abstract

A hypergraph H is (i) Totally balanced if it does not contain a special cycle, (ii) Binary if it is closed
under intersection and every hyperedge has at most two predecessors (for inclusion order). We show
in this paper that a hypergraph H is totally balanced if and only if it can be embedded into a binary
hypergraph H ′; H ′ is said to be a binary extension of H. We give an efficient algorithm which, given
a totally balanced hypergraph H, produces a minimal binary extension Ĥ of H; in addition, if H is a
hierarchy or an interval hypergraph, then so is Ĥ.

keyword: hypergraphs, totally balanced hypergraphs, binary hypergraphs, clustering models.

1 Introduction
One of the aims of classification is to sort a data set V into clusters, which is equivalent to produce a
hypergraph with vertex set V . In order to be interpretable, the produced clusters must share some common
properties. These relationships are classically either structural or inherited. The first kind of relations implies
the use of clustering models as the produced clusters belong to a particular class of hypergraph; the second
kind uses split models since the clusters are produced by iteratively splitting them in two, beginning with
the whole data set and ending with the singletons which cannot be further split.

The most used model for both aims is certainly the hierarchical model. It ensures that the intersection
between two clusters is empty if one cluster is not included into the other one and thus applies as a structural
constraint between the clusters. As a hierarchical tree, it also applies for a split model, for instance in
phylogeny or in decision making.

The aim of phylogeny is to build phylogenetic trees. In fact, one wants to determine how a set of actual
species evolved from a common ancestor and a cluster is interpreted as the ancestor of its elements. Each
evolution event (the creation of a new species from an older one) corresponds to the split of a cluster into
two new clusters. This procedure goes from the set of all species (their common ancestor) to singletons (the
actual species). As a decision making process, binary hierarchical trees are called decision trees. It is a split
model as each internal node corresponds to a decision relatively to a question/test and has two subtrees,
one corresponding to the answer yes and one to the answer no. This model is widely used, for instance in
machine learning.

However the hierarchical model does not take into account overlapping (i.e. when the intersection of
two clusters may be neither empty nor one of them), which is sometimes needed in clustering problems.
Several clustering models admitting overlapping have been designed like interval hypergraphs (clusters are
intervals of a given order), used for instance in archaeology (see Robinson [13]) or weak hierarchies (clusters
are generated by two elements only) used, among others, for biological problems (as originally stated in
∗To appear in Discrete Applied Mathematics.
†This work was supported in part by ANR project DISTANCIA (ANR-17-CE40-0015).
‡Aix-Marseille Université, CNRS, Université de Toulon, LIS, Marseille, France.
§Aix-Marseille Université, CNRS, Université de Toulon, LIS and École Centrale Marseille, Marseille, France.
¶Aix-Marseille Université, CNRS, Université de Toulon, LIS and École Centrale Marseille, Marseille, France.

1

Bandelt and Dress [2]). To the best of our knowledge, the general split model where the splits can overlap
has not been studied. We show in this paper that this general split model corresponds to a subset of totally
balanced hypergraphs, the binary hypergraph, and that any totally balanced hypergraph can be extended into
a hypergraph of this model.

Totally balanced hypergraphs, initially defined by Lovász [11], are a hypergraph structure which corre-
sponds to the notion of tree for graphs (see Lehel [9]). They are used as a clustering model, since they
generalize both the hierarchical and the interval hypergraphs models, are a subset of weak-hierarchies and
admit a convenient graphical representation (Brucker and Préa [5]) but also in various applications like linear
programming, phylogenetic problems (see Spinrad [14] for instance) or more recently in concurrent processes
(see Dien [7]). We show in this paper that they can also be seen as a general split model minimizing the
number of predecessors of each cluster.

The paper is organized as follows. After defining the structures used in this paper and recalling some
known properties for totally balanced hypergraph (Section 2), we will show that totally balanced hypergraphs
are exactly the hypergraphs which admit a binary extension (Section 3). We will then give an efficient
algorithm which can produce any binary hypergraph (Section 4). It will be modified in Section 5 in order to
give a binary extension for a given totally balanced hypergraph. Section 6 shows that binary hypergraphs
minimize a criterion counting the predecessors of all the clusters. This section also shows that the algorithm
of Section 5 runs efficiently as it builds a binary extension with the minimum number of clusters. Moreover,
as shown in Section 7, this algorithm is stable for hierarchies and interval hypergraphs. Finally, Section 8
concludes the paper.

2 Basic definitions and classical results
In this part we define the main structures we will use throughout this paper and we recall two classical
results on totally balanced hypergraphs that will be used in the following sections.

A hypergraph is a couple H = (V,E) where V is a finite set whose elements are vertices and E ⊂ 2V

is the hyperedge set (we write ⊂ for ⊆). Throughout this paper, we only consider hypergraphs such that
V ∈ E, ∅ /∈ E and ∀x ∈ V, {x} ∈ E. As a clustering model, these hypergraphs are called set systems [3].
Hypergraphs and set systems will be equivalent here. We write u ‖ v if neither u ⊂ v nor v ⊂ u. For
e1, e2 ∈ E, we say that e1 is a predecessor of e2 (equivalently e2 is a successor of e1) and write e1 ≺E e2 (or
e1 ≺ e2 if there is no confusion) if e1 (e2 and there exists no e3 ∈ E such that e1 (e3 (e2.

A special cycle is a sequence (x0, e0, x1, e1, . . . , xk−1, ek−1) with k ≥ 3, xi ∈ V and ei ∈ E for all
i ∈ {0, . . . , k−1} and such that xi ∈ ej if and only if i = j or i = j+1 mod k. A totally balanced hypergraph
is a hypergraph with no special cycle.

A hypergraph H = (V,E) is a hypertree if there exists a tree T with the same vertex set such that every
hyperedge of H is the set of vertices of a subtree of T . We say then that T is a support tree of H. The
subhypergraph of H = (V,E) induced by a set A ⊂ V is the hypergraph H|A = (A, {e ∩ A : e ∈ E}). The
following theorem gives a characterization of totally balanced hypergraphs by their induced subhypergraphs.

Theorem 1 (Lehel [9]). A hypergraph H is totally balanced if and only if every subhypergraph of H is a
hypertree.

A direct consequence of Theorem 1 is that if H = (V,E) is a totally balanced hypergraph so are all its
subhypergraphs and all hypergraphs H ′ = (V,E′) with E′ ⊂ E. Theorem 2 goes further on the link between
trees and totally balanced hypergraphs as it gives a construction of maximum totally balanced hypergraphs
by a sequence of trees. For ease of use it has been stated in the formalism of the rest of the paper.

Theorem 2 (Lehel [8, 9]). Let T = (T0, S0), . . . , (Tn−1, Sn−1) with Ti = (Vi, Ei) and Si : Vi 7−→ 2V0 be a
sequence of trees and maps such that S0(u) = {u} for any u ∈ V0 and for every 0 ≤ i < n:

2

1. |Si(u)| = i+ 1 for any u ∈ Vi

2. For any u ∈ Vi there exists a unique xy ∈ Ei−1 such that Si−1(x) ∪ Si−1(y) = Si(u)

3. uv ∈ Ei =⇒ Si(u) = Si−1(x) ∪ Si−1(z), Si(v) = Si−1(y) ∪ Si−1(z) for some x, y, z ∈ Vi−1

The hypergraph HT = (V0, ET) with ET =
⋃

0≤i<n{Si(v) : v ∈ Vi} is totally balanced. Moreover, a hyper-
graph H = (V,E) is totally balanced if and only if there exists a tree sequence T such that E ⊂ ET .

Theorem 2 shows that any totally balanced hypergraph H = (V,E) (with |V | = n vertices) can be
extended into a totally balanced hypergraph HT = (V,ET) with the same vertices and |ET | =

(
n+1

2

)
hyperedges, which is the maximum possible for a given totally balanced hypergraph with n vertices (see for
instance [1]). Also note that the totally balanced hypergraph given by Theorem 2 is closed. A hypergraph is
said to be closed under intersection (or closed for short) if ∀u, v ∈ E, u ∩ v 6= ∅ =⇒ u ∩ v ∈ E. The closure
H = (V,E) of a hypergraph H = (V,E) is the smallest closed hypergraph such that E ⊂ E. Note that, by
Theorem 1, H is totally balanced if and only if H is totally balanced.

Generally speaking, the closure of a given hypergraph can be costly in terms of number of clusters. It
is not the case for totally balanced hypergraphs because they are weak hierarchies (Brucker and Gely [4]).
Weak-hierarchies (Bandelt and Dress [2]) are defined as hypergraphs for which the intersection of three
hyperedges is always the intersection of two of them. Weak hierarchies have numerous interesting properties
for clustering (see for instance Diatta and Fichet [6] for an extensive study of them); as they only admit
a small number of clusters (the square of the number of elements), their closure can be computed by only
intersecting clusters pairwise. In addition, for a closed weak hierarchy, each cluster is the supremum of two
elements.

The supremum of e1, . . . , ep ∈ E, written supE(e1, . . . , ep) (or sup(e1, . . . , ep) if there is no confusion) is
the unique smallest (regarding the inclusion order) element e ∈ E such that ∀i ≤ p, ei ⊂ e. If ei = {xi},
we will write sup(x1, . . . , xp). Note that if a hypergraph is not closed, one cannot define a supremum as
there may exist several smallest elements containing e1, . . . , ep; this is one of the reasons for which closed
hypergraphs are widely used in clustering.

A hypergraph H = (V,E) is said to be binary if it is closed and each hyperedge has at most two
predecessors. Since the only hyperedges of a closed hypergraph which have strictly less than two predecessors
are singletons (which have 0 predecessors since ∅ /∈ E), binary hypergraphs are closed hypergraphs such that
any non singleton hyperedge has exactly two predecessors. Finally, a hypergraph H = (V,E) is binarizable
if there exists a binary hypergraph H ′ = (V,E′) with E ⊂ E′. We then say that H ′ is a binary extension of
H.

3 Totally balanced hypergraphs and binary extensions
This section will show (Theorem 3) that binary hypergraphs are totally balanced and that every totally
balanced hypergraph admits a binary extension.

Proposition 1. Let H be a binary hypergraph, then it is totally balanced and closed.

Proof. First note that if H is a closed hypergraph and (x0, e0, x1, e1, . . . , xk−1, ek−1) is a special cycle of H,
then (x0, sup(x0, x1), x1, sup(x1, x2), . . . , xk−1, sup(xk−1, x0)) is a special cycle of H (by definition, xi, xi+1 ∈
sup(xi, xi+1); as sup(xi, xi+1) ⊂ ei, if j 6= i, i + 1, xj /∈ sup(xi, xi+1)). We will call a special cycle of the
form (x0, sup(x0, x1), x1, sup(x1, x2), . . . , xk−1, sup(xk−1, x0)) a simple cycle. We now prove that a binary
hypergraph cannot have a simple cycle by induction on the size of the cycle.

Suppose that H = (V,E) is a binary hypergraph with a simple 3-cycle (x0, sup(x0, x1), x1, sup(x1, x2),
x2, sup(x2, x0)) and let e := sup(x0, x1, x2). As H is binary (thus closed), e ∈ E and has at most two
predecessors e′ and e′′. As e = sup(sup(x0, x1), sup(x1, x2), sup(x2, x0)), we can suppose, with no loss
of generality, that sup(x1, x2) ⊂ e′ and sup(x2, x0) ⊂ e′. So x0 ∈ e′ and thus x0, x1, x2 ∈ e′ (e =
sup(x0, x1, x2), which is a contradiction.

3

Suppose now that every hypergraph with a simple k-cycle (k ≥ 3) is not binary. Let H = (V,E) be a bi-
nary hypergraph with a simple (k+1)-cycle (x0, sup(x0, x1), . . . , xk, sup(xk, x0)) and let e := sup(x0, . . . , xk).
Exactly two hyperedges e′ and e′′ are predecessors of e. Let X ′ := {xi : xi ∈ e′} and X ′′ := {xi : xi ∈ e′′}.
Since X ′ ∩ X ′′ 6= ∅, X ′ ∪ X ′′ = {x0, . . . , xk} and X ′, X ′′ 6= {x0, . . . , xk} , we can suppose, with no loss of
generality, that |X ′′| > 2 and that x0 /∈ X ′′. Let u := min{i ∈ {0, . . . k} : xi ∈ e′′} and v := max{i ∈
{0, . . . k} : xi ∈ e′′}. Since |v − u| > 1, the cycle (x0, sup(x0, x1), x1, . . . , xu, e

′′, xv, . . . , xk, sup(xk, x0)) is a
special cycle of length ≤ k. By the induction hypothesis, H is not binary, a contradiction.

Corollary 1. Let H be a hypergraph. If H is binarizable then H is totally balanced.

Proof. Let H be a binarizable hypergraph and H ′ one of its binary extension. Since every special cycle of
H is a special cycle of H ′, by Proposition 1, H cannot have a special cycle.

Proposition 2. If HT = (V0, ET) is a hypergraph as defined in Theorem 2, then HT is a binary hypergraph.

Proof. Let e ∈ ET , |e| = r ≥ 2. Then e ∈ Vr−1, hence, by (1) and (2) of Theorem 2, there exist x1, x2 ∈ V0,
x1 6= x2 such that ei = e \ {xi} ∈ Vr−2 for i = 1, 2. Considering the Hasse diagram of the poset of the edges
of HT defined by set inclusion, we conclude that e is a successor of both e1 and e2. If there was a third
predecessor e3 ∈ ET of e, then e3 ‖ ei for i = 1, 2. So x1, x2 ∈ e3; furthermore, there exists x3 ∈ e \ e3.
Then (x1, e3, x2, e1, x3, e2) is a special cycle of HT , contradicting the claim in Theorem 2 that HT is totally
balanced.

By Theorem 2 and Proposition 2, we have:

Corollary 2. Let H be a hypergraph with n vertices and
(
n+1

2

)
hyperedges. Then H is totally balanced if

and only if H is binary.

Corollary 3. Let H be a hypergraph. If H is totally balanced then H is binarizable.

By Corollary 1 and Corollary 3, one can state the following:

Theorem 3. A hypergraph is totally balanced if and only if it is binarizable.

From Theorem 2 one can derive an algorithm which constructs a binary extension H ′ = (V,E′) of
a given totally balanced hypergraph H = (V,E). This extension maximizes the number of hyperedges:
|E| ≤ |E′| = n(n+1)

2 where n = |V |.
In the following Sections 4 and 5, we will give another algorithm which constructs a binary extension Ĥ

of H. This binary extension has the minimum the number of hyperedges among all the binary extensions of
H (Theorem 8). Our construction gives an alternative proof of Corollary 3 and has the following properties
(see Sections 6 and 7):

• If H is a hierarchy, then Ĥ is a hierarchy (Theorem 10).

• If H is an interval hypergraph, then Ĥ is an interval hypergraph (Theorem 9).

4 An algorithm to construct binary hypergraphs
We propose in this section a (non deterministic) procedure which constructs binary hypergraphs (Theorem 5).
Section 5 will show that one can in fact construct any binary hypergraph and, more precisely, a binary
extension of any totally balanced hypergraph.

A mixed graph is a triplet G = (V,E,
−→
E) such that G1 = (V,E) is an undirected graph and G2 = (V,

−→
E)

is a directed graph. A mixed tree is a mixed graph such that the undirected underlying graph obtained
by replacing all directed edges of the graph by undirected edges is a tree. We will denote xy ∈ E (resp.
xy ∈

−→
E) if {x, y} (resp. (x, y)) is an undirected (resp. directed) edge of G = (V,E,

−→
E). For x ∈ V ,

4

we define ∆(x) := {y ∈ V : xy ∈ E}, ∆+(x) := {y ∈ V : xy ∈
−→
E }, ∆−(x) := {y ∈ V, yx ∈

−→
E } and

∆(x) := ∆(x) ∪∆+(x) ∪∆−(x).
The procedure constructs a binary hypergraph by generating a sequence of mixed trees. Actually, the

algorithm starts with all singletons as hyperedges and, at each step, creates a new hyperedge. All hyperedges
that are considered at a step are associated with nodes of a mixed tree. This mixed tree gives information
on the inclusion relationship between these hyperedges (see Lemma 1) and indicates which hyperedge is to
be created. The algorithm is made of three parts:

• Algorithm 1 (Basic-Tree-Construction) returns a mixed tree Ti+1 and a map Si+1 constructed
from a mixed tree Ti and a map Si. The map Si (resp. Si+1) associates with each vertex of Ti (resp.
Ti+1) a hyperedge of the final resulting hypergraph.

• Algorithm 2 (Tree-Sequence-Construction) puts Algorithm 1 into a loop to construct a sequence
of mixed trees. It begins with a given mixed tree T0 = (V0, E0, ∅) and S0(x) = {x} for x ∈ V0.

• When Algorithm 2 ends, the sequence of mixed trees T = ((T0, S0), . . . , (Tp, Sp)) is merged into the
hypergraph H = (V0, E) with E =

⋃
0≤i≤p{Si(v) : v ∈ Vi}, which is binary.

Given a mixed tree T = (V,E,
−→
E), a path of T is a sequence of vertices x1, . . . , xk such that for all i < k,

xi+1 ∈ ∆(x), i.e xi and xi+1 are neighbors in the undirected underlying graph. Similarly, a subgraph of a
mixed tree is connected if it is connected in the undirected underlying graph. By a little abuse of language,
we will say that a subset S of V is connected if it induces a connected subgraph of T .

Algorithm 1: Basic-Tree-Construction

Input: A consistent mixed tree T = (V,E,
−→
E) with a map S : V 7−→ 2X where X is a finite set

Output: A consistent mixed tree T ′ = (V ′, E′,
−→
E′) with a map S′ : V ′ 7−→ 2X

1 begin
2 Choose xy ∈ E such that ∆−(x) = ∆−(y) = ∅
3 V ′ ← V ∪ {vxy}
4 S′(vxy)← S(x) ∪ S(y) ; S′(u)← S(u) ∀u ∈ V
5 E′ ← E \ {xy}
6

−→
E′ ←

−→
E

7 for z ∈ {x, y} do
8

−→
E′ ←

−→
E′ ∪ {zvxy}

9 Choose ∆′(z) ⊂ ∆(z)
10 E′ ← E ∪ {vxyu : u ∈ ∆′(z)} \ {zu : u ∈ ∆′(z)}
11 if ∆′(z) = ∆(z) then
12 Let T∆ = (∆+(z), E∆) be a tree on vertex set ∆+(z)
13 E′ ← E′ ∪ E∆

14 V ′ ← V ′ \ {z}
15

−→
E′ ←

−→
E′ \ {zu : u ∈ ∆+(z)}

16 return T ′ = (V ′, E′,
−→
E′), S′

Algorithm 1 is not deterministic. Depending on the choices made at lines 2, 9 or 12, we get a different
mixed tree T ′ thus, in fine, a different hypergraph. Figure 1 shows two different runs of Algorithm 1 for the
same initial mixed tree. In order to work, Algorithm 1 needs a consistent mixed tree as input. A mixed tree
is said to be consistent if:

• For every vertex x, ∆+(x) 6= ∅ =⇒ ∆(x) 6= ∅,

5

Algorithm 2: Tree-Sequence-Construction
Input: A (consistent) mixed tree T0 = (V0, E0, ∅).
Output: A sequence T = ((T0, S0), (T1, S1), . . . , (Tp, Sp)), where, ∀i ≤ p, Ti is a consistent mixed

tree (Vi, Ei,
−→
Ei) and Si is a map Vi 7−→ 2V0 .

1 begin
2 ∀x ∈ V0, S0(x)← {x}
3 T ← ((T0, S0))
4 (T, S)← (T0, S0)
5 while T has more than 1 vertex do
6 (T, S)← Basic-Tree-Construction(T, S)
7 Append (T, S) to T
8 return T

• There does not exist x, y, z such that xy and yz are in
−→
E .

We can now prove (Claim 2 which uses Claim 1) that given a consistent mixed tree as input, Algorithm 1 is
correct.

Claim 1. A consistent mixed tree with more than one vertex contains an edge satisfying the condition of
Line 2 of Algorithm 1.

Proof. We will prove it by induction on the number of vertices |V |. Since a consistent mixed tree with two
vertices contains one undirected vertex, the property is true for |V | = 2. Suppose that the property is true
for 2 ≤ |V | ≤ k and consider a consistent mixed tree T = (V,E,

−→
E) with k + 1 vertices. Since a consistent

mixed tree with two or more vertices contains at least one undirected edge, let xy ∈ E. If this undirected
edge does not satisfy the condition of Line 2 of Algorithm 1, one can consider without loss of generality that
there exists x′x ∈

−→
E . Deleting this edge leads to 2 consistent mixed trees, one containing x′ and the other

containing x. Since x′ cannot be a leaf of the undirected underlying tree of T , the consistent mixed tree
containing x′ has 2 or more vertices and thus satisfy the induction hypothesis: there exists an edge satisfying
the condition of Line 2 of Algorithm 1 in this mixed tree. This edge clearly also satisfies the condition for
T .

Claim 2. Algorithm 1 is correct: with a consistent mixed tree (having more than one vertex) as entry, it
returns a consistent mixed tree.

Proof. Claim 1 shows that one can always find an edge xy satisfying conditions of Line 2. It suffices now
to show that T ′ is also a consistent mixed tree. The underlying graph of T ′ is clearly a tree. Moreover, the
only oriented edge creation is at Line 8. In this case ∆(z) \∆′(z) 6= ∅ thus ∆(z) 6= ∅ for T ′.

Since Algorithm 1 is correct, one can now prove that Algorithm 2 stops (Theorem 4) and that the final
sequence T is such that H = (V0,

⋃
0≤i≤p{Si(v) : v ∈ Vi}) is a binary hypergraph (Theorem 5). These

proofs will need some lemmas. Lemma 1 which is the keystone of these proofs and some technical lemmas:
Lemmas 2, 3 and 4. Figure 2 shows a run of Algorithm 2 and Figure 3 the resulting binary hypergraph.

Lemma 1. Let T = ((T0, S0), . . . , (Tp, Sp), . . .), with Ti = (Vi, Ei,
−→
Ei) for all i, be a sequence of mixed trees

and maps obtained by Algorithm 2 (Tree-Sequence-Construction). For all i:

(i) ∀α ∈ V0, X
α
i := {v ∈ Vi : α ∈ Si(v)} is a connected part of Ti;

(ii) uv ∈
−→
Ei =⇒ Si(u) (Si(v);

(iii) uv ∈ Ei =⇒ Si(u) ‖ Si(v).

6

x y

v2

u1

u2

u3

v1

(A)

x

u2

u3

u1

v1

vxy

v2

y

(B)

x

u1

u2

u3

vxy

v2

y

v1

(B′)

u1

u2

u3

vxy

v2

v1

(C ′)

Figure 1: Two runs of Algorithm 1 on the same graph, with the same edge xy chosen. In both cases, as x
is the only neighbor of y, y will be suppressed at Line 14 of the for loop.
In the first run (A → B), at Line 9, we choose ∆′(x) = {v2} and so, at Line 10, v2 becomes a neighbor of
vxy (B). In the second run (A→ B′ → C ′), at Line 9, we choose ∆′(x) = ∆(x). So, at Line 12, we create a
tree T∆ on {u1, u2, u3, vxy} whose edges are drawn with a double line in (C ′), and vertex x is suppressed at
Line 14.

•
4

•
5

•
6

•3 •1 •2

T0

•
45

•
5

•
6

•3 •1 •2

T1

•
45

•
5

•
6

•3 •12

T2

•
45

•
56

•3 •12

T3

•
45

•
56

•345 •12

T4

•
456

•345 •12

T5

•
456

•345 •12345

T6

•
3456

•12345

T7

•
123456

T8

Figure 2: A sequence of mixed trees obtained by Algorithm 2

7

•
1

•
2

•
3

•
4

•
5

•
6

•> = 123456

• 56

•12345

•45

• 456•345

• 3456

•12

Figure 3: The binary hypergraph obtained by the sequence of mixed trees of Figure 2 represented as a
lattice.

Proof. The proof will be by induction. Properties (i), (ii) and (iii) are trivially true for T0. Suppose Properties
(i), (ii) and (iii) are verified for Ti. Let Vi+1\Vi = {vxy} be the vertex created in Ti+1 by contracting xy ∈ Ei.
We have Si+1(vxy) = Si(x) ∪ Si(y).

(i) Let α ∈ V0. If α /∈ Si(x) and α /∈ Si(y), then Xα
i+1 = Xα

i and the edges inside Xα
i are not changed by

the construction of Ti+1. So Xα
i+1 is a connected part of Ti+1.

If α ∈ Si(x) or α ∈ Si(y), then α ∈ Si+1(vxy). Since the only edge changes from Ti to Ti+1 are edges
xu or yu which become vxyu, Xα

i+1 is connected.

(ii) The only oriented edges that can be created when constructing Ti+1 from Ti are xvxy and yvxy, thus
Property (ii) is true for (Ti+1, Si+1).

(iii) The only non-oriented edges that can be created when constructing Ti+1 from Ti are:

• uvxy with xu ∈ Ei (symmetrically, yu ∈ Ei) at Line 10. In this case, ∃α ∈ Si(u) \ Si(x); by
Property (i), α /∈ Si(y) and thus Si(u) 6⊂ Si+1(vxy). Since xy ∈ Ei, ∃β ∈ Si(y) \ Si(x); by
Property (i), β /∈ Si(u) and thus Si+1(vxy) 6⊂ Si(u).

• Edges of EA (Lines 12 and 13). By Property (ii), for each element u of ∆+(z), Si(u) contains an
element αu not in Si(z). So does Si+1(vxy). By Property (i), for all u ∈ VA, αu /∈ Si(u′) for all
u′ ∈ VA, u′ 6= u. So, for each edge uu′ ∈ EA, Si(u) ‖ Si(u′).

So the three properties are verified for Ti+1.

For i ≥ 0, let u be a vertex of Ti and v be a vertex of Ti+1. We say that v is a child of u if either v = u or
v = vuy (see Line 3 of Algorithm 1). A descendant of a vertex u is either u or a child of a descendant of u.

Claim 3. Let T = ((T0, S0), . . . , (Tp, Sp), . . .), with Ti = (Vi, Ei,
−→
Ei) for all i, be a sequence of mixed trees

and maps obtained by Algorithm 2. If a vertex v of Ti is a descendant of a vertex u of Tj (j < i), then
Sj(u) (Si(v) if u 6= v.

Proof. If v is a descendant of u there exists a chain u0, . . . , up with u0 = u and up = v such that uk+1 is
a vertex of Tj+k+1 and is the child of uk (which is a vertex of Tk+j) for all 0 ≤ k < p. If uk 6= uk+1, by
Lemma 1-ii, Sk+1(uk) ⊂ Sk+1(uk+1) and thus Sj+k(uk) ⊂ Sj+k+1(uk+1) for all 0 ≤ k < p.

Lemma 2. Let T = ((T0, S0), . . . , (Tp, Sp), . . .) be a sequence of mixed trees and maps obtained by Algo-
rithm 2. For i ≥ 0, let Vi+1 \ Vi = {vxy} with α ∈ Si(x) \ Si(y) and β ∈ Si(y) \ Si(x). For j > i, a vertex u
of Vj is such that Sj(u) contains both α and β if and only if u is a descendant of vxy.

Proof. The “if” part follows directly from Claim 3.
By Lemma 1-i and by construction, vxy is the only vertex u of Vi+1 such that α, β ∈ Si+1(u). Let j > i

be the smallest integer such that there exists u ∈ Vj which is not a descendant of vxy and α, β ∈ Sj(u).

8

The vertex u does not exist in Tj−1, so u = vzt with α ∈ Sj−1(z) \ Sj−1(t) and β ∈ Sj−1(t) \ Sj−1(z). Let
w ∈ Vj−1 be a descendant of vxy. By Lemma 1-i, there exist in Tj−1 a path from z to w which does not
contain t and a path from t to w which does not contain z. As zt is an edge of Tj−1 and Tj−1 is a tree, this
is a contradiction.

Lemma 3. Let T = ((T0, S0), . . . , (Tp, Sp), . . .) be a sequence of mixed trees and maps obtained by Algo-
rithm 2. For 0 ≤ i < j with Vi+1 \ Vi = {vxy} and Vj+1 \ Vj = {vzt}, we have Si+1(vxy) 6= Sj+1(vzt).

Proof. We suppose that the property is false and take j > i with Si+1(vxy) = Sj+1(vzt). Let w be a
descendant of vxy in Tj+1. Since neither z nor t can be a descendant of vxy (because Sj(vz) (Sj+1(vzt) and
Sj(vt) (Sj+1(vzt)), w 6= vzt and w is not a descendant of vzt. For α ∈ Sj(z) \ Sj(t) and β ∈ Sj(t) \ Sj(z),
we have α, β ∈ Sj+1(w) ⊃ Si+1(vxy) = Sj+1(vzt), a contradiction with Lemma 2.

Theorem 4. Algorithm 2 (Tree-Sequence-Construction) stops. Let T be the final sequence. The last
tree of T is Tp = ({u}, ∅, ∅) with Sp(u) = V0.

Proof. From Claim 2, if Tp has more than one vertex, Line 6 of Algorithm 2 will always produce a new
consistent mixed tree. But Lemma 3 argues that each new set produced is a different set from 2V0 , so
Algorithm 2 stops. By Claim 1, at last step, Tp has only one vertex, i.e. Tp = ({u}, ∅, ∅).

Note that Algorithm 2 stops, even if we suppress Line 4 from Algorithm 1, i.e. without the maps Si.

Lemma 4. Let T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and maps obtained by Algorithm 2.
For 0 ≤ i ≤ p, let (x0, x1, . . . , xk) be a path of Ti. We have:

Si(x0) ∩ Si(xk) ⊂ Si(x0) ∩ Si(xk−1) ⊂ . . . ⊂ Si(x0) ∩ Si(x1)

Proof. Follows immediately from Lemma 1-i.

One can now prove the main result of this part, Theorem 5:

Theorem 5. Let T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and maps obtained by Algorithm 2.
The hypergraph H = (V0, E) with E =

⋃
0≤i≤p{Si(v) : v ∈ Vi} is binary.

Proof. We first show that H is closed under intersection, and more precisely, we show by induction on i that,
∀0 ≤ i ≤ p,

⋃
0≤j≤i{Sj(v) : v ∈ Vj} is closed.

This is obviously true for i = 0. Suppose now that the property is true for some i ≥ 0, and let
Vi+1 \Vi = {vxy}. For j ≤ i, let z be a vertex of Vj . By induction hypothesis, Sj(z)∩Si(x) and Sj(z)∩Si(y)
are elements of

⋃
0≤j≤i{Sj(v) : v ∈ Vj}. Let z′ be a descendant of z in Vi. By Lemma 4, we can suppose

that Si(z′)∩Si(x) ⊂ Si(z′)∩Si(y). As Sj(z) ⊂ Si(z′), Sj(z)∩Si(x) ⊂ Sj(z)∩Si(y). So Sj(z)∩Si+1(vxy) =
Sj(z) ∩ Si(y) ∈

⋃
0≤j≤i{Sj(v) : v ∈ Vj} ⊂

⋃
0≤j≤i+1{Sj(v) : v ∈ Vj}.

We now show thatH is binary. Let e be a hyperedge which is not a singleton, there exist i ∈ {0, . . . , p−1},
x, y ∈ Vi such that Vi+1 \ Vi = {vxy} and e = Si+1(vxy). We will show that the only predecessors of e are
Si(x) and Si(y). Let e′ (e be a hyperedge, there exist j ∈ {0, . . . , p} and z ∈ Vj such that e′ = Sj(z).

If j ≤ i, let t ∈ Vi be a descendant of z. By Lemma 4, we can suppose with no loss of generality that
Si(y)∩Si(t) ⊂ Si(x)∩Si(t). So we have Si(y)∩Sj(z) ⊂ Si(x)∩Sj(z). As Sj(z) (Si+1(vxy) = Si(x)∪Si(y),
we have Sj(z) ⊂ Si(x).

Suppose now that j > i. If neither Sj(z) ⊂ Si(x) nor Sj(z) ⊂ Si(y), there exist α, β ∈ Sj(z) such
that α ∈ Si(x) \ Si(y) and β ∈ Si(y) \ Si(x). By Lemma 2, z is a descendant of vxy, and thus e ⊂ e′, a
contradiction.

Corollary 4. Let T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and maps obtained by Algorithm 2.
Every hypergraph H = (V0, E) with E ⊂

⋃
0≤i≤p{Si(v) : v ∈ Vi} is totally balanced.

The following Proposition shows the complexity of Algorithm 2.

9

Proposition 3. Algorithm 2 runs in O(n3), where n = |V0|.

Proof. Let X be a set and T (X) the set of all the consistent mixed trees admitting a map S : X 7−→ 2X

satisfying the conditions of Lemma 1. We prove by induction on |X| that the number of vertices of those
trees cannot exceed 2 · |X|. For |X| = 1 the property is trivially true. Suppose it true for |X| ≤ n and
consider a set X with |X| = n+ 1. Let T (V,E,

−→
E) ∈ T (X).

Let x be a leaf of T . Two cases may occur : either xy ∈ E or yx ∈
−→
E . The set S(x)\S(y) is then not

empty and for all z ∈ V \{x}, we have S(z) ∩ S(x)\S(y) = ∅. The set X ′ =
⋃
z∈V \{x} S(z) is then strictly

included in X, thus |X ′| ≤ n.
We denote by T ′ the restriction from T to V \{x} if it is a consistent mixed tree. If the restriction from

T to V \{x} is not a consistent mixed tree, then y is a leaf with yz ∈
−→
E (z 6= x) and we denote by T ′

the restriction of T to V \{x, y}, which is consistent (there cannot exist z′ such that zz′ ∈
−→
E). In both

cases, T ′ is a consistent mixed tree associated with a map S : X ′ 7−→ 2X
′
. Since |X ′| < |X|, we have that

V ≤ 2 + 2 · |X ′| ≤ 2 · |X| which concludes the proof by induction.
Moreover, Algorithm 2 adds a new hyperedge of the hypergraph at each step so there are at most O(n2)

calls of Algorithm 1 (a totally balanced hypergraph has at most
(
n+1

2

)
hyperedges). As Algorithm 1 is linear

in the size of the input which is always O(n), Algorithm 2 runs in O(n3).

Note that Algorithm 2 is really efficient since it is linear in the size of the resulting hypergraph. The
next section will adapt this algorithm in order to produce a binary extension from a given totally balanced
hypergraph.

5 An algorithm to construct a binary extension of a totally bal-
anced hypergraph

In this section, we will show that, given a totally balanced hypergraph H, it is possible to obtain a binary
extension of H as the result of slightly modified versions of Algorithms 1 and 2, namely Algorithm 3 and
Algorithm 4. The differences lie in the fact that the random choices of Algorithm 1 (lines 2, 9 and 12) are
in Algorithm 3 directed by the given closed totally balanced hypergraph H (lines 4, 11 and 15). Moreover,
edges are taken such that the vertices are in a homogeneous subset of T .

If T = (V,E,
−→
E) is a consistent mixed tree, a subset A of V is said to be a homogeneous subset of T if

it is connected and for all x ∈ A, ∆−(x) = ∅ and ∆(x) ⊂ A. Note that if |V | ≥ 2, then |A| ≥ 2 (because a
consistent mixed tree is connected and for any vertex x, if ∆+(x) 6= ∅ then ∆(x) 6= ∅). Thus the method for
choosing the edge in Algorithm 3 is a particular case of the method of Algorithm 1.

Figure 4 shows a run of Algorithm 4. The resulting binary hypergraph is the one of Figure 3. In order
to show that Algorithm 4 stops, we have to prove that Algorithm 3 is correct, i.e. that:

1. One can always find a homogeneous subset of T (Claim 4).

2. One can always find a support tree of H|A at Line 15. It is clear by Theorem 1.

3. For all α ∈ A, there exists a unique u ∈ ∆+(z) such that α ∈ S(u) at Line 16. This is true because
by Lemma 1-i, (which holds since Algorithms 3 and 4 are only variants of Algorithms 1 and 2),
Xα := {v ∈ V : α ∈ S(v)} is a connected part of T . As α /∈ S(z), there is only one neighbor u of z
such that α ∈ S(u).

Claim 4. Every consistent mixed tree T = (V,E,
−→
E) with |V | ≥ 2 admits a homogeneous subset.

Proof. The proof will be by induction on |V |. If |V | = 2, T is made of one non-oriented edge and V is
homogeneous. Suppose now that, for k > 2, the property is true for k′ < k, and let T = (V,E,

−→
E) be a

mixed tree with k vertices. If
−→
E = ∅, V is homogeneous. So we can suppose that for some x ∈ V , ∆+(x) 6= ∅.

As T is consistent, ∆−(x) = ∅ and ∆(x) 6= ∅. Let then T ′ be the subgraph of T obtained by removing ∆+(x)

10

Algorithm 3: Basic-Tree-Construction-H

Input: A consistent mixed tree T = (V,E,
−→
E) with a map S : V 7−→ 2X where X is a finite set and

a closed totally balanced hypergraph H = (X,E).
Output: A consistent tree T ′ = (V ′, E′,

−→
E′) with a map S′ : V ′ 7−→ 2X

1 begin
2 A← a homogeneous subset of T
3 Ẽ ← {xy ∈ E : x, y ∈ A}
4 Choose xy ∈ Ẽ such that supE(S(x), S(y)) is minimum for inclusion order
5 V ′ ← V ∪ {vxy}
6 S′(vxy)← S(x) ∪ S(y) ; S′(u)← S(u) ∀u ∈ V
7 E′ ← E \ {xy}
8

−→
E′ ←

−→
E

9 for z ∈ {x, y} do
10

−→
E′ ←

−→
E′ ∪ {zvxy}

11 ∆′(z)← {t : zt ∈ E,S′(vxy) ⊂ supE(S(z), S(t))}
12 E′ ← E′ ∪ {vxyu : u ∈ ∆′(z)} \ {zu : u ∈ ∆′(z)}
13 if ∆′(z) = ∆(z) then
14 A←

⋃
t∈∆+(z) S(t) \ S(z)

15 TA = (A, VA)← a support tree of H|A
16 s(α)← the (unique) element u of ∆+(z) such that α ∈ S(u), ∀α ∈ A
17 E∆ = {s(α)s(β) : αβ ∈ VA}
18 E′ ← E′ ∪ E∆

19 V ′ ← V ′ \ {z}
20

−→
E′ ←

−→
E′ \ {zu : u ∈ ∆+(z)}

21 return T ′ = (V ′, E′,
−→
E′), S′

Algorithm 4: Tree-Sequence-Construction-H
Input: A totally balanced hypergraph H = (V0, E) and one of its support tree T = (V0, E0)
Output: A sequence T = ((T0, S0), (T1, S1), . . . , (Tp, Sp)), where, ∀i ≤ p, Ti is a consistent mixed

tree (Vi, Ei,
−→
Ei) and Si is a map Vi 7−→ 2V0 .

1 begin
2

−→
E0 ← ∅

3 ∀x ∈ V0, S0(x)← {x}
4 T ← ((T0, S0))
5 (T, S)← (T0, S0)
6 while T has more than 1 vertex do
7 (T, S)← Basic-Tree-Construction-H(T, S,H)
8 Append (T, S) to T
9 return T

and T ′′ the connected component of T ′ containing x. T ′′ is a consistent mixed tree with strictly less than k
vertices. In addition, T ′′ has at least 2 vertices (it contains x and ∆(x) which is not empty). So T ′′ admits
a homogeneous subset A, which is also a homogeneous subset for T .

We now prove that Algorithm 4 constructs a binary extension Ĥ of the totally balanced hypergraph H.

11

•
1
•
2
•
3
•
4
•
5
•
6

•45 • 56

•123456

•12

•
3
•
4

• 2•1
•
5
•
6

T0

•
3
•
4

• 2•12

•
5
•
6

T1

•
3
•
45

• 12
•
5
•
6

T2

•
3
•
45

• 12
• 56

T3

•
12
•345 •

45
• 56

T4

•
12
•345 •

456

T5

•12345 •345 •
456

T6

•12345 • 3456

T7

•123456

T8

Figure 4: A totally balanced hypergraph, subhypergraph of the binary one of Figure 3, and a sequence of
mixed trees which constructs this hypergraph.

This result is Theorem 6, which uses Lemma 5; it is the converse of Corollary 1.

Lemma 5. Let H = (V,E) be a closed totally balanced hypergraph and T = ((T0, S0), . . . , (Tp, Sp)), with
∀i ∈ {0, . . . , p}, Ti = (Vi, Ei,

−→
Ei) and Si : Vi 7−→ 2V , be a sequence of mixed trees and maps obtained by

Algorithm 4. Then ∀e ∈ E, 0 ≤ i ≤, p, Ψe
i := {v ∈ Vi : Si(v) ⊂ e} induces a subtree of Ti and

⋃
v∈Ψe

i
Si(v) is

either empty or equal to e.

Proof. We prove the property by induction on i. Since (V0, E0) is a support tree of H, by Theorem 1 the
property is true for i = 0. We suppose now that, for some i, the property is true for all i′ ≤ i, and we set
vxy := Vi+1 \ Vi. Let e ∈ E, Ψe

i induces a subtree of Ti and
⋃
v∈Ψe

i
Si(v) = e.

Several cases can occur:

Si(x) 6⊂ e and Si(y) 6⊂ e
In this case, Ψe

i+1 = Ψe
i and induces the same (connected) subgraph in Ti+1 than in Ti. The two induction

properties are thus satisfied.

Si(x) ⊂ e and Si(y) ⊂ e
In this case, vxy ∈ Ψe

i+1. If x ∈ Vi+1 (symmetrically y ∈ Vi+1), neighbors of x which are in Ψe
i are, in

Ti+1, neighbors of x or vxy, which are both in Ψe
i+1. If x /∈ Vi+1 (symmetrically y /∈ Vi+1), vxy is neighbor

of all vertices in ∆(x), and so of all such vertices in Ψe
i+1. In addition, for all vertices u in ∆+(x), since

Si(x) ⊂ Si(u), Line 15 of Algorithm 3 and the induction properties ensure that vxy and the neighbors of
x in Ψe

i induce a connected subgraph of Ti+1, thus Ψe
i+1 is a connected subgraph of Ti+1. Moreover, since

x, y ∈ Ψe
i , we have that

⋃
v∈Ψe

i+1
Si(v) =

⋃
v∈Ψe

i
Si(v) ∪ Si+1(vxy) = e ∪ Si+1(vxy) = e.

Si(x) ⊂ e and Si(y) 6⊂ e (symmetrically, Si(x) 6⊂ e and Si(y) ⊂ e).
In this case, vxy /∈ Ψe

i+1 and Ψe
i is a subtree of Ti containing x and not y. In addition, for t ∈ ∆(x),

if Si(t) ⊂ e, supE(Si(x), Si(t)) ⊂ e and thus t /∈ ∆′(x). So, if x ∈ Vi+1, Ψe
i+1 = Ψe

i and induces the
same (connected) subgraph in Ti+1 that in Ti. If x /∈ Vi+1 (i.e. ∀t ∈ ∆(x), Si(t) 6⊂ e) and ∆+

i (x) 6= ∅,
Lines 15–18 ensure that Ψe

i+1 is connected; in addition, Ψe
i+1 = Ψe

i \ {x}. As Si(x) ⊂ Si(t) for t ∈ ∆+(x),⋃
t∈Ψe

i+1
Si+1(t) =

⋃
t∈Ψe

i
Si(t) = e. If x /∈ Vi+1 and ∆+

i (x) = ∅, Ψe
i+1 is empty.

The notation Ψe
i of Lemma 5 will be often used in the rest of the paper.

Theorem 6. T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and maps obtained by Algorithm 4 for
a totally balanced hypergraph H. The hypergraph Ĥ = (V0, Ê) with Ê =

⋃
0≤i≤p{Si(v) : v ∈ Vi} is a binary

extension of H.

Proof. As Algorithm 4 is just an adaptation of Algorithm 2, by Theorem 5, the hypergraph Ĥ is binary. Let
e ∈ E, if e = V , then Vp = {e} and e ∈ Ê; otherwise, Ψe

p = ∅ and Ψe
0 6= ∅. By the proof of Lemma 5, the

smallest i with Ψe
i = ∅ is such that Vi \ Vi−1 = vxy, Si(x) ⊂ e, Si(y) 6⊂ e, x /∈ Vi and ∆+(x) = ∅. In this

case, Ψe
i−1 = x and so e = Si(x) ∈ Ê.

12

6 Minimal binary extensions
For every hypergraph H = (V,E) with closure H = (V,E), we define P(H) as the quantity:

P(H) :=
∑

e∈E,|e|>1

(|{v ∈ E : v ≺ e}| − 2)

This Section will show that P(H) is small for totally balanced hypergraphs and minimal for the binary
ones. Claim 5 gives a lower and an upper bound of this number and Lemma 6 gives an upper bound for
totally balanced hypergraphs. These results are resumed in Theorem 7. The main purpose of P(H) is
nevertheless to show that Algorithm 4 constructs a binary extension with the minimum number of added
clusters.

Claim 5. Let H = (V,E) be a hypergraph with |V | = n. We have 0 ≤ P(H) ≤ (n− 4) · 2n−1 + n+ 2. The
lower bound is obtained for binary hypergraphs and the upper bound for hypercubes (V, 2V \{∅}).

Proof. Since each non singleton hyperedge has at least two predecessors, it is clear that P(H) is positive
and is equal to 0 for binary hypergraphs.

Suppose now that H is not a hypercube. Let a ∈ 2V be a smallest non empty element not in E and
let H ′ := (V,E ∪ {a}). There exists only one element a′ ∈ E such that a ≺ a′ (a′ is the intersection of all
hyperedges x of H such that a ⊂ x). Let b be a predecessor of a (in H ′). In H, b is a predecessor of a′; and
if b is a predecessor of another hyperedge c, then b is also a predecessor of c in H ′.

The hypergraph H ′ = (V,E∪{a}) is closed (for every hyperedge x, if x∩a 6= a, then x∩a is smaller than
a), so P(H ′) = P(H) + 1 and we can add iteratively all the missing hyperedges. Thus hypercubes realize
the upper bound.

To conclude, note that for a hypercube H with n vertices, P(H) =
∑

2≤k≤n(k−2) ·
(
n
k

)
. Since

∑
0≤k≤n k ·(

n
k

)
= n · 2n−1, we have P(H) = (n− 4) · 2n−1 + n+ 2.

Lemma 6. If H = (V,E) is a totally balanced hypergraph, then P(H) ≤ |V | − 2.

Proof. With no loss of generality, we can suppose that H is a closed totally balanced hypergraph. Closed
totally balanced hypergraphs are in bijection with so-called dismantlable lattices [4]. A lattice L = (E,≤) is
dismantlable [12] if there exists a sequence (Ei, 0 ≤ i ≤ n) with E0 = ∅, En = E and Ei−1 = Ei \ ei where ei
is a doubly irreducible element of the lattice Li = (Ei,≤). An element is doubly irreducible in a finite lattice
if it has exactly one predecessor and one successor. Moreover, if e is a doubly irreducible element of a lattice
L = (E,≤), then L′ = (E \ {e},≤) remains a lattice.

So, if H = (V,E), with |E| = m, is a closed totally balanced hypergraph, (E ∪ {∅},⊂) is a dismantlable
lattice, then there exists an order e1, . . . , em−1 on the elements of E\{V } such that, for any 1 ≤ i < m, the
set Si = {V, ∅} ∪ {e1, . . . , ei} is closed and ei admits only one predecessor pi and only one successor si in Si.
Let Pi :=

∑
e∈Si
|{v ∈ Si : v ≺ e}|, it is then clear that:

• |Si+1| = |Si|+ 1

• Pi+1 = Pi + 1 if pi+1 ≺Si
si+1

• Pi+1 = Pi + 2 if pi+1 6≺Si
si+1 (we nevertheless have pi+1 (si+1)

We can now prove by induction that 2 · |Si| ≥ Pi + 4. Since 2 · |S1| = 6 and P1 = 2 the property is true for
i = 1. Suppose it true for i ≥ 1. We have 2 · |Si+1| = 2 · |Si|+ 2 ≥ Pi + 4 + 2 ≥ Pi+1 + 4, which concludes
the proof by induction. So, we have 2 · |Sm−1| ≥ Pm−1 + 4.

Since |E| = |Sm−1|−1 (we remove the empty set) and Pm−1 = P(H)+2·(|E|−|V |)+|V | (the predecessors
of the singletons are the emptyset), we have 2 ·(|E|+1) ≥ P(H)+2 ·(|E|−|V |)+ |V |+4, hence the result.

Note that this upper bound for totally balanced hypergraphs is reached for H = (V,E) with E =
{V } ∪ {{x} : x ∈ V }. All these properties on P(H) are summarized in the following:

13

Theorem 7. Let H = (V,E) be a hypergraph with |V | = n, we have 0 ≤ P(H) ≤ (n− 4) · 2n−1 +n+ 2 and:

• P(H) = 0 if and only if H is a binary hypergraph,

• P(H) = (n− 4) · 2n−1 + n+ 2 if and only if E = 2V \{∅}.

• P(H) ≤ n− 2 if H is a totally balanced hypergraph,

• P(H) = n− 2 if E = {V } ∪ {{x} : x ∈ V }.

Theorem 7 shows that the P(H) is very low for totally balanced hypergraphs, it is bound by the number
of vertices even though the number of hyperedges can be

(|V |+1
2

)
. We will now show that Algorithm 4 only

adds a minimal number of clusters. To do this, we will prove that Algorithm 4 iteratively constructs closed
totally balanced hypergraphs Ĥi (Lemma 7) and that P(Ĥi) decreases one by one (Lemma 10).

Lemma 7. Let H = (V,E) be a closed totally balanced hypergraph and T = ((T0, S0), . . . , (Tp, Sp)) with
Ti = (Vi, Ei,

−→
Ei) be a sequence of mixed trees and maps built by Algorithm 4. For 0 ≤ i ≤ p, let Ĥi = (V, Êi)

be the hypergraph defined by Êi = E ∪ (
⋃

0≤j≤i{Sj(v) : v ∈ Vj}). Then for every 0 ≤ i ≤ p, Ĥi is a closed
totally balanced hypergraph.

Proof. Let Ĥ be the binary extension of H built from T . Since Ĥi is a subhypergraph of Ĥ, by Theorem 1,
Ĥi is totally balanced.

We now show by induction on i that Ĥi is closed. Since H is closed and Ĥ0 = H the property is true for
i = 0. Suppose it true for i and set vxy := Vi+1 \ Vi, i.e. Êi+1 \ Êi = {e}, with e = {Si(x) ∪ Si(y)}. Let e′

be a hyperedge of Ĥi+1.
If there exist α ∈ Si(x) \ Si(y) and β ∈ Si(y) \ Si(x) with α, β ∈ e′ then, by Lemma 2, e ⊂ e′ (it is

possible that e′ 6= e if e′ ∈ E). So, we can suppose with no loss of generality that e′ ∩ Si(y) \ Si(x) = ∅. In
this case, e′ ∩ e = e′ ∩ Si(x) ∈ Êi ⊂ Êi+1.

The sequence (Ĥ0, . . . , Ĥp) of hypergraphs defined in Lemma 7 will be used several times in the following.
In order to prove Lemma 10, we need to measure the impact of the creation of each cluster in Algorithm 4.
This is done by Lemma 8 (which needs Claim 6), and Lemma 9.

Claim 6. Let T = ((T0, S0), . . . , (Tp, Sp)) with Ti = (Vi, Ei,
−→
Ei) be a sequence of consistent mixed trees and

maps built by Algorithm 4 from a closed totally balanced hypergraph H = (V,E). If xy ∈
−→
Ei and xz ∈ Ei for

some 0 ≤ i < p, then there exists a hyperedge e ∈ E such that y 6∈ Ψe
i and z, x ∈ Ψe

i .

Proof. If Vi \ Vi−1 = {y}, i.e. if the arc xy is created at Step i, then, by Line 11 and 12 of Algorithm 3,
Si(y) 6⊂ supE(Si(x), Si(z)); so e = supE(Si(x), Si(z)) is a hyperedge of H such that y 6∈ Ψe

i and z, x ∈ Ψe
i .

Suppose now that y ∈ Vi−1, i.e. that the arc xy is created at Step j < i. If z ∈ Vi−1, j < i − 1 and
Step i is identical to Step i − 1. If z = Vi \ Vi−1, z = vz1z2 and, in Ti−1, x is a neighbor of z1. Neither
z1 ∈ ∆−(x) (since, in Ti−1, ∆−(x) 6= ∅) nor z1 ∈ ∆+(x) (otherwise, the edge z1z2 would not have been
chosen at Step i − 1); so, in Ti−1 x ∈ ∆(z1) and, in Ti, x ∈ ∆(z). By Line 11 and 12 of Algorithm 3,
Si(z) ⊂ supE(Si−1(z1), Si−1(x)), and thus supE(Si(z), Si(x)) ⊂ supE(Si−1(z1), Si−1(x)).

So, there exists z∗ ∈ Vj such that z∗ ∈ ∆(x) for Ti and supE(Si(z), Si(x)) ⊂ supE(Sj(z
∗), Sj(x)). As

Sj(y) 6⊂ supE(Sj(z
∗), Sj(x)) (at Step j, we are in the first case of the proof), e = supE(Si(x), Si(z)) is a

hyperedge of H such that y 6∈ Ψe
i and z, x ∈ Ψe

i .

Lemma 8. Let T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and maps obtained by Algorithm 4
for a closed totally balanced hypergraph H = (V,E). For 0 ≤ i ≤ p, let A be the homogenous subset of T and
xy be the edge chosen at Step i. If we denote supE(S(x), S(y)) by e, then 2 ≤ |Ψe

i | and Ψe
i ⊂ A.

Proof. Since x, y ∈ Ψe
i , it is clear that 2 ≤ |Ψe

i |. Suppose that Ψe
i 6⊂ A. Then there exist u ∈ Ψe

i ∩ A,
v ∈ ∆+(u) ∩ Ψe

i (v /∈ A) and w ∈ Ψe
i ∩ A ∩ ∆(u). By Claim 6 there exists a hyperedge e′ such that

u,w ∈ Ψe′

i and v /∈ Ψe′

i . The hyperedge e′′ = e ∩ e′ is such that u,w ∈ Ψe′′

i ; thus |Ψe′′

i ∩ A| ≥ 2, and
supE(S(u), S(w)) ⊂ e′′ (e, which is in contradiction with the minimality of e.

14

Lemma 9. Let H = (V,E) be a closed totally balanced hypergraph , T = ((T0, S0), . . . , (Tp, Sp)) with
Ti = (Vi, Ei,

−→
Ei) be a sequence of mixed trees and maps built by Algorithm 4 and xy ∈ Ei be the edge chosen

at Step i at Line 4 of Algorithm 3. If we denote supE(Si(x), Si(y)) by e, then {Si(u) : u ∈ Ψe
i} is the set of

all predecessors of e in Êi (with Ĥi = (V, Êi) as defined in Lemma 7).

Proof. Let e′ be a predecessor of e in Ĥi. We first show that e′ = Si(u) for a vertex u ∈ Vi (and thus for
u ∈ Ψe

i). Suppose that e′ = Sj(u) for a vertex u ∈ Vj \ Vi, with j < i. We can suppose, with no loss of
generality, that u /∈ Vj+1; so Vj+1 \ Vj = {vuu′}. The set Ψe

j contains u and one of its neighbors (Sj(u) (e
and it is connected by Lemma 5). If u′ ∈ Ψe

j , then Sj+1(vuu′) (e; and if there exists u′′ ∈ ∆+(u) ∩ Ψe
j ,

then Sj(u
′′) (e. In both cases, Sj(u) is not a predecessor of e. Otherwise, there exists u′′ ∈ ∆(u) ∩ Ψe

j .
Since u /∈ Vj+1, by Line 11 of Algorithm 3, Sj+1(vuu′) ⊂ supE(Sj(u), Sj(u

′′)). As Sj(u) (Sj+1(vuu′) and
supE(Sj(u), Sj(u

′′) ⊂ e, Sj(u) is not a predecessor of e. A contradiction: there exists u ∈ Vi such that
e′ = Si(u).
Suppose now that e′ ∈ E \ (

⋃
0≤j≤i{Sj(v) : v ∈ Vj}). We have Ψe′

i (Ψe
i ⊂ A; so at Line 4 of Algorithm 3,

we would have chosen xy such that supE(S(x), S(y)) = e′ instead of e. Thus for any predecessor e′ of e in
Ĥi, there exists u ∈ Vi such thate′ = Si(u): Ψe

i is exactly the set of all the predecessors of e in Ĥi.
We now show by contradiction that for all u, v ∈ Ψe

i , Si(u) 6⊂ Si(v), and so, for all u ∈ Ψe
i , Si(u) is a

predecessor of e. Let u = u0u1 . . . uk = v be the path between u and v in Ti. By Lemma 4, Si(u) ∩ Si(v) ⊂
Si(u1) ∩ Si(v) ⊂ Si(u1). If Si(u) ⊂ Si(v), Si(u) ∩ Si(v) = Si(u); so, as Si(u) 6= Si(u1), Si(u) (Si(u1) and
thus, by Lemma 1, uu1 ∈

−→
Ei. The path u is included in Ψe

i which is, by Lemma 8, included in a homogeneous
set, a contradiction.

Lemma 10. With the notations of Lemma 7, for i ∈ {0, . . . , p−1}, if Ĥi+1 6= Ĥi, then P(Ĥi+1) = P(Ĥi)−1.

Proof. If Ĥi+1 is different from Ĥi then Êi+1 \ Êi = {Si(x) ∪ Si(y)}, where xy ∈ Ei is the edge taken
at Step i by Algorithm 3. This new hyperedge has two predecessors (Si(x) and Si(y)). The hyperedge
supE(Si(x), Si(y)) has one predecessor less in Ĥi+1 than in Ĥi. The number of predecessors of the other
hyperedges is unchanged.

The following theorem shows that the binary extension built by algorithm 4 always adds the minimum
number of clusters.

Theorem 8. Let H = (V,E) be a totally balanced hypergraph and Ĥ = (V, Ê) be one of its binary extension
built by Algorithm 4. If H ′ = (V ′, E′) is another binary extension of H, then |E′| ≥ |Ê|. In particular, if H
is binary, then Ĥ = H.

Proof. First note that any binary extension of H contains E; thus one can consider with no loss of generality
that H = (V,E) is a closed totally balanced hypergraph. Let e be a hyperedge of E with k ≥ 2 predecessors
p1, . . . , pk in E and let G = (VG, EG) be the directed graph defined by VG is the set of hyperedges of E′ such
that u ∈ VG if pi ⊂ u ⊂ e for some 1 ≤ i ≤ k, and xy ∈ EG if y ≺VG

x.
This graph admits a directed minimal spanning tree rooted in e with p1, . . . , pk as leaves. Moreover,

each inner vertex x of this directed tree is such that ∆+(x) ≤ 2. Since a binary tree with k leaves has at
least k − 1 inner vertices, VG admits more than k − 2 vertices different from e or pi (1 ≤ i ≤ k). Since
these vertices are in E′\E, we conclude that any binary extension H ′ of H has more edges than P(H) new
hyperedges. By Lemma 10, the binary extension Ĥ built by Algorithm 4 has exactly P(H) new hyperedges,
so |E′| ≥ |Ê|.

Finally, in order to find a binary extension of some totally balanced hypergraph H = (V,E), the closure
is the most costly operation since it can add O(|V |2) clusters. The binarization itself only adds at most
|V | − 2 = O(|V |) clusters for a closed totally balanced hypergraph. But since in classification we usually
work with closed models (hierarchy or interval clusters are usually closed for instance) the binarization is a
very light operation.

15

7 Stability properties of Algorithm 4
This section shows that Algorithm 4 is stable for two popular clustering models, interval hypergraphs and
hierarchies, both subsets of totally balanced hypergraphs.

A hypergraph H = (V,E) is hierarchical or a hierarchy if ∀e, e′ ∈ E, e∩e′ ∈ {e, e′, ∅} and H is an interval
hypergraph if there exist a linear order σ on V such that, when V is sorted along σ, every hyperedge is an
interval of V . The permutation σ is said to be compatible. Clearly a hierarchy is an interval hypergraph.
Moreover, an interval hypergraph is totally balanced: if, when sorted along a compatible order σ, V =
(v1, v2, . . . , vn), then the (non oriented) path v1 − v2 − . . .− vn is a support tree that we denote by Pσ.

Theorem 9. Let H be an interval hypergraph admitting a permutation σ as compatible order and let Ĥ be
a binary extension of H built by Algorithm 4, starting with Pσ as T0. Then Ĥ is an interval hypergraph and
admits σ as a compatible order.

Proof. Since every connected subset of V0 is an interval for σ, the proof derives immediately from Lemma 5
because for all e ∈ EĤ , Ψe

0 is a connected subtree of T0 thus an interval.

Note that if we start Algorithm 4 with a support tree which is not a path, then the binary extension may
not be an interval hypergraph (see Figure 5).

•
1
•
2
•
3
•
4
•
5

• • •

•

(A)

•
1
•
2
•
3
•
4

•5

T0

•5

•
1
•
2
•
23

•
3
•
4

T1

•
1
•
2
•
23

•
34

•5

T2

•
12

•
23

•
34

•5

T3

•
12

•
235

•
34

T4

•
12

•
2345

T5

•
12345

T6

(B)

•
1
•
2
•
3
•
4
•
5

• • •

•

•

•

(C)

Figure 5: (A): An interval hypergraph ({1, 2}, {2, 3} and {3, 4}, are intervals of (1, 2, 3, 4, 5)). (B): a run of
Algorithm 4 which does not start with a path. (C): the resulting binary extension, which is not an interval
hypergraph (there is no linear order of {1, 2, 3, 4, 5} admitting {1, 2}, {2, 3}, {3, 4} and {2, 3, 5} as intervals).

Lemma 11. Let T = ((T0, S0), . . . (Tp, Sp)) with Ti = (Vi, Ei,
−→
Ei) be the sequence of consistent mixed trees

and maps built by Algorithm 2 (or Algorithm 4) and H = (V,E) be the resulting hypergraph. H is a hierarchy
if and only if

−→
Ei = ∅ for all 0 ≤ i ≤ k.

Proof. We first prove that if there exists 0 ≤ i < p such that
−→
Ei 6= ∅, then H is not a hierarchy. Let xy be

an arc created at Step i. In Ti, ∆(x) 6= ∅. Let xz be the first edge with x as an extremity to be selected at
Line 2 of Algorithm 1 or Line 4 Algorithm 3. By Lemma 1, Si(x) ⊂ Si(y) and there exist α ∈ Si(y) \ Si(x)
and β ∈ Si(z) \ Si(x); in addition, α /∈ Si(z) and β /∈ Si(y). Both Si(x) ∪ Si(z) and Si(y) are in E but
e = (Si(x) ∪ Si(z)) ∩ Siy) is neither ∅ (Si(x) ⊂ e) nor Si(x) ∪ Si(z) (β /∈ e) nor Si(y) (α /∈ e).

Conversely, suppose
−→
Ei = ∅ for all 0 ≤ i ≤ p. A trivial induction on i shows that Pi = {Si(x) : x ∈ Vi} is

a partition of V0, and that Pi+1 = Pi ∪ {Si(x) ∪ Si(y)}\{Si(x), Si(y)} for an edge xy of Vi. It is then clear
that

⋃
0≤i≤p Pi = E is a hierarchy.

Theorem 10. Let H = (V,E) be a hierarchical hypergraph and let Ĥ be a binary extension of H built by
Algorithm 4. Then Ĥ is hierarchical.

16

Proof. Let T = ((T0, S0), . . . (Tp, Sp)) with Ti = (Vi, Ei,
−→
Ei) be the sequence of consistent mixed trees and

maps built by Algorithm 4 and Ĥ = (V, Ê) be the resulting hypergraph. We will show by induction on i

that
−→
Ei = ∅ fo all i ∈ {0, . . . , p}. Clearly,

−→
E0 = ∅.

Suppose that
−→
Ei = ∅ for all 0 ≤ i ≤ i0. For i = i0 + 1, let xy ∈ Ei0 be the chosen edge and let

xz ∈ Ei0 be another undirected edge. Since H is a hierarchy, supE(Si0(x), Si0(y)) ∩ supE(Si0(x), Si0(z)) ∈
{supE(Si0(x), Si0(y)), supE(Si0(x), Si0(z)), ∅}, thus by minimality of supE(Si0(x), Si0(y)) and the fact that
the intersection is not empty we have that supE(Si0(x), Si0(y)) ⊂ supE(Si0(x), Si0(z)) and xz become the
undirected edge vxyz in Ti0+1: all the undirected edges of x are now undirected edges of vxy, x is deleted
and no directed edges are created. Thus

−−−→
Ei0+1 = ∅ and Lemma 11 allows us to conclude.

8 Conclusion
We show in this paper that the only clustering model that admits binary extensions is the totally balanced
hypergraph one, making them useful both as a clustering model and a split model. Totally balanced hy-
pergraphs were already known to have numerous good properties (see for instance Lehel, McMorris and
Powers [10]). We have shown that they can in addition replace the (too) simple hierarchical model when the
overlapping between clusters is desirable.

We also exhibit an algorithm that can binarize any given totally balanced hypergraph by adding a minimal
number of clusters and is stable for the hierarchies and the interval hypergraphs. We now work on using these
algorithms for practical cases. For instance, we plan to use Algorithm 4 to approximate a given hypergraph
into a binary one and study the properties of this approximation. We also want to use Algorithm 2 in order
to iteratively produce a binary hypergraph from real data.

Acknowledgments
We are indebted to an anonymous referee for Proposition 2 (and the proof of Corollary 3) and for many
other valuable remarks and advice.

References
[1] R.P. Anstee & M. Farber (1983), Hypergraphs with no special cycles, Combinatorica 3, 141–146.

[2] H-J. Bandelt & W-M. Dress (1989), Weak hierarchies associated with similarity measures – an
additive clustering technique, Bulletin of Mathematical Biology 51, 133–166.

[3] P. Bertrand (2000), Set Systems and Dissimilarities, European Journal of Combinatorics 21, 727–
743.

[4] F. Brucker & A. Gély (2011), Crown-free Lattices and Their Related Graphs, Order 28, 443–454.

[5] F. Brucker & P. Préa (2015), Totally Balanced Formal Concept Representations, in Proceedings
of ICFCA 2015, J. Baixeries C. Sacarea& M. Ojeda-Aciego Eds, Springer, 169–182.

[6] J. Diatta & B. Fichet (1994), From Asprejan hierarchies and Bandelt-Dress weak hierarchies to
quasi-hierarchies, in New Approaches in classification and data analysis, E. Diday, Y. Lechevallier, M.
Schader & P. Bertrand Eds, Springer, 111–118.

[7] M. Dien (2017), Concurrent process and combinatorics of increasingly labeled structures: quantitative
analysis and random generation algorithms, PhD Thesis, Pierre et Marie Curie University, Paris,
France.

17

[8] J. Lehel (1983), Helly hypergraphs and abstract interval structures, Ars Combinatoria 16-A, 239–
253.

[9] J. Lehel (1985), Characterization of totally balanced hypergraphs, Discrete Mathematics 57, 59–65.

[10] J. Lehel, F.R. McMorris & R.C. Powers (1998), Consensus methods for pyramids and other
hypergraphs, in Data Science, Classification and Related Methods, C. Hayashi, N. Ohsumi, K. Yajima,
Y. Tanaka, H.H. Bock& Y. Baba Eds, Springer, 187–190.

[11] L. Lovász (1968), Graphs and set systems, in Beiträge zur Graphentheorie, H. Walther, H. Sachs &
H-J. Voss Eds, Teubner, 99–106.

[12] I. Rival (1974), Lattices with doubly irreducible elements, Canadian Mathematical Bulletin 17-1,
91–95,

[13] W.S. Robinson (1951), A Method for Chronologically Ordering Archeological Deposits, American
Antiquity 16, 293–301.

[14] J. Spinrad (2003), Efficient Graph Representations, American Mathematical Society.

18

