
HAL Id: hal-02436247
https://hal.science/hal-02436247v1

Preprint submitted on 12 Jan 2020 (v1), last revised 25 Feb 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary set systems and totally balanced hypergraphs
François Brucker, Pascal Préa, Célia Châtel

To cite this version:
François Brucker, Pascal Préa, Célia Châtel. Binary set systems and totally balanced hypergraphs.
2020. �hal-02436247v1�

https://hal.science/hal-02436247v1
https://hal.archives-ouvertes.fr


Binary set systems and totally balanced hypergraphs

Célia Châtela, François Bruckera,b, Pascal Préaa,b

aAix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
bÉcole Centrale Marseille, France

Abstract

We show in this paper that totally balanced hypergraphs (hypergraphs which do not contain special cycles)
are exactly hypergraphs that are embeddable into closed hypergraphs for which each vertex admits at most
two sons (so called binary hypergraphs). To prove this result we exhibit an efficient algorithm which can
produce any binary hypergraph and adapt it to binarize a given totally balanced hypergraph. This result
gives, like Lehel[9], a constructive characterization of totally balanced hypergraph.

Keywords: hypergraphs, totally balanced hypergraphs, binary hypergraphs

1. Introduction

Totally balanced hypergraphs, initially defined by Lovasz[10], are an hypergraph structure which cor-
responds to the notion of tree for graphs (see Lehel [9]), thus occurring in various applications like linear
programming, phylogenetic problems (see Spinrad [11] for instance) or more recently in concurrent processes
(see Dien [6]). This structure has many nice properties, since they are equivalent to other well known com-
binatorial models like Γ-free 0/1-matrices (Antsee and Farber [1]), strongly chordal graphs (Farber [7]) or
dismantlable lattices (Brucker and Gély [4]).

Finally, as hypergraphs, totally balanced hypergraphs admit a relatively small number of clusters, at
most the square of the number of vertices, and admit a convenient graphical representation (Brucker and
Préa [5]). So they can be beneficially used as a clustering model. In clustering we are interested in the
relationships between objects. These relationships are likely to yield two properties: homogeneity (which
states what is common between objets for elements in the same cluster) and separability (what make two
objects different for elements in different clusters). For instance for the binary trees model which is often
used as a clustering model:

• homogeneity: the minimal subtree containing the 2 objets

• separability: the split of the tree/cluster into 2 subtrees (the 2 sons).

The above notions of homogeneity and separability can be used for hypergraphs providing they have the
following three properties:

• The hypergraph contains all the objets (the objects are part of the structure),

• The hypergraph is closed under intersection (so there is a minimal cluster containing any given subset
of objects),

• Each vertex has at most 2 sons.

Email addresses: celia.chatel@lis-lab.fr (Célia Châtel), francois.brucker@lis-lab.fr (François Brucker),
pascal.prea@lis-lab.fr (Pascal Préa)

This work was supported in part by ANR project DISTANCIA (ANR-17-CE40-0015).

Preprint submitted to Elsevier November 22, 2019



Note that the above three properties do not assume the clusters to be disjoint, which allows overlapping
cluster models. We will show in this paper that the most general hypergraph model admitting these tree
properties is totally balanced hypergraphs. In order to prove this result we will follow a path similar to the one
used by Lehel[9] for its characterization of totally balanced hypergraphs. We will exhibit an algorithm which
construct a so called binary hypergraph and show that one can use any given totally balanced hypergraph
as a guide to construct it.

The paper is organized as follows. After defining the structure used in this paper and recalling some
known properties for totally balanced hypergraph (Section 2), we will give an efficient algorithm which can
produce a binary hypergraph (Section 3). This algorithm is then modified in order to binarize a given totally
balanced hypergraph, which will prove the main result (Section 4). We will finally conclude (Section 5).

2. Basic definitions and first result

This part will define the main structures we will use throughout this paper and prove Corollary 1, the
first implication of the mapping between binary and totally balanced hypergraphs.

An hypergraph is a coupleH = (V,E) where V is a finite set whose elements are vertices and E ⊂ 2V is the
hyperedge set. Throughout this paper, we only consider hypergraphs such that V ∈ E and ∀x ∈ V, {x} ∈ E.
As a clustering model, these hypergraphs are called set systems [3]. Hypergraphs and set systems will be
equivalent here. We write u ‖ v if neither u ⊆ v nor v ⊆ u. For e1, e2 ∈ E, we say that e2 covers e1 (or that
e1 is covered by e2) and write e1 ≺E e2 (or e1 ≺ e2 if there is no confusion) if e1 ( e2 and there exists no
e3 ∈ E such that e1 ( e3 and e3 ( e2.

We will moreover often use closed hypergraph. An hypergraph is said to be closed under intersection
(or closed for short) if ∀u, v ∈ E, u ∩ v 6= ∅ =⇒ u ∩ v ∈ E. The closure H = (V,E) of an hypergraph
H = (V,E) is the smallest closed hypergraph such that E ⊆ E. The main interest of closed structures
in clustering is that every set of hyperedges admits a supremum, where the supremum of e1, . . . , ep ∈ E,
written supE(e1, . . . , ep) (or sup(e1, . . . , ep) if there is no confusion) is, if it exists, the smallest (regarding
the inclusion order) element e ∈ E such that ∀i ≤ p, ei ⊆ e. If ei = {xi}, we will write sup(x1, . . . , xp).

Generally speaking, the closure of a given hypergraph can be costly. It is not the case for totally balanced
hypergraphs because they are weak-hierachies (Brucker and Gely [4]). Weak-hierarchies (Bandelt and Dress
[2]) are defined as hypergraphs for which the intersection of 3 edges is always the intersection of two of them.

Weak hierarchies have numerous interesting properties for clustering (see for instance Diatta and Fichet
[8] for an extensive study of them); as they only admit a small number of clusters (the square of the number
of elements), their closure can be computed by only intersecting clusters pairwise. In addition, for a closed
weak-hierarchy, each cluster is the supremum of two elements.

A special cycle is a sequence (x0, e0, x1, e1, . . . , xk−1, ek−1) with k ≥ 3, xi ∈ V and ei ∈ E for all
i ∈ {0, . . . , k−1} and such that xi ∈ ej if and only if i = j or i = j+1 mod k. A totally balanced hypergraph
is an hypergraph with no special cycle.

We say that a hypergraph H = (V,E) is a hypertree if there exists a tree T = (V,E′) such that every
hyperedge of H is the set of vertices of a connected subtree of T . We name T a support tree of H.

The subhypergraph of H = (V,E) induced by a set A ⊆ V is the hypergraph H|A = (A, {e ∩ A :
e ∈ E}). The following theorem gives a characterization of totally balanced hypergraphs by their induced
subhypergraphs.

Theorem 1 (Lehel [9]). A hypergraph H is totally balanced if and only if every subhypergraph of H is a
hypertree.

Note that if H is a totally balanced hypergraph so are all its subhypergraphs and restrictions. Moreover:

Property 1. Let H = (V,E) be a hypergraph. H is totally balanced iff H is totally balanced.

2



Proof. Let H be a hypergraph with a special cycle C = (x0, e0, x1, . . . , xk−1, ek−1). For all i ≤ k− 1, ei ∈ E
hence C is a special cycle in H. So H totally balanced implies H totally balanced.

Conversely, let H = (V,E) be a totally balanced hypergraph and H = (V,E) its closure. If H is not
totally balanced, it contains a special cycle C = (x0, e0, x1, . . . , xk−1, ek−1). At least one of the ei is in E \E
(otherwise, C would be a special cycle of H). We suppose, with no loss of generality, that C has the smallest
number (among all special cycles of H) of hyperedges in E \ E and that e0 ∈ E \ E; so e0 = e1

0 ∩ . . . ∩ e
p
0,

with p > 1 and ei0 ∈ E for i ≤ p. At least one of the ei0 (say e1
0) does not contain xk−1 (otherwise xk−1 ∈ e0,

which is impossible). Let k′ be the greatest index such that xk′ ∈ e1
0; we have 1 ≤ k′ < k − 1. The cycle

(x0, e
1
0, xk′ , ek′ , . . . , xk−1, ek−1) is a special cycle of H containing less hyperedges in E \ E than C, which is

a contradiction.

We will call a special cycle of the form (x0, sup(x0, x1), x1, sup(x1, x2), . . . xk−1, sup(xk−1, x0)) a simple
cycle.

Claim 1. Let H be a closed hypergraph. If (x0, e0, x1, e1, . . . , xk−1, ek−1) is a special cycle of H, then
(x0, sup(x0, x1), x1, sup(x1, x2), . . . xk−1, sup(xk−1, x0)) is a special cycle of H.

Proof. By definition, xi, xi+1 ∈ sup(xi, xi+1). As sup(xi, xi+1) ⊂ ei, if j 6= i, i+ 1, xj /∈ sup(xi, xi+1).

We can now introduce the link between binary hypergraphs and totally balanced hypergraphs. A hyper-
graph H = (V,E) is said to be binary if it is closed and:

∀u ∈ E, |{v ∈ E : v ≺ u}| ≤ 2

A hypergraph H = (V,E) is binarizable if there exists a binary hypergraph H ′ = (V,E′) with E ⊆ E′.

Property 2. Let H = (V,E) be a binary hypergraph then it is totally balanced.

Proof. The proof will be by induction on the size of the simple cycle.
Suppose that H = (V,E) is a binary hypergraph with a simple 3-cycle (x0, sup(x0, x1), x1, sup(x1, x2),

x2, sup(x2, x0)) and let e = sup(x0, x1, x2). As H is binary (and closed), e ∈ E and covers at most two
hyperedges e′ and e′′. As e = sup(sup(x0, x1), sup(x1, x2), sup(x2, x0)), we can suppose, with no loss of gen-
erality, that sup(x1, x2) ⊆ e′ and sup(x2, x0) ⊆ e′. So x0 ∈ e′ and thus x0, x1, x2 ∈ e′ ( e = sup(x0, x1, x2),
which is a contradiction.

Suppose now that every hypergraph with a simple k-cycle (k ≥ 3) is not binary. Let H = (V,E) be a bi-
nary hypergraph with a simple (k+1)-cycle (x0, sup(x0, x1), . . . , xk, sup(xk, x0)) and let e = sup(x0, . . . , xk).
At most two hyperedges e′ and e′′ are covered by e. Let X ′ = {xi : xi ∈ e′} and X ′′ = {xi : xi ∈ e′′}.
Since X ′ ∪X ′′ = {x0, . . . , xk} and X ′, X ′′ 6= {x0, . . . , xk} , we can suppose, with no loss of generality, that
|X ′′| > 2 and that x0 /∈ X ′′. Let u = min{i ∈ {0, . . . k} : xi ∈ e′′} and v = max{i ∈ {0, . . . k} : xi ∈ e′′}.
Since |v − u| > 1, the cycle (x0, sup(x0, x1), x1, . . . , xu, e

′′, xv, . . . , xk, sup(xk, x0)) is a special cycle of length
≤ k. By the induction hypothesis, H is not binary, a contradiction.

Corollary 1. Let H = (V,E) be a hypergraph. If H is binarizable then H is totally balanced.

Proof. Let H be a binarizable hypergraph and H ′ a binary hypergraph containing H. Since every special
cycle of H is a special cycle of H ′, by Property 2, H can not have a special cycle.

In order to prove the other implication (Section 4) we will first introduce an algorithm which produces
binary hypergraphs.

3. An algorithm to construct binary hypergraphs

We propose in this section a (non deterministic) procedure which constructs binary hypergraphs by
generating a sequence of mixed trees. This section proves that this procedure construct a binary hypergraph
(Theorem 3) and Section 4 will show that one can in fact construct any binary hypergraph.

This procedure is made of three parts :

3



• Algorithm 1 (Basic-Tree-Construction) return a mixed tree Ti+1 and a Si+1 constructed from a
mixed tree Ti and a map Si.

• Algorithm 2 (Tree-Sequence-Construction) puts Algorithm 1 into a loop to construct a sequence
of consistent mixed trees. It begins with a given mixed tree T0 = (V0, E0, ∅) and S0(x) = {x} for
x ∈ V0.

• when Algorithm 1 ends, the sequence of mixed-trees T = ((T0, S0), . . . , (Tp, Sp)) is merged into the
hypergraph H = (V0, E) with E =

⋃
0≤i≤p{Si(v) : v ∈ Vi}, which is binary.

Before entering into the details of the procedure, let us define a mixed tree. A mixed graph is a triplet
G = (V,E,

−→
E ) such that G1 = (V,E) is an undirected graph and G2 = (V,

−→
E ) is a directed graph. A mixed

tree is a mixed graph such that the undirected underlying graph obtained by replacing all directed edges
of the graph by undirected edges is a tree. We will denote xy ∈ E (resp. xy ∈

−→
E ) if {x, y} (resp. (x, y))

is an undirected (resp. directed) edge of G = (V,E,
−→
E ). For x ∈ V , we define ∆(x) = {y ∈ V : xy ∈ E},

∆+(x) = {y ∈ V : xy ∈
−→
E }, ∆−(x) = {y ∈ V, yx ∈

−→
E } and ∆(x) = ∆(x) ∪∆+(x) ∪∆−(x).

A mixed tree is said to be consistent if :

• for every vertex x, ∆+(x) 6= ∅ =⇒ ∆(x) 6= ∅,

• there does not exist x, y, z such that xy and yz are in
−→
E

Given a mixed tree T = (V,E,
−→
E ), a path of T is a sequence of vertices x1, . . . , xk such that for all i < k,

xi+1 ∈ ∆(x), i.e xi and xi+1 are neighbors in the undirected underlying graph. Similarly, a subgraph of a
mixed tree is connected if it is connected in the undirected underlying graph.

Algorithm 1: Basic-Tree-Construction

Input: A consistent mixed tree T = (V,E,
−→
E ) with a map S from V to 2X where X is a finite set

Output: A consistent tree T ′ = (V ′, E′,
−→
E′) with a map S′ from V ′ to 2X

1 begin
2 Choose xy ∈ E such that ∆−(x) = ∆−(y) = ∅
3 V ′ ← V ∪ {vxy}
4 S′(vxy)← S(x) ∪ S(y) ; S′(u)← S(u) ∀u ∈ V
5 E′ ← E \ {xy}
6

−→
E′ ←

−→
E

7 for z ∈ {x, y} do
8

−→
E′ ←

−→
E′ ∪ {zvxy}

9 Choose ∆′(z) ⊆ ∆(z)
10 E′ ← E ∪ {vxyu : u ∈ ∆′(z)} \ {zu : u ∈ ∆′(z)}
11 if ∆′(z) = ∆(z) then
12 Let T∆ = (∆+(z), E∆) be a tree on vertex set ∆+(z)
13 E′ ← E′ ∪ E∆

14 V ′ ← V ′ \ {z}
15

−→
E′ ←

−→
E′ \ {zu : u ∈ ∆+(z)}

16 return T ′ = (V ′, E′,
−→
E′), S′

Algorithm 1 is not deterministic. Depending on the choices made at lines 2, 9 or 12, we get a different
mixed tree T ′ thus, in fine, a different hypergraph. Figure 1 shows two different runs of Algorithm 1 for the
same initial mixed-tree.

We will now prove (Claim 3 which uses Claim 2) that Algorithm 1 is correct.

4



Algorithm 2: Tree-Sequence-Construction
Input: A (consistent) mixed tree T0 = (V0, E0, ∅).
Output: A sequence T = ((T0, S0), (T1, S1), . . . , (Tp, Sp)), where, ∀i ≤ p, Ti is a consistent mixed

tree (Vi, Ei,
−→
Ei) and Si a map from Vi to 2V0 .

1 begin
2 ∀x ∈ V0, S0(x)← {x}
3 T ← ((T0, S0))
4 (T, S)← (T0, S0)
5 while |V (T )| > 1 do
6 (T, S)← Basic-Tree-Construction(T, S)
7 Append (T, S) to T
8 return T

Claim 2. A consistent mixed tree with more than one vertex contains an edge satisfying the condition of
Line 2 of Algorithm 1.

Proof. We will prove it by induction on the number of vertices |V |. Since a consistent mixed tree with 2
vertices contains one undirected vertex, the property is true for |V | = 2. Suppose that the property is true
for 2 ≤ |V | ≤ k and consider a consistent mixed tree T = (V,E,

−→
E ) with k + 1 vertices. Since a consistent

mixed tree with 2 or more vertices contains at least one undirected edge, let xy ∈ E. If this undirected
edge does not satisfy the condition of Line 2 of Algorithm 1, one can consider without loss of generality that
there exists x′x ∈

−→
E . Deleting this edge leads to 2 consistent mixed trees, one containing x′ and the other

containing x. Since x′ cannot be a leaf of the undirected underlying tree of T , the consistent mixed tree
containing x′ has more than 2 vertices thus satisfy the induction hypothesis: there exists an edge satisfying
the condition of Line 2 of Algorithm 1 in this mixed tree. This edge clearly also satisfies the condition for
T .

Claim 3. Algorithm 1 is correct: with a consistent mixed tree (having more than one vertex) as entry, it
returns a consistent mixed tree.

Proof. Claim 2 shows that one can always find an edge xy satisfying conditions of Line 2. It suffices now
to show that T ′ is also a consistent mixed tree. The underlying graph of T ′ is clearly a tree. Moreover, the
only oriented edge creation is at Line 8. In this case ∆(z) \∆′(z) 6= ∅ thus ∆(z) 6= ∅ for T ′.

Since algorithm 1 is correct, one can now prove that Algorithm 2 stops and that the final sequence T is
such that H = (V0,

⋃
0≤i≤p{Si(v) : v ∈ Vi}) is a binary hypergraph. Figure 2 shows a run of Algorithm 2

and Figure 3 the resulting binary hypergraph.
The proof (Theorem 2 and Theorem 3) will need some lemmas. Lemma 1 which is the keystone of the

proof and two technical lemmas, Lemma 2 and Lemma 3.

Lemma 1. Let T = ((T0, S0), . . . , (Tp, Sp), . . .), with Ti = (Vi, Ei,
−→
Ei) for all i, be a sequence of mixed trees

and sets obtained by Algorithm Tree-Sequence-Construction. For all i:

(i) ∀α ∈ V0, X
α
i = {v ∈ Vi : α ∈ Si(v)} is a connected part of Ti;

(ii) uv ∈
−→
Ei =⇒ Si(u) ( Si(v);

(iii) uv ∈ Ei =⇒ Si(u) ‖ Si(v).

Proof. The proof will be by induction. The property is trivially true for T0.
Suppose Properties (i), (ii) and (iii) are verified for Ti. Let Vi+1 \ Vi = {vxy} be the vertex created in

Ti+1 by contracting xy ∈ Ei. We have Si+1(vxy) = Si(x) ∪ Si(y).

5



x y

v2

u1

u2

u3

v1

(A)

x

u2

u3

u1

v1

vxy

v2

y

(B)

x

u2

u3

u1

v1

vxy

v2

(C)

x

u1

u2

u3

vxy

v2

y

v1

(B′)

u1

u2

u3

vxy

v2

v1

(C ′)

Figure 1: Two runs of Algorithm 1 on the same graph, with the same edge xy chosen. In both cases, as x is the only neighbor
of y, y will be suppressed at Line 14.
In the first run (A→ B → C), at Line 9, we choose ∆′(x) = {v2} and so, at Line 10, v2 becomes a neighbor of vxy (B). Vertex
y is deleted to give (C). In the second run (A→ B′ → C′), at Line 9, we chose ∆′(x) = ∆(x). So, at Line 12, we create a tree
T∆ on {u1, u2, u3, vxy} whose edges are drawn with a double line in (C′), and vertex x is suppressed at Line 14.

•
4

•
5

•
6

•3 •1 •2

T0

•
45

•
5

•
6

•3 •1 •2

T1

•
45

•
5

•
6

•3 •12

T2

•
45

•
56

•3 •12

T3

•
45

•
56

•345 •12

T4

•
456

•345 •12

T5

•
456

•345 •12345

T6

•
3456

•12345

T7

•
123456

T8

Figure 2: A sequence of mixed trees obtained by Algorithm 2

•
1

•
2

•
3

•
4

•
5

•
6

•> = 123456

• 56

•12345

•45

• 456•345

• 3456

•12

•
1

•2
•
3

•
4

•
5

•
6

Figure 3: The binary hypergraph obtained by the sequence of mixed trees of Figure 2, represented as sets (left) and as a lattice
(right).

6



(i) Let α ∈ V0. If α /∈ Si(x) and α /∈ Si(y), Xα
i+1 = Xα

i and the edges inside Xα
i are not changed by the

construction of Ti+1. So Xα
i+1 is a connected part of Ti+1.

If α ∈ Si(x) or α ∈ Si(y), α ∈ Si+1(vxy). Since the only edge changes from Ti to Ti+1 are edges xz or
yz which become vxyz, Xα

i+1 is connected.
(ii) The only oriented edges that can be created when constructing Ti+1 from Ti are xvxy and yvxy, thus

Property (ii) is true for (Ti+1, Si+1).
(iii) The only non-oriented edges that can be created when constructing Ti+1 from Ti are:

• uvxy with xu ∈ Ei (symmetrically, yu ∈ Ei) at Line 10. In this case, ∃α ∈ Si(u) \ Si(x); by
Property (i), α /∈ Si(y) and thus Si(u) 6⊂ Si+1(vxy). Since xy ∈ Ei, ∃β ∈ Si(y) \ Si(x); by
Property (i), β /∈ Si(u) and thus Si+1(vxy) 6⊂ Si(u).

• Edges of EA (Lines 12 and 13). By Property (ii), for each element u of ∆+(z), Si(u) contains an
element αu not in Si(z). So does Si+1(vxy). By Property (i), for all u ∈ VA, αu /∈ Si(u′) for all
u′ ∈ VA, u′ 6= u. So, for each edge uu′ ∈ EA, Si(u) ‖ Si(u′).

So the three properties are verified for Ti+1.

For i ≥ 0, let u be a vertex of Ti and v be a vertex of Ti+1. We say that v is a child of u if either u
remains unchanged between Ti and Ti+1 and v = u or v = vuy (see Line 3 of Algorithm 1). A descendant of
a vertex u is either u or a child of a descendant of u.

Claim 4. Let T = ((T0, S0), . . . , (Tp, Sp), . . .), with Ti = (Vi, Ei,
−→
Ei) for all i, be a sequence of mixed trees

and sets obtained by Algorithm Tree-Sequence-Construction. If a vertex v of Ti is a descendant of a
vertex u of Tj (j < i), then Sj(u) ( Si(v) if u 6= v.

Proof. If v is a descendant of u there exists a chain u0, . . . , up with u0 = u and up = v such that uk+1 is
a vertex of Tj+k+1 and is the son of uk (which is a vertex of Tk+j) for all 0 ≤ k < p. Thus Sj+k(uk) ⊆
Sj+k+1(uk+1) for all 0 ≤ k < p.

Lemma 2. Let T = ((T0, S0), . . . , (Tp, Sp), . . .) be a sequence of mixed trees and sets obtained by Algorithm
Tree-Sequence-Construction. For i ≥ 0, let Vi+1 \ Vi = {vxy} with α ∈ Si(x) \ Si(y) and β ∈
Si(y) \ Si(x). For j > i, a vertex u of Vj is such that Sj(u) contains both α and β if and only if u is a
descendant of vxy.

Proof. The “if” part follows directly from Claim 4.
By Lemma 1-i and by construction, vxy is the only vertex u of Vi+1 such that α, β ∈ Su. Let j > i be the

smallest integer such that there exists u ∈ Vj which is not a descendant of vxy and α, β ∈ Sj(u). The vertex
u does not exist in Tj−1, so u = vzt with α ∈ Sj−1(z) \ Sj−1(t) and β ∈ Sj−1(t) \ Sj−1(z). Let w ∈ Vj−1

be a descendant of vxy. By Lemma 1-i, there exist in Tj−1 a path from z to w which does not contain t
and a path from t to w which does not contain z. As zt is an edge of Tj−1 and Tj−1 is a tree, this is a
contradiction.

Lemma 3. Let T = ((T0, S0), . . . , (Tp, Sp), . . .) be a sequence of mixed trees and sets obtained by Algorithm
Tree-Sequence-Construction. For 0 ≤ i < j with Vi+1 \ Vi = {vxy} and Vj+1 \ Vj = {vzt}, we have
Si+1(vxy) 6= Sj+1(vzt).

Proof. We suppose that the property is false and take j > i with Si+1(vxy) = Sj+1(vzt). Let t be a
descendant of vxy in Tj+1. Since neither u nor v can be a descendant of vxy (because Sj(vu) ( Sj+1(vuv)
and Sj(vv) ( Sj+1(vuv)), t 6= vuv and t is not a descendant of vuv. Since there exist α ∈ Si(x) \ Si(y) and
β ∈ Si(y) \ Si(x) and α, β ∈ t there is a contradiction with Lemma 2

Theorem 2. Algorithm Tree-Sequence-Construction stops. Let T be the final sequence. The last tree
of T is T = ({u}, ∅, ∅) with Su = V0.

7



Proof. From Claim 3, if |V (T )| > 1, line 6 of Algorithm 2 will always produce a new consistent mixed tree.
But Lemma 3 argues that each new set produced is a different set from 2V0 : the Algorithm 2 will stop. At
this step T = ({u}, ∅, ∅)

Remark that Algorithm 2 stops, even if we suppress Line 4 from Algorithm 1, i.e. without the maps Si.
One can now prove that the resulting hypergraph is binary.

Lemma 4. Let T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and sets obtained by Algorithm
Tree-Sequence-Construction. For 0 ≤ i ≤ p, let (x0, x1, . . . , xk) be a path of Ti. We have:

Si(x0) ∩ Si(xk) ⊆ Si(x0) ∩ Si(xk−1) ⊆ . . . ⊆ Si(x0) ∩ Si(x1)

Proof. Follows immediately from Lemma 1-i.

One can now prove the main result of the part, Theorem 3:

Theorem 3. Let T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and sets obtained by Algorithm
Tree-Sequence-Construction. The hypergraph H = (V0, E) with E =

⋃
0≤i≤p{Si(v) : v ∈ Vi} is binary.

Proof. We first show that H is closed under intersection, and more precisely, we show by induction on i that,
∀0 ≤ i ≤ p,

⋃
0≤j≤i{Sj(v) : v ∈ Vj} is closed.

This is obviously true for i = 0. Suppose now that the property is true for some i ≥ 0, and let
Vi+1 \ Vi = {vxy}. For j ≤ i, let z be a vertex of Vj .

By induction hypothesis, Sj(z) ∩ Si(x) and Sj(z) ∩ Si(y) are elements of
⋃

0≤j≤i{Sj(v) : v ∈ Vj}. Let
z′ be a descendant of z in Vi. By Lemma 4, we can suppose that Si(z′) ∩ Si(x) ⊂ Si(z

′) ∩ Si(y). As
Sj(z) ⊂ Si(z

′), Sj(z) ∩ Si(x) ⊂ Sj(z) ∩ Si(y). So Sj(z) ∩ Si+1(vxy) = Sj(z) ∩ Si(y) ∈
⋃

0≤j≤i{Sj(v) : v ∈
Vj} ⊂

⋃
0≤j≤i+1{Sj(v) : v ∈ Vj}.

We now show that H is binary. Let Vi+1 \ Vi = {vxy} and z ∈ Vj , j ≤ i be such that Sj(z) ( Si+1(vxy).
Let t ∈ Vi be a descendant of z. By Lemma 4, we can suppose with no loss of generality that Si(y)∩Si(t) ⊆
Si(x) ∩ Si(t). So we have Si(y) ∩ Sj(z) ⊆ Si(x) ∩ Sj(z). As Sj(z) ( Si+1(vxy) = Si(x) ∪ Si(y), we have
Sj(z) ( Si(x). So Si+1(vxy) covers exactly two other elements of E, namely Si(x) and Si(y).

Corollary 2. Let T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and sets obtained by Algorithm
Tree-Sequence-Construction. Every hypergraph H = (V0, E) with E ⊆

⋃
0≤i≤p{Si(v) : v ∈ Vi} is

totally balanced.

The following Proposition shows the complexity of Algorithm 2.

Proposition 1. Algorithm 2 runs in O(n3), where n = |V0|.

Proof. Les X be a set and T (X) the set of all the consistent mixed-trees admitting a map S from X to 2X

satisfying the conditions of Lemma 1. We prove by induction on |X| that the number of vertices of those
trees cannot exceed 2 · |X|.

For |X| = 1 the property is trivially true. Suppose it true for |X| ≤ n and consider |X| = n + 1. Let
T (V,E,

−→
E ) ∈ T (X).

Let x be a leaf of T . Two cases may occur : either xy ∈ E or yx ∈
−→
E . The set S(x)\S(y) is then not

empty and for all z ∈ V \{x}: S(z)∩S(x)\S(y) = ∅. The set X ′ = ∪z∈V \{x}S(z) is then strictly included in
X thus |X ′| ≤ n.

Note T ′ the restriction from T to V \{x}, if it is a consistent mixed tree. If the restriction from T to V \{x}
is not a consistent mixed tree, then y is a leaf with yz ∈

−→
E (z 6= x) and one can note T ′ the restriction of T

to V \{x, y} which is consistent (there cannot exist z′ such that zz′ ∈
−→
E ). In both cases, T ′ is a consistent

mixed tree associated with a map S from X ′ to 2X
′
. Since |X ′| < |X|, we have that V ≤ 2 + 2 · |X ′| ≤ 2 · |X|

which concludes the proof by induction.
Moreover, a totally balanced hypergraph have at most n2+n

2 hyperedges (see for instance [5]); since Algo-
rithm 2 adds a new hyperedge of the hypergraph at each step there are at most O(n2) calls of Algorithm 1.
As Algorithm 1 is linear in the size of the input which is always O(n), Algorithm 2 runs in O(n3)

8



Remark that Algorithm 2 is really efficient since it is linear in the size of the resulting hypergraph.

4. Equivalence between binarizable and totally balanced hypergraphs

In this section, we will show that, given a totally balanced hypergraph H, it is possible to obtain a
binarization of H as the result of slightly modified versions of Algorithms 1 and 2, namely Algorithm 3 and
Algorithm 4.

The difference lies in the fact that the random choices of algorithm 1 (lines 2, 9 and 12) are in Algorithm 3
directed by the given closed totally balanced hypergraph H (lines 2, 9 and 13). Figure 4 shows a run of
Algorithm 4. The resulting binary hypergraph is the one of Figure 3.

Algorithm 3: Basic-Tree-Construction-H

Input: A consistent mixed tree T = (V,E,
−→
E ) with a map S from V to 2X where X is a finite set

and a closed totally balanced hypergraph H = (X,EH).
Output: A consistent tree T ′ = (V ′, E′,

−→
E′) with a map S′ from V ′ to 2X

1 begin
2 Choose xy ∈ E such that ∆−(x) = ∆−(y) = ∅
3 V ′ ← V ∪ {vxy}
4 S′(vxy)← S(x) ∪ S(y) ; S′(u)← S(u) ∀u ∈ V
5 E′ ← E \ {xy}
6

−→
E′ ←

−→
E

7 for z ∈ {x, y} do
8

−→
E′ ←

−→
E′ ∪ {zvxy}

9 ∆′(z)← {t : zt ∈ E,S(vxy) ⊆ supEH
(S(z), S(t))}

10 E′ ← E′ ∪ {vxyu : u ∈ ∆′(z)} \ {zu : u ∈ ∆′(z)}
11 if ∆′(z) = ∆(z) then
12 A←

⋃
t∈∆+(z) Si(t) \ Si(z)

13 TA = (A, VA)← a support tree of H|A
14 s(α)← the (unique) element u of ∆+(z) such that α ∈ S(u), ∀α ∈ A
15 E∆ = {s(α)s(β) : αβ ∈ VA}
16 E′ ← E′ ∪ E∆

17 V ′ ← V ′ \ {z}
18

−→
E′ ←

−→
E′ \ {zu : u ∈ ∆+(z)}

19 return T ′ = (V ′, E′,
−→
E′), S′

In order to show that algorithm 4 stops, we only have to prove that Algorithm 3 is correct, that is that:
1. one can always find a support tree of H|A at Line 13. It is clear by Theorem 1.
2. for all α ∈ A, there exists a unique u ∈ ∆+(z) such that α ∈ S(u) at Line 14. This is true because

by Lemma 1-(i), (which holds since Algorithms 3 and 4 are only variants of Algorithms 1 and 2),
Xα := {v ∈ V : α ∈ S(v)} is a connected part of T . As α /∈ S(z), there is only one neighbor u of z
such that α ∈ S(u).

We now prove that Algorithm 4 constructs a binary hypergraph for which H is a sub-hypergraph (The-
orem 4 which uses Lemma 5). This is the contraposition of Corollary 1.

Lemma 5. Let H = (VH , EH) be a closed totally balanced hypergraph and T = (T0, . . . , Tp), with Ti =

(Vi, Ei,
−→
Ei) ∀i ∈ {0, . . . , p}, be a sequence of mixed trees and sets obtained by Algorithm Tree-Sequence-

Construction-H. Then ∀e ∈ EH , i ∈ {0, . . . , p}, Ψe
i := {v ∈ Vi : Si(v) ⊆ e} is a connected part of Ti and⋃

v∈Ψe
i
Si(v) is either empty or equal to e.

9



Algorithm 4: Tree-Sequence-Construction-H
Input: A totally balanced hypergraph H = (V0, EH) and one of its support tree T = (V0, E0)
Output: A sequence T = ((T0, S0), (T1, S1), . . . , (Tp, Sp)), where, ∀i ≤ p, Ti is a consistent mixed

tree (Vi, Ei,
−→
Ei) and Si a map from Vi to 2V0 .

1 begin
2

−→
E0 ← ∅

3 ∀x ∈ V0, S0(x)← {x}
4 T ← ((T0, S0))
5 (T, S)← (T0, S0)
6 while |V (T )| > 1 do
7 (T, S)← Basic-Tree-Construction-H(T, S,H)
8 Append (T, S) to T
9 return T

•
1
•
2
•
3
•
4
•
5
•
6

•45 • 56

•123456

•
3
•
4

• 2•1

•
5
•
6

T0

•
3
•
4

• 2•12

•
5
•
6

T1

•
3
•
45

• 12

•
5
•
6

T2

•
3
•
45

• 12

• 56

T3

•
12
•345 •

45
• 56

T4

•
12
•345 •

456

T5

•12345 •345 •
456

T6

•12345 • 3456

T7

•123456

T8

Figure 4: A totally balanced hypergraph, sub-hypergraph of the binary one of Figure 3, and a sequence of mixed trees which
constructs this hypergraph.

Proof. We prove the property by induction on i. Since (V0, E0) is a support tree of H, the property is true
for i = 0. We suppose now that, for some i, the property is true for all i′ ≤ i, and we set vxy := Vi+1 \ Vi.
Let e ∈ EH , Ψe

i is a connected part of Ti and
⋃
v∈Ψe

i
Si(v) = e.

Several cases can occur:

Sx 6⊂ e and Sy 6⊂ e.
In this case, Ψe

i+1 = Ψe
i and induces the same (connected) subgraph in Ti+1 than in Ti. The two induction

properties are thus satisfied.

Sx ⊆ e and Sy ⊆ e.
In this case, vxy ∈ Ψe

i+1. If x ∈ Vi+1 (symmetrically y ∈ Vi+1), neighbors of x which are in Ψe
i are, in Ti+1,

neighbors of x or vxy, which are both in Ψe
i+1. If x /∈ Vi+1 (symmetrically y /∈ Vi+1), vxy is neighbor of all

vertices in ∆(x), and so of all such vertices in Ψe
i+1. In addition, for all vertices u in ∆+(x) since Sx ⊂ Su,

Line 13 of Algorithm 3 and the induction properties ensure that vxy and the neighbors of x in Ψe
i induce a

connected subgraph of Ti+1, thus Ψe
i+1 is a connected subgraph of Ti+1. Moreover, since x, y ∈ Ψe

i , we have
that

⋃
v∈Ψe

i+1
Si(v) =

⋃
v∈Ψe

i
Si(v) ∪ Si+1(vxy) = e ∪ Si+1(vxy) = e.

Sx ⊂ e and Sy 6⊂ e. (symmetrically, Sx 6⊂ e and Sy ⊂ e).
In this case, vxy /∈ Ψe

i+1 and Ψe
i is a subtree of Ti containing x and not y. In addition, for t ∈ ∆(x),

if S(t) ⊂ e, supEH
(S(x), S(t)) ⊂ e and thus t /∈ ∆′(x). So, if x ∈ Vi+1, Ψe

i+1 = Ψe
i and induces the

same (connected) subgraph in Ti+1 that in Ti. If x /∈ Vi+1 (i.e. ∀t ∈ ∆(x), S(t) 6⊂ e) and ∆+
i (x) 6= ∅,

Lines 13–16 ensure that Ψe
i+1 is connected; in addition, Ψe

i+1 = Ψe
i \ {x}. As S(x) ⊂ S(t) for t ∈ ∆+(x),⋃

t∈Ψe
i+1

S(t) =
⋃
t∈Ψe

i
S(t) = e. If x /∈ Vi+1 and ∆+

i (x) = ∅, Ψe
i+1 is empty.

10



Theorem 4. T = ((T0, S0), . . . , (Tp, Sp)) be a sequence of mixed trees and sets obtained by Algorithm 4 for
a closed totally balanced hypergraph H. The hypergraph H ′ = (V0, E

′) with E′ =
⋃

0≤i≤p{Si(v) : v ∈ Vi} is
binary and such that E ⊆ E′.

Proof. As Algorithm 4 is just an adaptation of Algorithm 2, by Theorem 3, the hypergraph H ′ is binary.
Let e ∈ EH , if e = VH , then Vp = {e} and e ∈ E′; otherwise, Ψe

p = ∅ and Ψe
0 6= ∅. By the proof of Lemma

5, the smallest i with Ψe
i = ∅ is such that Vi \ Vi−1 = vxy, Sx ⊂ e, Sy 6⊂ e, x /∈ Vi and ∆+(x) = ∅. In this

case, Ψe
i−1 = x and so e = S(x) ∈ E′.

Finally, by Property 2 and Theorem 4, one can state the main result of our paper:

Theorem 5. A hypergraph is totally balanced if and only if it is binarizable.

5. Conclusion

We show in this paper that the only clustering model that is binarizable is the totally balanced hypergraph
one. We also exhibit an algorithm that can binarize any given totally balanced hypergraph. Actually, the
proof yields an algorithmic characterization like the one of Lehel[9], but using another form of vertices
saturation (here binarization).

We now work on using these algorithms for practical cases. For instance use algorithm 4 for approximate
a given hypergraph into a binary one and study the properties of this approximation. We also want to use
Algorithm 2 in order to iteratively produce a binary hypergraph from real data.

References

[1] R.P. Anstee and M. Farber. Characterization of totally balanced matrices. Journal of Algorithms,
5:215–230, 1984.

[2] H.-J. Bandelt and W. M. Dress. Weak hierarchies associated with similarity measures – an additive
clustering technique. Bulletin of Mathematical Biology, 51:133–166, 1989.

[3] P. Bertrand. Set systems and dissimilarities. European Journal of Combinatorics, 21:727–743, 2000.

[4] F. Brucker and A. Gély. Crown-free lattices and their related graphs. Order, 28:443–454, 2011.

[5] F. Brucker and P. Préa. Totally balanced formal concept representations. In J. Baixeries, C. Sacarea,
and M. Ojeda-Aciego, editors, Proceedings of ICFCA 2015, pages 169–182. Springer, 2015.

[6] M. Dien. Concurrent process and combinatorics of increasingly labeled structures: quantitative analysis
and random generation algorithms. PhD thesis, Pierre et Marie Curie University, Paris, France, 2017.

[7] M. Farber. Characterizations of strongly chordal graphs. Discrete Mathematics, 43:173–189, 1983.

[8] Diatta J. and Fichet B. From asprejan hierarchies and bandelt-dress weak hierarchies to quasi-
hierarchies. In E. Diday, Y. Lechevallier, M. Schader, and P. Bertrand, editors, New Approaches in
classification and data analysis, pages 111–118. Springer, 1994.

[9] J. Lehel. Characterization of totally balanced hypergraphs. Discrete Mathematics, 57:59–65, 1985.

[10] L. Lovász. Graphs and set systems. In H. Walther, H. Sachs, and H-J. Voss, editors, Beiträge zur
Graphentheorie, volume 57, pages 99–106. Teubner, Leipzig, 1968.

[11] J. Spinrad. Efficient Graph representations. American Mathematical Society, 2003.

11


