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Abstract Testing autonomous robots typically requires expensive test cam-
paigns in the field. To alleviate them, a promising approach is to perform
intensive tests in virtual environments. This paper presents an industrial case
study on the feasibility and effectiveness of such an approach. The subject
system is Oz, an agriculture robot for autonomous weeding. Its software was
tested with weeding missions in virtual crop fields, using a 3D simulator based
on Gazebo. The case study faced several challenges: the randomized generation
of complex 3D environments, the automated checking of the robot behavior
(test oracle), and the imperfect fidelity of simulation with respect to real-world
behavior. We describe the test approach we developed, and compare the re-
sults with the ones of the industrial field tests. Despite the low-fidelity physics
of the robot, the virtual tests revealed most software issues found in the field,
including a major one that caused the majority of failures; they also revealed a
new issue missed in the field. On the downside, the simulation could introduce
spurious failures that would not occur in the real world.
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1 Introduction

Autonomous robotic systems have decisional capabilities allowing them to ac-
complish complex missions without human intervention. Self-driving cars and
unmanned aerial vehicles are emblematic examples of systems behaving with
a high degree of autonomy. More generally, there is a huge potential for au-
tonomous robots in many different application domains like space exploration,
manufacturing, personal assistance, rescue operation or agriculture, to name
a few. The robot studied in this paper, Oz, comes from the agriculture do-
main and is deployed in vegetable crops for autonomous weed control. It is
representative of the many innovations currently introduced by the agricul-
tural high-tech industry. Tractica (a market intelligence firm in US) forecasts
that the agricultural robot market will increase exponentially from $3 billion
in 2015 to $16 billion in 2020 and then $73 billion in 2024 (Tractica, 2016).

The rise of autonomous robots in many domains creates new challenges for
their validation. In particular, the mission-level validation typically involves
test campaigns in the field, which are costly and may also be risky in case of
misbehavior. Dangerous tests must be avoided as much as possible, or stopped
before the robot causes any harm to itself, people or property. In the case of
agricultural robots, additional constraints come from the seasonal characteris-
tics of the missions, which further limit the situations that can be practically
tested at a given time of year. For example, a crop field in January does not
resemble the same field in May in terms of weed and crop growth.

Given these issues, a pragmatic approach is to consider simulation-based
testing. The robot is immersed in a virtual world, and can be tested in a
more flexible, safer and less costly way than in the real world. Such potential
benefits motivated Nalo Technologies — the French small tech company devel-
oping Oz and other agricultural robots — to introduce mission-level simulation
in their validation process. They implemented a software-in-the-loop (SIL)
simulation, where the real software is tested but the hardware and physical
components of the robot are simulated. Interestingly, their initial experience
was disappointing. The engineers faced simulation performance issues, impos-
ing a simplification of the simulated physics and a limitation of the complexity
of the virtual environments. As a result, when the study reported in this pa-
per started, Naio made limited use of simulation-based testing. They ran few
virtual test cases (most often just one) as a smoke test prior to field testing.
The aim was to ensure that the software can successfully execute a mission
before proceeding with field testing. Naio did not consider more intensive vir-
tual testing beyond those few cases. There was a perception that realistic test
conditions were essential for a proper validation of the robotic software, and
that the simulation was too far from reality.

Joint work between Naio and LAAS researchers questioned this perception.
We experimentally studied the revealing power of more intensive testing of Oz
in simulation. Oz was tested in a wide variety of virtual crop environments,
which was made possible by using a randomized test generation procedure.
The results were then compared to the ones of the industrial field tests. The
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main outcome of the study is that simulation-based testing can be effective
even if it imperfectly reproduces real-world conditions:

— The virtual tests could find several software issues that surfaced during the
field tests, including the issue that caused the majority of failures;

— They also revealed a new issue not exposed by the industrial field tests;

— On the downside, the simulation introduced spurious failures that would
not occur in the real world.

A side outcome of the study concerns the key challenges and lessons learnt
in the design of the virtual tests. One of the challenges was to capture the key
characteristics of crop fields and weeding missions in a test generation model.
Another one was the definition of the test oracle procedure, in order to detect
misbehavior. Both of these challenges necessitated several interactions between
Naio and LAAS. The exercise illustrated the real difficulties associated with
specifying the environment and expected behavior of an autonomous system.
The paper reports on our experience and extracts some recommendations.

The structure of the paper is as follows. Section 2 discusses related work.
Section 3 introduces the case study: the Oz robot and its simulation platform,
the experimental approach for studying tests in simulation. Test design is
detailed in Sections 4 and 5, respectively addressing the randomized generation
of virtual crop fields and the automated checking of test traces. Section 6
presents the misbehavior patterns revealed by the random tests in simulation.
Section 7 performs the comparison with software issues found by the field tests.
Section 8 provides an overview of the experimental outcomes and discusses
threats to validity. Finally, Section 9 concludes.

2 Related work

In this section, we focus on the mission-level validation of autonomous systems
in simulated environments. We discuss three challenges: the fidelity of the
simulation, the generation and selection of test cases, and the specification of
the test oracle.

2.1 Fidelity of the simulation

The situation regarding the availability of realistic simulation platforms for
autonomous systems is contrasted.

On the one hand, systems like self-driving cars or Advanced Driving As-
sistance Systems (ADAS) benefit from the critical mass of the automotive
sector. Dedicated simulation platforms with a high level of fidelity have been
developed (e.g. see Virtual Test Drive (2018), PreScan Simulation platform
for ADAS (2018) or Okdal Sydac (2018)). They provide vehicle dynamics
models, realistic sensor models and facilities to create complex virtual driv-
ing environments. The environments include static elements such as the road
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infrastructure but also dynamic elements like pedestrians, other vehicles and
global traffic. Camera-based systems are used to detect lanes, obstacles or
traffic signs and require an accurate representation of the real world.

On the other hand, there are no such dedicated simulators for the many
existing robotic applications, due to the diversity of robots, architectures and
environments. The system providers have to develop their own environment
and system models, integrated into generic simulation platforms. For example,
Gazebo (Koenig and Howard, 2004), MORSE (Echeverria et al., 2011) or even
Unreal (Unreal Game Engine, 2018) (originally developed for video games),
are more and more used for building software-in-the-loop simulators. Those
simulators may not be as sophisticated as the ones benefiting from a dedicated
technology (like in the automotive domain). The achievable fidelity is typically
limited by the amount of development effort that can be put on the simulation
and by the computational resources available for running the tests.

Fortunately, some studies concur that a low-fidelity simulation can still
be relevant for testing purposes. Arnold and Alexander (2013) tested a sim-
ple robot controller, consisting in a path-following algorithm with collision
avoidance. A basic simulation in 2D obstructed environments sufficed to re-
veal several issues. Our previous work (Sotiropoulos et al., 2017) performed an
in-depth analysis of faults in the navigation software of Mana, a rough-terrain
experimental robot. Out of the 33 bugs extracted from the code commits, only
one requires a high fidelity to be replicated in simulation (the bug is related to
mechanical vibration that was not simulated). Timperley et al. (2018) came
to a similar conclusion for bugs in the open-source ArduPilot system: the ma-
jority of them surface under simple conditions that can be easily reproduced
in software-based simulation.

In this paper, the simulator was developed by Naio Technologies based on
the Gazebo generic platform. It can be considered as a low-fidelity simulator
regarding the physics of the robot. Still, it is more elaborated than the simula-
tors used by many of the robot testing work discussed in the next subsection.
Naio wanted sufficient degree of detail to study the full integration of the
perception, decision and motion-control functions.

2.2 Generation and selection of test cases

We identified two broad categories of test approaches for autonomous systems:
approaches that reproduce real-world tests in simulation, and model-based
generative approaches that create new synthetic tests.

The first category is mostly studied in the automotive domain. Car con-
structors have collected large volumes of data from real drives, and can lever-
age them to test ADAS and autonomous driving functions in simulation. But
the reproduction of real test cases is not straightforward: it requires advanced
post-processing of the recorded data. For example, Bach et al. (2017) recon-
struct the geometry of a road section based on the steering wheel angles and
visual lane recognition, while others use the DGPS position data to retrieve
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the road model from a digital map database (Nentwig and Stamminger, 2010;
Lamprecht and Ganslmeier, 2010). Image processing techniques are used to
identify relevant objects (other cars, pedestrians) and reconstruct their tra-
jectory relative to the ego-vehicle (Nentwig and Stamminger, 2010). Since the
recorded data set may yield a large amount of redundant test cases, some
authors extract a small subset that covers abstract situations of interest or
classes of parameter values (Bach et al., 2017). Other authors have worked on
increasing the diversity of the reconstructed cases, by mutating them to pro-
duce variants (Zofka et al., 2015). For example, a spatial translation is applied
to the original trajectory of a car.

In the second category, the generative approaches do not require the avail-
ability of real data sets and offer flexibility to ensure test diversity. However,
they require the definition of a generation model, which can be very chal-
lenging. Think of a test case as a virtual world in which the autonomous
system is asked to perform a mission: the set of relevant worlds and missions
is infinite and difficult to characterize. In practice, the model is derived from
domain-specific knowledge. For example, a world model for an ADAS is ex-
pected to include intersecting road segments, stationary and mobile obstacles
on the road, weather conditions, etc. Several modeling approaches have been
proposed to provide a structured view of the world elements and their rela-
tions: ontologies (Geyer et al., 2014; Ulbrich et al., 2015; Klueck et al., 2018),
UML structure diagrams (Micskei et al., 2012; Sotiropoulos et al., 2016; An-
drews et al., 2016), or XML-based decompositions of the domain (Zendel et al.,
2013). The dynamic aspects are often included as parameters of the structural
elements, e.g., a mobile object has attributes to parametrize its trajectory.
However, for some authors, a behavioral model explicitly supplements the
structural one: UML Sequence Diagrams for Micskei et al. (2012), Petri nets
for Andrews et al. (2016). Model-based test criteria classically consist in cov-
ering (combinations of) classes of parameter values, and possibly sequences of
events in a behavioral model.

Rather than using model coverage criteria, some authors apply search-
based testing to find fail scenarios. For example, the aim is to find the col-
lision scenarios that may be generated from the model. The used techniques
range from a simple random search over the parameter space (Arnold and
Alexander, 2013) to advanced techniques combining an evolutionary search
with learning algorithms (Ben Abdessalem et al., 2016, 2018). Several chal-
lenges are faced when applying techniques beyond a random search. First,
the simulation time of a test case may be long (e.g., it takes minutes), which
severely constrains the number of iterations allowed for the search. To alleviate
the problem, Ben Abdessalem et al. (2016) use neural networks to predict the
fitness values without running the actual simulations. Only the test cases with
sufficiently high predicted values are executed, the other ones are skipped. A
second challenge is the non-deterministic behavior of autonomous systems. It
may be due to the non-determinism of the decision algorithms, or simply to
the execution non-determinism that is common in highly concurrent robotic
software. To the best of our knowledge, Nguyen et al. (2009) were the only
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ones to account for non-determinism in their evolutionary testing of an au-
tonomous agent. The fitness value was calculated from 5 repeated runs of the
test case, which was empirically found to ensure the stability of the evalua-
tion. Note how the need for repeated executions exacerbates the problem of
the long simulation time. Finally, a third challenge is the effective degree of
control provided by the high-level generation parameters defined in a model.
There may be a considerable gap between the abstract world model and the
concrete elements fed into the simulator. Such is the case if, as proposed by
Arnold and Alexander (2013), the generation of the concrete worlds uses pro-
cedural content generation (PCG) techniques developed in the domain of video
games (see, e.g., the survey by Togelius et al. (2011)). For example, Arnold
and Alexander (2013) demonstrated the generation of 2D maps by means of
a Perlin noise process and some filter effects. The model parameters were the
size of the map, the obstruction rate and the settings for the filters. These are
very high-level parameters compared to the concrete map contents. Similarly,
our work on the Mana robot retained the principle of PCG and generated 3D
maps using facilities from the Blender game environment (Sotiropoulos et al.,
2016). The parameters of the model (smoothness of the terrain, obstruction
rate) were found to provide a coarse control of the difficulty of navigating in
the concrete maps.

In this paper, we adopt a generative approach. The world model is speci-
fied in an UML structure diagram, augmented with an attribute grammar for
the description of semantic constraints. The parameter space is explored by
a random search, using PCG techniques to produce concrete worlds from the
generated parameter values. We leave more advanced search techniques for fu-
ture work, given the difficulties in terms of simulation time, non-deterministic
behavior, and degree of control of the search.

2.3 Specification of the test oracle

For autonomous systems, the oracle problem is specifically difficult due to
the decisional aspects. They make the specification of expected behavior quite
challenging. For example, consider an autonomous driving system. As noted
by Tian et al. (2018), creating detailed specifications for such a system would
essentially involve recreating the logic of a human driver. To circumvent the
problem, a practical approach is to check for a limited set of properties, like
metamorphic properties (involving related test executions) or invariant prop-
erties (that should hold for any test execution).

In metamorphic testing (Chen, 2015), the properties relate a test case and
some follow-up cases. The approach has been used by Zhang et al. (2018)
to test driving models based on Deep Neural Networks. The follow-up cases
consist in modifying the weather conditions and checking whether the driving
behavior remains as in the original test. Similarity is assessed within some
tolerance in the steering angle variation. In the same vein, Tian et al. (2018)
check that the steering angle does not change significantly when certain trans-
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formations are applied to the input images. For testing a drone AI controller,
Lindvall et al. (2017) consider follow-up cases like rotations and translations
of the world geometry. For example, if the world is rotated 180 degrees, so
that the drone is flying South instead of North, the behavior should still be
similar. Note that metamorphic testing may be impractical if the system be-
havior is highly non-deterministic. In (Sotiropoulos et al., 2016), we tested the
navigation of Mana, an academic all-terrain robot, and observed completely
different trajectories in repeated runs of exactly the same test case. Then,
finding metamorphic properties appears to be problematic.

Regarding invariant properties, the test oracle typically checks that some
critical failures never occur. For example, collisions are critical when testing
drones (Zou et al., 2014), autonomous cars (Ben Abdessalem et al., 2018) and
various types of mobile robots (Nguyen et al., 2009; Arnold and Alexander,
2013). When specifying the oracle, the retained set of properties should not be
too narrow. There may be a wide variety of misbehaviors other than collisions,
as shown by the history of navigation bugs affecting Mana (Sotiropoulos et al.,
2017). From the analysis of these bugs, we identified at least five aspects that
would be worth considering in the oracle: (i) requirements attached to mission
phases, (ii) threshold-based invariants related to robot movement, (iii) absence
of critical events (like collisions), (iv) requirements attached to error reports,
and (v) good perception requirements.

Rather than reporting a Pass/Fail verdict, the oracle may report a degree of
satisfaction or violation of the checked requirements. Such a grading approach
has been formalized by recent work on cyber-physical systems (Menghi et al.,
2019), for properties expressed in a fragment of the Signal First Order logic.
For example, if an output signal should remain below a threshold, a slight
overshooting is graded as less severe than a large one. Generally speaking, a
quantitative oracle may be convenient to flag the most critical tests to the
attention of engineers (Arnold and Alexander, 2013) (Hallerbach et al., 2018).

In this paper, the test oracle for Oz delivers a Pass/fail verdict based on
invariant properties. The retained set of properties refers to the five aspects
identified by our previous work on navigation bugs.

3 Case study and experimental approach
3.1 The Oz robot and its simulator

Oz is an autonomous weeding robot for fields of vegetables. Figure 1 shows Oz
in operation. Its small size (75 cmx45 cmx55 ¢m) allows it to navigate between
the crop rows composing a field. The weeding is performed mechanically, using
specific tools attached to the rear of the robot and pulled by it. When there
are several rows to weed, the robot must make a U-turn at the end of a row
to go to the next. It also has to decide whether the weeding is done in one or
two passes, depending on the distance between rows. This is illustrated by the
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Fig. 1 Oz in operation. Left: front view; right: back view with tools.
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Fig. 2 Oz in simulation. Left: virtual crop field using Gazebo. Right: expected mission.

mission in Figure 2: the interspace between the first two rows can be weeded
in one pass, but the next interspace is a bit wider and needs two passes.

Oz perceives its environment using a laser sensor (LiDAR 2D) at the front,
as well as two cameras. In the version under study, line tracking along rows of
vegetables relies on the lidar only. The cameras are used during U-turns. Red-
colored stakes delimitate the extremities of each row. They are placed at about
50 cm of the first and last vegetable in the row. The robot identifies them and
uses their visual perception for its U-turn maneuvers. The cameras also allow
the use of stereo visual odometry techniques to detect possible skidding of
the robot during U-turns. Finally, contact sensors (bumpers) detect collisions
and trigger an emergency stop. These safety devices prevent human injury,
given the low velocity of Oz (0.4 m.s™1), its moderate weight (120 kg with
tools) and the fact that the weeding tools are not dangerous by themselves.
Still, the operation of the robot is not without risk. Consider an ill-controlled
trajectory: crop plants could be damaged, or the robot could reach a dangerous
area outside of the crop field (e.g., a road).

Nalo technologies has developed SIL simulation for testing the navigation
of Oz. Figure 3 gives an overview of the corresponding test architecture. The
platform is based on Gazebo, a simulator widely used in robotics research.
The software under test, OzCore, receives simulated sensor data and produces
actuator commands, the effects of which are simulated to update sensor data.
0OzCore is written in C and C++, for a total of about 151 KLOC. This code
includes some Oz functions that are not handled by the platform. The effect of
the weeding tools is not simulated, hence the corresponding output commands
are ignored. As shown in Figure 3, the simulator only receives the wheel speed
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commands controlling the robot motion. Also, in the real world, the farmer
parametrizes the mission via a user interface. In the simulation platform, the
mission parameters directly come from a . json file.

The simulator uses three inputs to instantiate a virtual crop field: one
image . jpg encoding the 3D terrain and two .sdf files for the other elements.
Figure 2 is representative of the complexity of the inputs that can realistically
be managed given the simulator’s performance. The virtual field has three
rows of vegetables, low weed density between them, and the length of the rows
is small compared to the one in real world fields. Despite the limited scale
of the field, this test case manages to exercise many important aspects of a
mission, like crop row perception in the presence of weeds, line tracking, end of
row detection, two U-turns with different interspace configurations, and one-
pass/two-passes decision. Indeed, this specific case is the one that is the most
often used as a smoke test before field testing.

Performance issues not only limit the complexity of the test cases, they also
force us to compromise on the simulated physics. Initially, Nalo implemented
an accurate model of the interaction between the wheels and the ground. It was
deemed important to reproduce the effect of mud, stones, ground sliding, etc.
However, the accurate model proved too demanding in terms of computing
resources. To give an idea, a PC with 2 Quad core Intel Xeon E5-2623 v3s
CPU at 3.5GHz, and 64GB of RAM is not sufficient to run the test case in
Figure 2 (which has a flat terrain and none of the above-mentioned stressful
elements). An alternative and much-simplified model of the wheels is thus
provided for the tests: the wheels are abstracted as mere cylinders and the
physics ignores friction at the ground. Our study of simulation-based testing
uses this low-fidelity version of the platform.

3.2 Experimental approach

Our research question concerns the revealing power of simulation-based testing
compared to testing in real-world conditions:
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RQ: What are the benefits and drawbacks of simulation-based testing with
respect to:

— Real issues found by the field tests,
— Real issues not found by the field tests,
— Spurious issues coming as simulation artifacts?

In order to answer this question, we developed an automated approach for
testing Oz with a large sample of virtual test cases, and then compared the
results with the industrial field tests. LAAS researchers made the virtual test
development, with support from Naio Technologies for the initial test design
and the final comparison. The Ozcore version under test was an R&D version
that became ready for field testing during the study. Its potential faults were
unknown and could not bias the test design. Moreover, LAAS researchers were
kept uninformed of the results of field testing until the final comparison.

The study involved three phases, to be described in greater details in the
next sections:

— Define the test generation model (Section 4) and oracle procedure (Sec-
tion 5). The generation model should ideally capture all possible crop fields
and weeding missions in these fields that may be worth testing. Such a
model did not exist at the beginning of the study and had to be specified.
Likewise, there was no formalized definition of expected behavior for Oz:
the properties to check had to be crafted with the help of Naio experts.

— Run the virtual test experiments and analyze the fail cases, in parallel with
the test campaigns by Naio (Section 6). A key driver was to prepare the
final comparison with field testing. The concrete fail cases were categorized
into high-level misbehavior patterns, likely to indicate different software
issues. This was done by manual inspection of the detailed test traces, with
the help of data visualization facilities. Note that the analysis remained
black box: the LAAS researchers did not access the source code.

— Compare the results of the simulation runs with the field tests results
(Section 7). A key driver was to determine whether the software issues
identified by the test experiments at LAAS matched the set of issues found
by Naio. In cases they did not, it had to be determined what was missed,
what was new and whether the potentially new issues were real or spurious.

All outcomes of the study are finally gathered in Section 8 to answer the re-
search question. We additionally draw some lessons regarding the development
of automated simulation-based testing of Oz.

4 Test design: world and mission generation

The simulator must be fed with the description of a crop field and a weeding
mission. The corresponding input artifacts are low-level, providing any nec-
essary details about the virtual environment in a format understood by the
simulator. In such cases, it is convenient to approach the generation problem
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at a higher level of abstraction. It yields a two-step process that generates ab-
stract test case descriptors from a world model and then produces the concrete
artifacts. The world model, upon which the generation process is based, was a
key part of the test design. It took several meetings between LAAS and Naio
to discuss its contents.

After a brief overview of the two-step generation process, this section fo-
cuses on how we designed the world model. Some implementation aspects are
also presented.

4.1 A two-step generation process

To manage the low-level test artifacts, we propose to implement techniques
derived from the Procedural Content Generation of worlds (see Section 2.2
and Togelius et al. (2011)). The basic idea of PCG is to use a set of high level
parameters (called the genotype) to control the production of concrete world
content (phenotype). The process is usually based on randomized procedures,
and thus may produce different phenotypes from a given value of the genotype.

Figure 4 shows the use of PCG in a two-step generation approach, where
the parameters in the genotype come from a world model. To illustrate the
process, let us take the example of the generation of an uneven terrain. The
world model has a terrain element with a high-level parameter characterizing
its roughness. The first step is to randomly select the roughness value as part
of the genotype. Then, the second step generates a concrete terrain artifact,
namely an image encoding the 3D relief (e.g., the image in the rightmost part
of Figure 4). A noise function may produce the content of this image, the noise
level being tuned at the desired roughness value.

The two-step approach allows keeping the world model at a high level of
abstraction. The modeling can concentrate on identifying the major elements
of the world and their macroscopic characteristics (e.g., a terrain element and
its roughness degree), without being overwhelmed by the complexity of mi-
croscopic details (e.g., the precise shape of the terrain at every point) or the
idiosyncrasies of the simulation platform (e.g., the image format to produce).

World model Genotype Phenotype
Structure of world elements o3 Set of chosen RO World content generated
with their parameters -;2.1;\ parameter values ."‘1\\ from the parameters

Ne @ Ne e
‘o ¢ ‘ ‘o ¢
—————- Param#1 ———-
Param#2
Param#3
Param#4
Param#5

N

Fig. 4 Two-step generation process. The dice symbol indicates randomized procedures at
both steps: (1) generation of values to instantiate the world model parameters, (2) generation
of a concrete world content from the parameter values.
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4.2 World model definition

The modeling first created a structured view of the candidate world elements
and their high-level parameters, with the support of UML diagrams. The visual
presentation with diagrams was useful to discuss the world model with experts
in the system, who could suggest extensions or simplifications. Then, the for-
malization of the genotypes was finalized by switching to a grammar-based
representation. In this representation, the genotypes are strings that encode
the parameters of each world element to generate. The use of an attribute
grammar formalism was found convenient to specify these genotype strings,
accounting for both structural concerns (how the complete genotype aggre-
gates the parameters of the world elements) and semantic ones (the domains
of the parameters, the dependency constraints between them).

Applied to the Oz case study, this modeling approach started by the elici-
tation of structural relations, such as:

— A Field is composed of :
— Crop_rows composed of
e Crops which could be of type Cabbage or Leek
e Red Stake at the beginning and end of rows
— Weed_areas which contain the wild grass to eliminate.

The complete structure is captured by the UML class diagram in Figure 5.
The model aggregates world elements (classes) related to the crop field, the
3D terrain and the weeding mission. The decomposition was refined until the
level of detail was deemed sufficient. Each element has attributes representing
generation parameters. The first version of the model had more than 30 pa-
rameters, but several simplifications were suggested by Naio. For example, the
initial model had parameters to allow for misplaced or missing red stakes. It
was judged as too stressful for Oz and this possibility was removed. The final
model has 15 parameters, including 14 class attributes plus the choice of the
crop plant type. The diagrammatic representation facilitated the discussion
with the engineers, being easy to understand and modify.

Figure 6 illustrates some of the retained parameters. The space between
two rows (inner_track_width) and the density of vegetables in each row
pertain to the crop field, while the other parameters characterize the mission.
For example, first_track_outer indicates whether the robot starts at the
external side of the field. Parameter final_track_outer indicates whether
the robot is allowed to weed the other external side reached at the end of the
mission (the farmer can forbid this when entering the mission).

The set of parameters defines the genotype. To explicitly model this con-
cept, each class has a descriptor attribute that reifies its genotype as a string.
It encodes the values of all parameters from this class and the contained classes.
Hence, the root world descriptor exposes the complete genotype of a test case.

The parameters in the genotype are not independent from each other. If
the crop field has IV rows, we must consider N-1 row spacing values. If it has a
single row then first_track_outer must be true. The rows must have nearly
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the same length, and should all contain the same type of vegetable (these were
simplifications suggested by Naio). In a string-oriented view of genotypes, such
constraints may be formalized by an attribute grammar. A genotype is then
valid if it is a word of the grammar.

Figure 7 shows an extract of the grammar. The syntactic rules (in black)
encode the structure of the class diagram into the strings. For example, a world
descriptor has a substring to describe its field element. Attributes are asso-
ciated with elements, like val associated with <nb_rows>. Assignments (in
blue) and conditions (in red) specify their value, adding semantic information
to the syntax. The used language includes all classical operators (Boolean,
relational, arithmetic) plus some utility functions like str2val() converting a
numerical string into its value. In Figure 7, the shown extract focuses on how
we specify the constraint relating the number of rows (<nb_rows>.val) and
the one of row spacing values (<inner track width seq>.size). Constraints
on multiple attributes are introduced in the first common ancestor in the de-
composition hierarchy, hence this constraint appears as a condition attached
to <field>. Its truth value is determined by the assignments performed in
the child elements. Note how the value assigned to the size attribute of <in-
ner track width seq> is defined recursively, depending on how many <in-
ner track width> elements are produced.

Conceptually, the grammar-based specification of descriptors makes the
genotype a first-class citizen of the model. The implementation of the test
generator kept the same line: it creates and manipulates world element de-
scriptors, as described next.

4.3 Implementation of a test generator

As presented in Figure 4, the test generation has two steps, each involving
randomness: (1) the production of a valid genotype, (2) the production of
a phenotype from this genotype. They have been implemented by a custom
generator, developed in Python in an object-oriented style. The structure of
the Python program is the same as the one of the world model in Figure 5,
with the addition of methods to each class. The distribution of the code across
the hierarchy of world elements, each offering a unified interface, is intended to
facilitate the co-evolution of the world model and its generator. Indeed, there
were several preliminary versions to demonstrate the generation functions. It
was possible to accommodate the addition or removal of parameters, with
limited impact on the overall code.
A world element has the following interface to manage its genotype:

— random_create(): randomly generates a descriptor, that is to say ran-
domly picks a valid configuration for the parameters of the class and its
child classes. If this method is called in the world class (the root of the
structure), it recursively calls the same method of every child class to ran-
domly construct the complete world genotype. The structure is instantiated
such that each parameter has the value encoded by the descriptor.
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Fig. 5 UML class diagram of the World model
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— create_from_descriptor(desc): also instantiates the structure, but of-
fers more control on the values of parameters. The descriptor given in input
can carry two types of elements: terminals (to force a value) and operators
(to select a generation method). Operators can be seen as wildcards that
replace a valid substring in a descriptor. Operator r is simply a random
generation by random_create (). For instance, desc="0.0-r-r” at the root
level (<terrain>>-<field>-<mission>) means that we want to create any
valid genotype with a flat terrain (the terrain roughness is forced to 0.0,
the mission and crop field parameters are random). Other operators m and



The virtual lands of Oz: testing an agribot in simulation 15

<world>::=<terrain> "-" <field> "-" <mission>
<field> ::= <nb_rows> "+" <inner_track_width_seq> "+" <crop_row_seq> "+" <weed_area_seq>
condition: <nb_rows>.val == <inner_track_width_seq>.size -1
<nb_rows> ::= <N> <nb_rows>.val < str2val(<N>)
condition: 1 <= str2val(<nb_rows>) <=3
<inner_track_width_seq> ::= € <inner_track_width_seq>.size — 0
| <inner_track_width> <inner_track_width_seq>.size — 1
| <inner_track_width_seq>, ":" <inner_track_width>
<inner_track_width_seq>.size — <inner_track_width_seq>.size + 1
<inner_track_width> ::= <F>
condition: 0.65 <= str2val(<inner_track_width>) <= 1.65

<N> ::= <digit> | <digit><N>
<F> = <N>"." <N>
<digit> =" | " | | ngn | ngn

Fig. 7 Extract of the grammar of genotypes

M have also been implemented. They respectively select the minimum and
maximum value of a numerical parameter, e.g., we want any field with the
maximum number of rows. The combination of terminals and operators
offers high flexibility to explore regions of the parameter space.

— check_descriptor(desc): parses a given descriptor and checks if it is
valid. It analyzes both the syntactic and semantic constraints specified in
the grammar. For example, the method in field checks that the number of
<inner track width> substrings is consistent with the number of rows.

The test experiments presented in this paper only used random_create().
But the management of genotypes is designed to allow for future work beyond
a random search. The generator provides a basic service for a more controlled
exploration of the parameter space, via the create_from_descriptor() fa-
cility and the list of operators that can be extended.

Once a valid genotype has been produced, the method for generating a
phenotype (a concrete test case) is the following;:

— export(): the method attached to the root world class generates several
files in the right format for the simulation: a json file for the mission, and
sdf and jpeg files for the 3D world for Gazebo (see Figure 3). The same
method attached to child classes generates the concrete contents to put
in the files. For example, the export of Height map uses Perlin noise to
generate a matrix of pixels, where the grey level of a pixel encodes the
z coordinate of the corresponding point in the map. Crop plants and red
stakes are picked in a library of predefined geometric objects (meshes).
Crop row generates concrete (x,y) coordinates of the plants, based on
their density, some noisy alignment, and a disappearance probability (the
vegetable did not grow, leaving a gap in the row). The mission parameters
are used to determine the initial position of the robot relative to the field.

Note that the phenotype is strongly dependent on the simulator. In this
respect, Gazebo may be less convenient than video game environments. For
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example, the simulator used in previous work on Mana was based on Blender,
and could benefit from a rich API for the creation and manipulation of 3D
scenes. The built-in possibilities were more limited in Gazebo.

5 Test design: oracle procedure

For field tests like for the smoke tests performed at Naio, verdicts are de-
termined by testers who visually check the robot behavior. Such a manual
solution is no longer tractable when exercising the navigation software with
a large number of randomly-generated cases: we need an automated oracle.
However, the specification of the oracle faced the difficulty that there was no
specific list of requirements to check against. We first introduce the approach
we used to overcome this difficulty, before presenting the specific oracle de-
signed for Oz.

5.1 Guidelines for specifying the oracle checks

We consider the specification of a property-based oracle (see Section 2.3).
The oracle is based on a set of properties that the test traces should satisfy,
any violation being reported as a failure. When there is no clear definition of
failure, as in the case of Oz, the properties have to be specified from scratch.
In order to guide the specification process, we may take inspiration from the
fault history of Mana (Sotiropoulos et al., 2017). Our previous work analyzed
the effects of Mana navigation bugs, and identified five broad categories of
detectors to catch them. They correspond to diverse aspects of the behavior
of an autonomous robot that may be worth consideration. These broad classes
of requirements include:

1. Requirements attached to mission phases. The focus is on how to
perform a mission. A mission typically consists of a series of phases, with
some expectations on what the robot should or should not do at each phase.

2. Thresholds related to robot movement. Here, the aim is to detect

abnormal values of kinematic or kinetic variables.

Critical events, like collisions.

4. Requirements attached to error reports. A robot has capabilities to
monitor its operation and report errors. Requirements can be attached to
the handling of these errors.

5. Perception requirements, focusing on unacceptable mismatches be-
tween the ground truth and its perception by the robot.

©w

We used them to structure the discussion of candidate properties to check.

5.2 The oracle for Oz

Accordingly, Table 1 shows the list of properties proposed for Oz. A mission is
viewed as a sequence of weeding and U-turn phases. Wrong mission execution
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(e.g., the robot weeds a wrong row) yields a Fail verdict. But full mission
completion is not required: the robot may decide to abandon the mission
at any time. It then reports an error and must safely stops (P8). The most
critical failures are causing damage to the environment (P5) and escaping
from the crop field (P6). For two of the other properties (P2, P7), there was a
discussion whether they pertain to performance or correctness. In particular,
maintaining a reference distance to the vegetables corresponds to an ideal
weeding trajectory, but Nalo does not consider it as a strong requirement as
long as there is no collision. Likewise, self-localization is not strongly required,
since the robot is guided by its perception of the lines of vegetables and of the
red stakes. Misperception of the lines and stakes would be more relevant for
consideration, but it was judged too heavy to add the missing instrumentation
and analysis facilities into the test platform.

Following the discussion, it was decided to implement the eight checks of
Table 1, but to exclude P2 and P7 from the elaboration of the test verdict.
These two checks could be useful for future experiments.

Table 2 displays the timestamped data collected by the test platform and
made available for the implementation of the checks. Part of the data is logged
at the robot interface: it includes the outputs (commands to actuators, error
and success reports) plus some internal data made observable by the logging
facilities of Ozcore (perceived position and yaw). Another part is logged by
the simulator to trace the actual — rather than perceived — position and 3D
orientation of the robot. Based on the available data, the implementation of
P4 and P7 was straightforward. The other checks required more effort because
they have to analyze the raw data in relation with the environment of the robot
and the prescribed mission. For example, the raw position of the robot may
be inside an area to weed, or inside an end-of-row U-turn area, or outside the
perimeter of the field. The areas of interest are automatically pre-calculated
for each concrete test case provided as an input. The check for P3 consists
in verifying that the actual positions of the robot traverse the areas to weed
in the right order. The P1 check focuses on the U-turn areas, and counts the
number of changes of direction of the robot. The P2 check calculates distance
to a relevant line of vegetables. Collisions (P5) are detected in relation with
the position of the objects of the environment. For simplification purposes, all
checks abstract the robot by the movement of its center point.

Preliminary runs to debug the checks revealed many transient violations
of property P4. Looking further into the matter, we could determine that this
was an artifact of the low-fidelity simulation. Indeed, the simulation ignores
the engine braking force and overestimates velocity on downward slopes arising
from terrain irregularities. We decided to deactivate the P4 check to get rid of
the spurious violations. The results presented in the next section are thus for
test verdicts based on P1, P3, P5, P6 and PS.
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Mission Phases P1 U-turn in 5-7 maneuvers
P2 | Robot maintains reference distance to the vegetables
P3 Sequence of weeded rows is correct

Movement thresholds | P4 Velocity < Vimax

Critical events P5 No collision with vegetables or red stakes

P6 Robot does not go outside of the crop field
Perception P7 Self-localization with a certain precision
Error reports P8 Stopping distance < dmaz after reporting an error

Table 1 Oracle checks for Oz

Robot logs Simulator logs

Perceived position x, y | Position x, y, z
Perceived yaw Quaternion X, Y, Z, W
Mission success report
Error report

Wheel commands

Table 2 Timestamped data logged during the tests

6 Test results in simulation

This section presents the results of the simulation-based tests: first a quanti-
tative overview and then a detailed analysis of the fail cases.

6.1 Overview of the results

The generated set of tests consists of 80 different virtual crop fields along
with their corresponding weeding mission. We perform 5 runs in each case to
account for the non-determinism of test executions. On average, a run takes
about 3.5 minutes. Hence, the 400 runs of the test campaign take about 24
hours.

Due to non-determinism, we observed a high variability in the test verdicts.
Table 3 gives the proportion of test cases yielding from n = 0 to 5 Fail verdicts
over the five repeated runs. A test case has an inconsistent outcome when at
least one (but not all) of its repeated runs fails, i.e., n € {1,2,3,4}. About
29% of the test cases (23 out of 80) have such an inconsistent verdict from one
run to the other. In what follows, we thus provide the test results in terms of
failing runs rather than in terms of failing test cases.

As shown in Table 4, a Fail verdict occurs in as much as 48% of the runs
(192/400). All properties but P1 (U-turn in 5-7 maneuvers) are violated by
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Fig. 8 Visualization of a run with multiple failure types. The robot (black rectangle) has
the trajectory indicated by the solid line. The crop plants appear as green circles, and the
red stake as a red cross. The perimeter of the crop field is materialized by a dotted line. In
this run, two end points of the U-turn maneuvers are outside of the authorized perimeter,
and the trajectory collides with the red stake and some crop plants.

some runs. Table 5 provide the number of failing runs per property. Since a
run may violate several properties, the counts sum up to a number greater
than 192. Figure 8 illustrates a run with multiple failures. Its view uses a test
data visualization facility we developed. The robot (shown as a black rectangle)
starts at the external side of the field, along a line of leeks represented by green
circles. While performing the U-turn at the end of the line, the robot crosses
the specified limits of the field (indicated by a dotted line) and later collides
with the red stake and three leeks. This run counts for both P6 (outside of
the crop field) and P2 (collision). Overall, collision is the most frequent failure
type, observed in 35.5% of the test runs.

Smoke tests at Naio missed these failures: the software was found ready for
field testing. In contrast, the randomly generated cases obtain a high failure
rate of the software. They explore diverse missions in terms of rows to weed,
uneven terrain, noise in the alignment of the plants, etc.

#Test cases #Fails
(total: 80) (over 5 runs)

32 0

5 1

4 2

2 3

12 4

25 5

Table 3 Proportion of test cases with n Fail verdicts over the five repeated runs.

192 208

Table 4 Test verdicts for the 400 runs
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Table 5 Failure type counts

P3: Wrong sequence of rows (70 runs).

— P3_1: The robot re-enters the same row after the U-turn (55/70)
— P3_2: The robot re-enters a previous row after the U-turn (4/70)
— P3_3: The robot skips a row after the U-turn (9/70)
— P3_4: The robot leaves its row while weeding (2/70)

P5: Collisions with red stakes or crop plants (142 runs).
— P5_1: After the U-turn (91/142)
— P5_2: During the U-turn (18/142)
— P5 3: At the end of a row (11/142)
— P5_4: In the middle of a row (22/142)
P6: The robot exceeds the field limits (57 runs).
— P6_1: After the U-turn (6/57)
— P6_2: During the U-turn (49/57)
— P6_3: At the end of a row (2/57)

P8: The robot does not stop straight after raising an error (14 runs).

— P8 _1: After a blind course recoverable error (7/14)
— P8 _2: After a steersman recoverable error (1/14)
— P8 _3: After an invalid markers spacing fatal error (6/14)

Fig. 9 Property violation subcases.

6.2 Qualitative analysis of the failure cases

In order to prepare the comparison with the industrial field tests, LAAS re-
searchers went through the 192 identified failing runs. For each property vi-
olation, information was extracted to characterize the context and propose a
grouping into similar violation subcases. The obtained subcases are listed in
Figure 9.

From these subcases, it is obvious that the U-turn is the most prevalent
context of failure. This is quite understandable as the U-turns are the most
difficult parts of a mission, compared to line tracking. As much as 75% of the
failing runs involve at least one property violation in relation with the U-turn.
It suggests a major issue in the management of the corresponding maneuvers,
which would be the main explanation for the overall high failure rate we obtain.
During the U-turn, the robot may bump into a red stake (P5_2). Also, the
maneuvers often leave the robot in a final position and orientation that are
inadequate for entering the next row. As a result, the robot enters the wrong
row (P3_1,P3_2,P3 3) and/or collides with the stake and crop plants upon
entrance (P5_1). The run previously shown in Figure 8 illustrates this type
of misbehavior. When the U-turn takes place at the extremity of the field, the
inadequate orientation occasionally yields an escape trajectory outside of the
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(a) After the U-turn (b) During the U-turn

Fig. 10 Out-of-field failures in relation with the U-turn

crop field (P6_1). An exemplary run is shown in Figure 10a In such runs, the
robot always raises an error and stops, but after having crossed the specified
field limits. The limits are at 1.5 meters after the red stakes and extremal rows
on each side.

Again in relation with the U-turn, a different subcase of P6 violation
(P6_2) is illustrated by Figure 10b. The U-turn may be successful (it may
align the robot to the right row) but takes more space than allowed. The end
point of a maneuver slightly exceeds the limits of the field, yielding a tem-
porary out-of-field position. Each time, the oracle check reports one or two
centimeters over the limit. But the measurement is for the central point of the
robot, hence the overshooting is actually in the tens of centimeters.

The remaining property violations are not directly related to the U-turn.
An example is stopping too late after issuing an error (P8 1, P8 2, P8 3).
There are three possible errors raised during testing, all of which would necessi-
tate a human intervention in real-world operation. They consist in recoverable
errors, allowing the operator to resume the mission after the stop, and fatal
errors requiring a reboot of the robot. The blind course recoverable error is
raised when the robot has traveled about 3 meters without perceiving the line
of crop plants it is supposed to follow. The steersman error is raised when the
robot considers its yaw angle as suspicious in line tracking mode: the current
path direction differs too much from the one in the past 10 meters (the angle
is greater than 15 degrees). The fatal Invalid markers spacing error is raised
when the robot detects a missing or misplaced red stake. In the generated test
cases, the stakes are always at the right location. The fatal error is raised when
the robot weeds a wrong row at the extremity of the field and does not see
the expected number of stakes at the end of this row. As can be seen from
the subcases P8 1, P8 2, P8 3 in Figure 9, the late stop is not tied to a
specific error type: it occurs for the three errors. Moreover, the failure is not
systematic: in the complete set of runs, there are also many correct stops after
each type of error (respectively 46, 3 and 26 correct stops). It suggests a tim-
ing/concurrency issue, which nondeterministically affects the generic handling
of errors.
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(b) Steersman error and delayed stop

Fig. 12 Two runs for which the robot does not perceive the exit of the row

Finally, collisions and out-of-field failures may happen outside the context
of U-turns. As regards collisions (P53, P5 _4), the robot gets too close to the
line of crop plants it follows in a weeding phase. In two of the failing runs, the
robot even traverses the line, yielding the two P34 violations we observed.
One of these runs is shown in Figure 11. Interestingly, robot raises a blind
course error around the time of the collision. Such is also the case in about
25% of the mid-row collisions. This suggests that part of these collisions could
be due to a row perception loss while weeding. In the run of Figure 11, a P8 1
violation adds up so that the robot pursues its blind course in the neighboring
row instead of immediately stopping. As regards out-of-field failures, subcase
P6_3 at the end of a row also suggests a misperception problem. The two
failing runs (see Figure 12) respectively raise a blind course and steersman
error more than 1.5 meters after the red stakes have been passed. It indicates
that the robot has not correctly perceived the end-of-row situation: it is still
trying to perform line tracking long after it exited the row.

In summary, the qualitative analysis of the failing runs gives the following
hypothesized issues:

— A major U-turn issue, affecting the ability to safely perform a mission when
there is more than one row to weed.
— A concurrency /timing issue delaying the stop of the robot in cases of errors.
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Failure description # occurrences

F1 - Bad row entrance trajectory after the U-turn 11
F2 - Bad row exit trajectory before the U-turn

F3 - The robot skips a row after the U-turn

F4 - The robot loses direction during line tracking

F5 - Deviated trajectory when there is a large gap in the line
F6 - The robot unexpectedly stops upon red stake detection

F7 - Large detour at the beginning of a row, leaving an unweeded area

o= NN NN

F8 - The robot stops out of the field limits at the end of the mission

Table 6 Navigation failures observed during the field tests

— A line tracking issue, possibly in relation with a row perception loss.
— An end-of-row detection issue occurring in rare cases.

7 Industrial Feedback

The final phase involved joint meetings and a week visit of the first author to
Naio. It gave him the opportunity to meet key persons in charge of the testing
or the development of Ozcore, to consult the notes reporting from the field
tests, and to discuss the various examples of test fails in detail, with the help
of a replay tool developed by Naio for diagnosis purposes.

In parallel to the simulation-based tests, the field tests also found issues
in the Ozcore software. The reports of five test sessions were shared for the
study. Each session requires some time to load the robot into the van, travel
to the experimental site, unload the robot, initialize the experiments and do
the same in reverse for way back. The effective test time is typically one or
two hours for a half-day session. Table 6 lists the navigation failures observed
during these tests, from the notes taken by the test operators. The test control
and oracle procedures are manual. For example, the operator enters a weeding
mission via the user interface. At some point, she visually determines that a
row entrance trajectory is inadequate and stops the robot before a collision
occurs.

The comparison with the simulation-based tests started about four months
after the fifth test session. Naio had thus hindsight on the diagnosis of software
issues and their resolution. This was useful to determine whether the failures
observed in simulation revealed the same issues or different ones.

Due to the large number of fails in simulation, it was not possible to have a
joint review of each of them. Rather, the comparison relied on the preparatory
analysis performed at LAAS with a deeper examination of a few exemplary
test runs.

The final comparison results are given in Table 7. They include real, spu-
rious and undiagnosed issues. We discuss each of them in turn.
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Issues Field Simul. Real /
tests tests Spurious

I1 - U-turn functionality v v Real

12 - Space margin for U-turn - v Real

I3 - Heuristics for transient perception losses v v Real

14 - Processing of red stake images v - Real

15 - Alignment at the beginning of a row v ) Real

(with P2%)

16 - Skidding/odometry v - Real

I7 - End-of-row detection ? ? ?

I8 - Simulated stop upon error - v Spurious

19 - Simulated velocity on downward slopes - v Spurious

Table 7 Comparison of issues revealed by field tests and simulation-based ones:
v/’ = revealed, '=> = not revealed, ’?’ = no conclusion for lack of diagnosis.

Issue I1. Like the simulation-based tests, the field tests revealed a major
U-turn issue causing the majority of failures. There is a good match between
the failures observed by each type of test: the robot enters the wrong row
(F3 vs. P3_1, P3_2, P3_3), or has an inadequate positioning and angle to
enter its row (F1 vs. P51, P6_1). From Naio’s analysis, the U-turn issue
also causes bad row exit trajectories (F2). Indeed, when the robot perceives
the red stakes, it starts preparing the U-turn and the trajectory for approach
may collide with the end of the line. It is thus plausible that part of the end-
of-line collisions observed in simulation (P5_3) are also due to the U-turn
and not only to perception problems. This could however not be specifically
demonstrated. The whole U-turn issue was considered as critical by Naio and
a lot of effort has been spent to solve it. Being unable to spot a specific fault,
they re-developed the functionality from scratch.

Issue I2. The exceeding space taken by the U-turn maneuvers in simu-
lation (P6_2) was not found by the field tests. The operator did not check
the precise amplitude of the maneuvers, hence an overshooting could have
happened but remained unnoticed. After analysis, the issue was confirmed by
Naio. The planning of the maneuvers does not take a sufficient margin to avoid
exceeding the 1.5m limit in all cases. Requiring shorter maneuvers would make
the U-turn even more difficult. Rather, Naio has revised the conditions of use
of the robot to provision more space for the U-turn.

Issue I3. Failures F4 and F5 reveal an issue in the handling of line per-
ception losses. In the case of F4, the loss was due to a sensing alea, while in
the case of F5 there was a real gap in the line (many consecutive plants did
not grow). When the row is no longer seen, the robot heuristically considers
a likely direction based on its past behavior. The aim is to keep the robot on



The virtual lands of Oz: testing an agribot in simulation 25

track until it perceives the row again or it raises a blind course error. But the
heuristics may be wrong, sending the robot to the crop plants. This diagno-
sis is consistent with LAAS’ observation of mid-row collisions associated with
blind course errors. To further confirm the issue in simulation, an exemplary
run with a mid-row collision but no blind course error was analysed, using
a replay tool developed at Naio. The chosen run corresponds to an uneven
terrain, which is challenging for the LIDAR-based perception: the laser beams
have erratic inclinations as the robot goes upwards and downwards. The re-
play of the run confirmed a transient perception loss of the neighboring crop
plants, upon which the direction of the trajectory changes. The conclusion is
that the heuristic issue is found by the simulation-based tests. However, these
tests only reproduced scenarios with sensing aleas in uneven terrains, not ones
with a large gap in a row. The generated rows had gaps of 2 or 3 missing plants,
which was not stressful enough. In contrast, the virtual terrain irregularities
were more stressful than in the real world, inducing many sensing aleas. Naio
currently studies alternative heuristics to improve the tolerance of transient
perception losses, but none of them is integrated into the Oz platform yet.
Regarding large gaps in a row, farmers are advised to put substitute elements
(e.g., stakes) to repair the line.

Issue I4. Failure F6 is caused by the processing of images for red stake
detection. Artifacts in the images may induce the double vision of a single
stake, which leads the robot to raise a spurious invalid markers spacing error.
Naio has reworked the image processing code to fix the issue. In simulation,
the test oracle does not judge the relevance of errors: it only checks the safe
stop upon errors. LAAS researchers manually inspected all runs ending upon
an invalid markers spacing error to determine whether false positives occurred.
But such was not the case: in all these runs, the robot had entered a wrong
row after a U-turn, and correctly detected a wrong number of red stakes at
the end of the row. We conclude that the double vision is not reproduced in
simulation. Indeed, the simulated images are too clear and crisp compared to
the real ones. The red stakes stand out perfectly against the unicolor ground
and the sky, while the real-world vision may suffer from misleading effects.

Issue I5. Failure F7 exposes a difficulty in the initial alignment of the
weeding trajectory with the crop row. The robot may take time to rejoin the
correct alignment and the beginning of a row is not adequately weeded. The
oracle used in simulation does not detect this kind of misbehavior. Remember
that, in the initial design of the study, we disabled the P2 check on the reference
distance to the vegetables. In order to determine whether the issue was missed
by the oracle but in fact reproduced, LAAS researchers introduced a modified
version of P2. The detection threshold was changed to focus on large distances
and the variation rate was also monitored. With this check P2’; the initial
alignment issue is indeed revealed in simulation. Figure 13a is a virtual scenario
close to the one observed in the field: the robot initially deviates away from the
line and takes time to change its course, leaving the first 2-3 meters unweeded.
The virtual tests also found new misalignment scenarios. An interesting one
concerns two-passes weeding (Figure 13b): the robot occasionally starts to
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(b) Alignment with the wrong side (two passes)

Fig. 13 Alignment issue at the beginning of a row in simulation

weed the wrong side during 3 meters before rejoining the correct side. There
was also a case with oscillations over the first 4 meters before the trajectory
becomes stable. Note that the length of a row is typically greater than 100
meters in real fields. Naio considers the occasional misalignment in the first
few meters as a minor issue and did not investigate a fix.

Issue 16. Failure F8 corresponds to an out-of-field normal stop: the robot
is not in error, it stops at the end of its mission but more than 1.5 meters after
the red stakes. From Naio’s analysis, the failure was due to excessive skidding
and erroneous odometry. A fix has been introduced to better handle skidding.
In simulation, the interaction of the wheels with the ground is not accurate
with respect to skidding, slippage or sliding. In any case, the specific failure
F8 was not obtained.

Issue I7. In simulation, two out-of-field stops seemed to be due to a misper-
ception of the end of the row (P6 3 and Figure 12). This was never observed
during the five field test sessions we analyzed. However, since that time, Naio
has observed rare cases where the robot does not detect the end of a row. The
issue being undiagnosed so far, it is not possible to conclude on the agreement
of the tests.

Issues I8 and I9. The last entries in Table 7 are issues causing spurious
failures in simulation only. The delayed stop upon an error (P8 violations) was
never observed in the field. After analysis, the failure is due to an issue in the
simulation scripts, not in the software under test. For the sake of completeness,
Table 7 also mentions the spurious overspeed we observed on downward slopes.
It was an artifact of the low-fidelity physics and yielded the disabling of P4
checks.

8 Overview of outcomes and threats to validity
We are now able to answer the question explored by the study, and identify

lessons learned. The study could be affected by threats to validity, which we
also discuss.
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8.1 Answers to the research question

RQ: What are the benefits and drawbacks of simulation-based testing with
respect to:

— Real issues found by the field tests,
— Real issues not found by the field tests,
— Spurious issues coming as simulation artifacts?

The study confirms that the fault revealing power of simulation-based test-
ing is under-exploited. It finds real issues that are currently caught by field
testing. The major U-Turn issue is a striking example. It was missed by the
smoke tests and caused the majority of failures during field testing. Still, the
issue was not hard to reveal by the random tests, yielding a high failure rate
in simulation. The simulation also managed to reproduce improper reactions
to transient perception losses, and difficulties in the initial alignment to a row.

The issue requiring accurate reproduction of skidding seems hard to find
with a simplified physics. The image processing issue was also missed in sim-
ulation, but it would be possible to add disturbance effects to the simulated
images (see e.g., related work by Zendel et al. (2013) and Zendel et al. (2017)).

When revealing issues, the simulation-based tests provided diverse exam-
ples of misbehavior caused by them. This is useful since the issues found by
the field tests are not low-level bugs. They question the adequacy of the core
algorithms and heuristics underlying the perception, decision and motion con-
trol abilities of the robot. There may be no obvious fix or improvement. Then,
it is helpful to quickly obtain an overview of the various undesirable effects of
the chosen algorithms. For example, the simulation gave U-turn failures that
were not observed during the five field test sessions, like coming back to a pre-
viously weeded row or having collisions with red stakes during the maneuvers.
Similarly, the difficulty in initial row alignment did not only surface as a large
detour, but also as an oscillation over the first meters or an initial alignment to
the wrong side of the two-passes route. In simulation, those diverse failures can
be obtained at once, by running a bunch of tests. In the field, the tests extend
over a longer period of time, involving several sessions on different days.

The simulation-based tests even uncovered an issue missed by the field
tests: the insufficient space margin for the U-turn. This was not a necessary
objective, as the tests were not designed to explore corner cases difficult to
reach in the field. They involved mere random sampling over a permissible
domain of use of the robot. It is impossible to say whether the space margin
violation did not occur at all in the field, or occurred but was not seen by the
test operator. In any case, it occurred in simulation and was detected by the
oracle checks.

On the downside, the simulation can introduce spurious issues. In the study,
they were of two types. First, the low fidelity simulation induced a behavior
that is impossible in the real world, the transient overspeed on downward
slopes. Second, the simulation code was faulty, non-deterministically delaying
the effective stop of the robot.
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The need to develop the simulator must be added as a drawback. The Oz
simulator is rather complex in its own right. Developments on top of Gazebo
are technically nontrivial. Indeed, it is not surprising that the simulation code
can have issues. Beyond the initial development effort, maintenance also proved
a concern due to the dependency on an external and unstable technology. As
an anecdote, just before the visit of the LAAS researcher to Nalo, an update
of Gazebo broke the simulator, which was no longer working with the new
version.

8.2 Lessons learned

Based on our experience, some insights and recommendations can be derived
for the development of automated simulation-based testing.

1. Design test generator and oracle for evolvability. Specifying the
virtual environments and oracle checks is hard, and the test design will most
probably have shortcomings. It should be continuously improved as more
experience is gained on the system or on similar ones. For Oz, the feedback
from the field tests provided insights on relevant improvements. The P2
oracle check has been turned into P2’ based on the detection condition of
a misalignment problem. Note that P2’ takes inspiration from, but is more
general than, the specific problem detected in the field. The generation
model needs improvements as well, if one wants to consider large gaps in a
row and visual hazards affecting images. The current generation may also
be a bit too stressful with respect to the terrain irregularities, compared
to real fields. To support continuous improvements, the test generator and
test oracle should be designed for evolvability from the outset.

2. Specify a well-structured world model. Test generation has to be
based on a well-structured world model, which facilitates the addition, re-
moval or modification of elements. In the study, we had an UML-based
structure model. The implementation kept the same structure with a uni-
form interface for each element. From the experience with Oz, the modeling
approach also has to accommodate constraints on the parameters attached
to world element. In the study, the structural model was supplemented by
an attribute grammar specifying the valid configurations of parameter val-
ues. Constraints relating several parameters were introduced at the level
of the closest ancestor element in the structure. The modeling can be kept
at a high level of abstraction by using world content generation procedures
to bridge the gap between the abstract test cases and the concrete test
inputs.

3. Clearly separate data logging (on-line) and analysis (off-line). The
test oracle is property-based. It is composed of a set of checks to detect mis-
behavior. If the oracle specification starts from scratch, the five aspects of
behavior we identified can serve as a guide to explore candidate properties
to check. In order to facilitate the evolution of the oracle, we recommend
an off-line analysis of the test traces. There should be a clear separation
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between raw data recording, which is done during the simulation runs, and
the potentially complex data analysis to be done afterwards. In this way,
checks can be deactivated, revised or added without changing the simula-
tion code. Also, alternative versions of the oracle (e.g., with P2’ instead of
P2) can be studied without having to re-execute the tests. The raw data
recording should be as complete as possible, beyond the minimal dataset
required by the current checks. It should ideally consider as much data as
possible to cover future needs. The instrumentations should be placed on
both the software under test and the simulator. The aim is to capture both
the “subjective” point of view of the robot (e.g., its perceived positions, the
commands it sends, the errors it raises) and the objective situation of the
simulation (e.g., real positions, collision events). The complexity of some
checks comes with the need for situation-awareness, when the raw data
must be analyzed in relation with the robot’s environment and prescribed
mission.

4. Manage simulator fidelity and complexity. The feedback on the simu-
lation platform used by the study is mixed. On the one hand, the Gazebo-
based simulation has demonstrated its effectiveness with respect to real
issues, including a major one. It thus holds out the prospect of alleviating
the costly field tests. On the other hand, the development and maintenance
of the simulator proved heavy for a small company like Naio. If many is-
sues do not require an accurate reproduction of real-world conditions, one
may wonder whether a lighter and easier-to-maintain simulation platform
would not perhaps be sufficient. Lighter simulation would also be faster,
allowing for a higher number of tests in shorter time.

8.3 Threats to validity

The case study reported is this paper is exploratory, based on a qualitative
analysis (the types of failures, the issues causing them).

Construct validity concerns the correct identification of which issues are
found by each type of tests.

As regards issues found by the field tests, a risk comes from the fact that
the software version was not exactly the same from one test session to the
other, due to patches in the code. The comparison with the simulation-based
tests is thus based on the hindsight that Naio has on the diagnosis of issues.
For example, the first session reported failures that are retrospectively assigned
to the major U-turn issue and to the initial alignment issue. The other issues
surfaced later but it is judged that they were there from the beginning. Re-
garding the major U-turn issue, the same failures persisted in all test sessions
despite tentative fixes, until the redevelopment was decided.

As regards the issues from the simulation-based tests, it was not possible
to review all the failing runs with Naio. While there is a good confidence that
part of the fails are caused by the issues in Table 7, some other part could have
unknown causes. If these were spurious, it would decrease the benefit from the
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simulation-based tests. We cannot exclude unknown issues, but took care that
all failures cases are consistent with the effects of the issues identified by the
study, as far as they are understood.

The risk for having a different understanding of the issues was mitigated by
the interactions established during the study. The visit of the LAAS researcher
at Naio allowed for in-depth discussions of the issues. It was followed by a
peer debriefing with other researchers. Then, there were several subsequent
interactions with Naio on pending or unclear points. And finally the list of
issues was jointly reviewed and re-discussed with Naio.

Measures for internal validity concerned the avoidance of bias in the design
of the simulation-based tests, in particular bias due to some prior knowledge
of issues. At the time of the design, issues I1 to 19 were unknown to LAAS and
Nalo. LAAS researchers were also unaware of the results of field tests when
they analyzed the failing cases to extract a set of hypothesized issues.

Ezxternal validity concerns the generalization of outcomes beyond the case
of Oz. The context of the study is clearly a robotic software developed by
a small company. The simulation technologies used by Nalo are representa-
tive of the context: the Gazebo platform and ROS middleware are widespread
in robotics. The difficulties experienced during the study (specification chal-
lenges, unstable simulation technology, spurious failures due to the simplified
physics or issues in the simulation code) are not specific to the Oz example.
The outcomes regarding test effectiveness may be more application-dependent.
However, we consider it useful to study effectiveness for a real-scale industrial
example, which supplements other empirical results on academic examples,
e.g., Sotiropoulos et al. (2017); Timperley et al. (2018). Finally, the approaches
adopted for generating tests and detecting misbehavior are general, their prin-
ciple can be reused outside the case study.

9 Conclusion

In the face of the rising complexity of autonomous systems development, test-
ing becomes one of the biggest challenges. This article addresses mission-level
validation. We studied the benefits and drawbacks of simulation-based tests
compared to field tests, and also provided some practical recommendations
for the deployment of the simulation-based tests. The Oz robot, developed by
the French company Naio, served as a real-scale example to support investi-
gation. The work was carried out both in the lab and in the company, with
interactions to design the case study and interpret the results.

The generation of the test cases (including 3D crop fields and weeding
missions) was based on a structural model in UML and an attribute gram-
mar to express constraints. The valid words of the grammar represent the
valid configurations of model parameters (the genotype), from which the con-
crete contents of test cases are produced (the phenotype). The test oracle was
designed using five general classes of properties and implemented to automati-
cally analyze test traces. The non-determinism of test results was anticipated,
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which yielded several runs of the same test cases. The main outcome of the
study was to show that major software issues could be revealed in simulation
rather than in the field; the randomly-generated tests even discovered a new
issue that was not identified during the field tests. On the negative side, some
spurious failures and simulation maintenance problems must be put in the
balance.

An open question is the degree of fidelity of the simulator. It is expected to
have a high impact on the cost-effectiveness of the tests. For instance, a high-
fidelity may be required to catch issues related to complex image processing
or physical interaction. But computational time and resources may grow pro-
hibitively (as experienced with the Oz simulator), and complex simulation
code may be buggy and difficult to maintain. Conversely, a lighter simulator
may leave much more issues uncaught before field testing (and induce spurious
failures), but at the same time requires less resources, accelerates simulation
and is easier to maintain. The question of the simulation fidelity has no simple
answer, and it is interesting to mention how the strategy of Naio has evolved
since the starting point of the study. At that time, their effort was on making
the simulation as realistic as possible given the resource constraints. But even-
tually, they have decided to abandon the Gazebo-based simulator for a much
lighter platform, developed in-house. The simulation-based tests are also more
systematic than at the time of the study, and now involve a set of diverse
cases.

From an academic perspective, current work at LAAS elaborates on the
generation of test cases. It retains the principles of the custom generator used
for Oz (well-structured genotypes as first-class citizens, checking and manipu-
lation of elements of the genotype, generation mixing fixed and free elements)
in order to develop a more generic and reusable generation framework. There
is also a plan to extend the framework to integrate more elements such as
mobile obstacles or noise on sensors. The framework will be used to explore
test selection strategies, which were not addressed by the study (only based
on random testing). Continuing collaboration with Naio will provide access to
the lightweight simulator for experimentation purposes. The faster simulation
is expected to make the test selection problem more amenable to advanced
search-based techniques guided by fitness functions.
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