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We consider the problem of minimizing a linear function over an affine section of the cone of positive semidefinite matrices, with the additional constraint that the feasible matrix has prescribed rank. When the rank constraint is active, this is a non-convex optimization problem, otherwise it is a semidefinite program. Both find numerous applications especially in systems control theory and combinatorial optimization, but even in more general contexts such as polynomial optimization or real algebra. While numerical algorithms exist for solving this problem, such as interior-point or Newton-like algorithms, in this paper we propose an approach based on symbolic computation. We design an exact algorithm for solving rank-constrained semidefinite programs, whose complexity is essentially quadratic on natural degree bounds associated to the given optimization problem: for subfamilies of the problem where the size of the feasible matrix, or the dimension of the affine section, is fixed, the algorithm is polynomial time. The algorithm works under assumptions on the input data: we prove that these assumptions are generically satisfied. We implement it in Maple and discuss practical experiments.

Introduction

Problem statement

Let x = (x 1 , . . . , x n ) denote a vector of unknowns. We consider the standard semidefinite programming (SDP) problem with additional rank constraints, as follows:

(SDP) r inf x∈R n ℓ c (x) s.t. A(x) 0 rank A(x) ≤ r (1) 
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In Problem (1),

ℓ c (x) = c T x, c ∈ Q n , A(x) = A 0 + x 1 A 1 + • • • + x n
A n is a symmetric linear matrix with A i ∈ S m (Q) (the set of symmetric matrices of size m with entries in Q), and r is an integer, 0 ≤ r ≤ m. The formula A(x) 0 means that A(x) is positive semidefinite (i.e., all its eigenvalues are nonnegative) and is called a linear matrix inequality (LMI). Remark that for r = m this is the standard semidefinite programming problem since the rank constraint is inactive. Moreover, when c = 0 (i.e., c is the zero vector), (SDP) r is a rank-constrained LMI. In the whole paper, we refer to (SDP) r in Problem (1) as a rank-constrained semidefinite program with parameters (m, n, r). The set S = {x ∈ R n : A(x) 0} , namely the feasible set of (SDP) m , is called a spectrahedron by the convex algebraic geometry community, or equivalently LMI-set. It is a convex basic semialgebraic set. Conversely, for r < m, (SDP) r is no more a convex optimization problem, in general. Indeed, denoted by

D p = {x ∈ C n : rank A(x) ≤ p}
the complex determinantal variety associated to A(x) of maximal rank p, the feasible set of (SDP) r is exactly S ∩ D r ∩ R n = S ∩ D r . This is typically non-convex. The purpose of this paper is to design an exact algorithm for solving problem (SDP) r .

Contribution

We suppose that the input data is defined over the rational numbers, namely (c, A 0 , A 1 , . . . , A n ) ∈ Q n × (S m (Q)) n+1 . By exact, we mean that, the output of the algorithm is either an empty list, or a finite set S encoded by a rational parametrization as in [START_REF] Rouillier | Solving zero-dimensional systems through the Rational Univariate Representation[END_REF]. This is the exact algebraic representation encoded by a vector (q, q 0 , q 1 , . . . , q n ) ⊂ Q[t] of univariate polynomials, such that q 0 , q are coprime and: S = q 1 (t) q 0 (t) , . . . , q n (t) q 0 (t) : q(t) = 0 .

(2)

When S is not empty, the degree of q is the algebraic degree of every element in S . When the output is not the empty list, the set S which is returned contains at least one minimizer x * of (SDP) r . Under general assumptions on input data, which are highlighted and discussed below, the strategy to reach our main goal is twofold:

• we prove that the semialgebraic optimization problem (SDP) r can be reduced to a (finite) sequence of algebraic optimization problems, that is, whose feasible set is real algebraic;

• we design exact algorithms for solving the reduced algebraic optimization problems.

Once a rational parametrization (q, q 0 , q 1 , . . . , q n ) of S is known, the coordinates of a minimizer can be approximated by intervals of (arbitrary length) of rational numbers, by isolating the real solutions of the univariate equation q(t) = 0. The complexity of the real root isolation problem is quadratic in the degree of q and linear in the total bitsize of its coefficients; for more information, cf. [START_REF] Pan | Nearly optimal refinement of real roots of a univariate polynomial[END_REF].

Once the output is returned, one can compute the list of minimizers by sorting the set S with respect to the value of the objective function ℓ c (x), and deleting the solutions lying out of the feasible set S ∩ D r . Indeed, in order to delete the solutions lying out of the feasible set, one can compute (symbolically) the coefficients of the characteristic polynomial f (s) := det(sI m +A(x)) = f m + f m-1 s + • • • + f 1 s m-1 + s m , that are polynomials in x with rational coefficients ( f i ∈ Q[x]). Then x belongs to the feasible set if and only if these coefficients are all positive (by applying Descartes' rule of signs, since the roots of f (s) are the opposite values of the eigenvalues of A(x)). This can be checked by isolating the real roots of the polynomial q, evaluating the coefficients f i on lower and upper certified rational bounds of this isolation. Since there are separation bounds for the real roots of q, up to refining the isolation one can decide the sign of the coefficients f i , hence whether the point x is, or not, on the feasible set. The same argument holds for the value of the objective function ℓ c (x) which can be isolated, once an exact representation of x is known. Hence, our goal is also to give a bound for the maximal size of the output set S , namely, on the degree of q.

Motivations

Several problems in optimization are naturally modeled by (rank-constrained) semidefinite programming, SDP for short, see e.g. [START_REF] Anjos | Handbook on semidefinite, conic and polynomial optimization[END_REF], [START_REF] Vandenberghe | Semidefinite programming[END_REF] or [START_REF] Ben-Tal | Lectures on modern convex optimization: analysis[END_REF]

. Given f, f 1 , . . . , f s ∈ R[x], the general polynomial optimiza- tion problem f * = inf x∈R n f (x) s.t. f 1 (x) ≥ 0, . . . f s (x) ≥ 0 (3)
reduces to a sequence of semidefinite programs of increasing size, see e.g. [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] and [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. Since this sequence is almost always finite by [START_REF] Nie | Optimality conditions and finite convergence of Lasserre's hierarchy[END_REF], lots of efforts have been made in order to develop efficient algorithms for SDP. Moreover, LMI and SDP conditions frequently appear in systems control theory cf. [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. Finding low-rank positive semidefinite matrices also concerns the completion problem for some classes of matrices in combinatorics [START_REF] Laurent | Complexity of the positive semidefinite matrix completion problem with a rank constraint[END_REF]. Finally, an independent application of SDP-based techniques, but highly related to the polynomial optimization problem, is that of checking nonnegativity of multivariate polynomials. Indeed, deciding whether a given f ∈ R[u 1 , . . . , u k ] is a SOS (sum of squares) of at most r polynomials (hence, nonnegative) is equivalent to a rank-constrained semidefinite program (see Section 6.2 and, e.g., [START_REF] Woermann | An algorithm for sums of squares of real polynomials[END_REF]). Keeping track of the length of a SOS decomposition, or just deciding whether such a decomposition exists, is crucial in different contexts, cf. [START_REF] Blekherman | Low-rank sum-of-squares representations on varieties of minimal degree[END_REF].

Previous work

The ellipsoid method in [START_REF] Grötschel | Geometric algorithms and combinatorial optimization[END_REF] translates into an iterative algorithm for solving general convex optimization problem. The number of its iterations is polynomial in the input size (measured by the size m of the matrix and by the number n of variables) with fixed precision, see e.g. [START_REF] Anjos | Handbook on semidefinite, conic and polynomial optimization[END_REF], but this algorithm is known to be inefficient in practice. On the other hand, the extension of Karmakar's interior-point method beyond linear programming by [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] yields efficient algorithms for computing floating point approximations of a solution, implemented in several solvers such as SeDuMi, SOSTOOLS etc.

However, these algorithms cannot, in general, manage additional determinantal conditions or non-convexity. Moreover, SDP relaxations of hard combinatorial optimization problems (as the MAX-CUT, see [START_REF] Goemans | Improved approximation algorithms for maximum cuts and satisfiability problems using semidefinite programming[END_REF]) usually discard such algebraic constraints, since they break desirable convexity properties. Moreover, interior-point algorithms cannot certify the emptiness of the feasible set or the rank of the optimal solution, and can often suffer of numerical round-off errors. Remark that if the standard SDP problem (SDP) m has a solution x * of rank r, then x * is also a solution of the non-convex problem (SDP) r (the viceversa is false, in general). Finally, one cannot extract information about the algebraic degree [START_REF] Nie | The algebraic degree of semidefinite programming[END_REF] of the solution with numerical methods. The output of the algorithm designed in this paper allows to recover important information about the solution, namely the algebraic degree of the entries of the optimal matrix A(x * ) and its rank.

In [START_REF] Orsi | A newton-like method for solving rank constrained linear matrix inequalities[END_REF], Newton-like "tangent and lift" and projection methods for approximating a point in the intersection of a linear space and a manifold are proposed: the authors use this approach for solving rank constrained LMI but, in general, without guarantees of convergence, and with the request of a starting feasible point. In Henrion et al. (2016a) an exact algorithm for LMI has been proposed. This algorithm, implemented in the Maple library SPEC-TRA Henrion et al. (2016b), has a runtime essentially quadratic on a multilinear Bézout bound on the output degree, and polynomial in n (resp. in m) when m (resp. n) is fixed. This last property is shared with the algorithm in [START_REF] Khachiyan | On the complexity of semidefinite programs[END_REF], which, however, cannot be used in practice, since it crucially relies on quantifier elimination techniques. The algorithm in [START_REF] Greuet | Probabilistic algorithm for the global optimization of a polynomial over a real algebraic set[END_REF] is also exact, but cannot manage semialgebraic constraints and has regularity assumptions on the input, which are not satisfied in our case. The related problem of computing witness points on determinantal algebraic sets has been addressed and solved in Henrion et al. (2015a,c).

Our contribution builds on the approach of Henrion et al. (2016a), based on the lifted representation of determinantal sets D r via incidence varieties, which is recalled and adapted to our situation in Section 2.2. However, the geometric results in Sections 2.3 and 3 are crucial to allow to extend this method to the rank-constrained SDP problem.

Outline of main results

We consider the rank-constrained semidefinite programming problem (1), encoded by rational data (c, A) ∈ Q n × S n+1 m (Q), and by the integer r bounding the rank of an optimal solution. Our paper can be divided into two parts.

In the first part (Sections 2 and 3) we prove geometrical properties of problem (SDP) r . In Section 2.2, we represent the algebraic sets D p , p = 0, . . . , r, as projections of incidence varieties defined by bilinear equations, that are generically smooth and equidimensional (Proposition 1). The solutions of (SDP) r are also local minimizers of ℓ c on D p ∩ R n (this is proved in Theorem 5) and are obtained as the projection of critical points of the same map restricted to the incidence varieties (Lemma 3), which are finitely many (Proposition 4). As an outcome, we prove that a generic rank-constrained semidefinite program admits finitely many minimizers (Corollary 7).

The second part hosts the formal description of an algorithm for solving (SDP) r (Section 4) and its correctness (Theorem 8). A complexity analysis is then performed in Section 5, with explicit bounds on the size of the output set S (cf. (2)) computed in Proposition 9. We finally discuss the results of numerical tests performed via a first implementation of our algorithm in Section 6.

This revised and extended version of the paper [START_REF] Naldi | Solving rank-constrained semidefinite programs in exact arithmetic[END_REF] published in the Proceedings of ISSAC 2016, contains examples explaining our methodology and an extended experimental section, showing results of our tests performed via the Maple library spectra, cf. Henrion et al. (2016b).

Preliminaries

General notation

If f = { f 1 , . . . , f s } ⊂ Q[x],
we denote by Z( f ) the set of complex solutions of f 1 = 0, . . . , f s = 0, called a complex algebraic set. We also consider real solutions of polynomial equations, that is the real algebraic set Z R ( f ) = Z( f ) ∩ R n . If S ⊂ C n , the ideal of polynomials vanishing on S is denoted by I(S ). An ideal

I ⊂ R[x] is called radical if it equals its radical √ I = { f ∈ R[x] : ∃ s ∈ N, f s ∈ I}.
An ideal of type I(S ) is always a radical ideal. By Hilbert's Nullstellensatz, one has I(Z(I)) = √ I. The Jacobian matrix of partial derivatives of { f 1 , . . . ,

f s } is denoted by D f = ( ∂ f i ∂x j ) i, j .
An algebraic set V ⊂ C n is called irreducible if it is not the union of two proper algebraic subsets; otherwise it is the finite union of irreducible algebraic sets

V = V 1 ∪ • • • ∪ V s , called the irre- ducible components. The dimension of V is the Krull dimension of its coordinate ring C[x]/I(V).
If the V i in the previous decomposition have the same dimension d, then V is equidimensional of dimension d. Let V ⊂ C n be equidimensional of co-dimension c, and let I(V) = f 1 , . . . , f s . We say that V is smooth if its singular locus, that is the algebraic set defined by f = ( f 1 , . . . , f s ) and by the c × c minors of D f , is empty. A set E = Z(I) \ Z(J) is called locally closed, and its dimension is the dimension of its Zariski closure Z(I(E)).

If V is equidimensional and smooth, and if g : C n → C m is an algebraic map, the critical points of the restriction of g to V are denoted by crit (g, V), and defined by f = ( f 1 , . . . , f s ) and by the c + m minors of D ( f, g). Equivalently, a point x ∈ V is critical for g on V if and only if the differential map dg : T x V → C m is not surjective (where T x V is the Zariski tangent space of V at x, cf. (Shafarevich, 1977, Sec. 2.1.2)). The elements of g(crit (g, V)) are the critical values, and the elements of C m \ g(crit (g, V)) are the regular values of the restriction of g to V.

Let S ⊂ R n be any set, and let f : R n → R be a continuous function with respect to the Euclidean topology of R n and R. A point x * ∈ S is a local minimizer of f on S , if there exists an Euclidean open set U ⊂ R n such that x * ∈ U and f (x * ) ≤ f (x) for every x ∈ U ∩ S . A point x * ∈ S is a minimizer of f on S if f (x * ) ≤ f (x) for every x ∈ S . In particular, if C ⊂ S is a connected component of S , every minimizer of f on C is a local minimizer of f on S .

We finally recall the notation introduced previously. We consider m × m symmetric matrices A 0 , A 1 , . . . , A n ∈ S m (Q), and a linear matrix

A(x) = A 0 + x 1 A 1 + • • • + x n A n . The convex set S = {x ∈ R n : A(x)
0} is called a spectrahedron. The integer r ∈ N will denote the maximal admissible rank in Problem (1). Given an integer p ∈ N, with 0 ≤ p ≤ r, we denote by D p = {x ∈ C n : rank A(x) ≤ p} the determinantal variety of maximal rank p generated by A(x).

Representation via incidence varieties

The algebraic set D p will not be represented as the vanishing locus of the (p + 1) × (p + 1) minors of A(x), mainly by two reasons. The first is that computing determinants is a difficult task. Even if this first issue could be avoided by some precomputation, the singularities of determinantal varieties appear generically. We are going to represent D p as the projection of a more regular algebraic set, reviewing a classical construction.

Let V be a vector space of dimension d and let G(e, d) be the Grassmannian of linear subspaces of dimension e of V, with e ≤ d. Fixed a basis of V, a point L = span(v 1 , . . . , v e ) ∈ G(e, d) is represented by the d × e matrix whose columns are v 1 , . . . , v e . With this in mind, we consider linear subspaces of C m to model rank defects in A(x).

Let A ∈ S n+1 m (Q), and let p, r ∈ N, with 0 ≤ p ≤ r ≤ m. We denote by Y(y) = (y i, j ) a m × (mp) matrix with unknowns entries. Then, for x * ∈ C n , A(x * ) has rank at most p, if and only if there is y * ∈ C m(m-p) such that A(x * )Y(y * ) = 0, with rank Y(y * ) = mp. Moreover, one can suppose that one of the maximal minors of Y(y * ) is the identity matrix I m-p (cf. for example (Faugère et al., 2010, Sec. 2)).

For ι ⊂ {1, . . . , m} with #ι = mp, we denote by Y ι the maximal minor of Y(y) whose rows are indexed by ι. We deduce that D p is the image under the projection π n :

C n × C m(m-p) → C n of the algebraic set V p = ι ⊂ {1, . . . , m} #ι = m -p V p,ι where V p,ι = {(x, y) ∈ C n × C m(m-p) : A(x)Y(y) = 0, Y ι = I m-p }.
We call the sets V p,ι incidence varieties for D p . We denote by f (A, ι) (often simply by f ) the polynomial system defining V p,ι .

We prove the following Proposition on the regularity of V p,ι .

Proposition 1. Let ι ⊂ {1, . . . , m} with #ι = m -p. 1. There is a subsystem f red ⊂ f (A, ι) of cardinality # f red = m(m -p) + m-p+1 2 such that Z( f red ) = Z( f (A, ι)) = V p,ι . 2. There is a non-empty Zariski open set A ⊂ S n+1 m (C) such that, if A ∈ A ∩ S n+1 m (Q), V p,ι is either empty or smooth and equidimensional of co-dimension m(m -p) + m-p+1

2

, and f generates a radical ideal.

Proof. We start with Point 1, by explicitely constructing the subsystem f red . Suppose w.l.o.g. that ι = {1, . . . , m -p}, and denote by g i, j the (i, j)-th entry of the matrix A(x)Y(y) where Y ι has been substituted by I m-p . Then f red is defined as follows:

f red = (g i, j for i ≥ j, Y ι -I m-p ).
We prove now that Z( f red ) = Z( f (A, ι)). If a i, j is the (i, j)-th entry of A, for i < j one has that g i, jg j,i = m ℓ=m-p+1 a i,ℓ y ℓ, ja j,ℓ y ℓ,i , since A is symmetric. Using the polynomial relations g k,ℓ = 0 for k > mp one can solve for a i,ℓ and a j,ℓ , and deduce

g i, j -g j,i ≡ ≡ m ℓ=m-p+1         - m t=m-p+1 a ℓ,t y t,i y ℓ, j + m t=m-p+1 a ℓ,t y t, j y ℓ,i         ≡ m ℓ,t=m-p+1 a ℓ,t -y t,i y ℓ, j + y t, j y ℓ,i ≡ 0 modulo g k,ℓ , k > m -p . This proves Point 1.
We now give the proof of Point 2. We denote by ϕ the polynomial map :

C n+m(m-p) × S n+1 m (C) → C m(m-p)+( m-p+1
2 ) sending (x, y, A) to f red (x, y, A), and let ϕ A denote the section map

ϕ A (x, y) = ϕ(x, y, A). Hence ϕ -1 A (0) = V p,ι . If ϕ -1 (0) = ∅, then for all A ∈ S n+1 m (C), ϕ -1 A (0) = V p,ι = ∅, and we conclude defining A = S n+1 m (C). If ϕ -1 (0) ∅,
we prove below that 0 is a regular value of ϕ. We deduce by Thom's Weak Transversality Theorem (Safey El Din, M. and Schost, É., 2017, Sec.4.2) that there exists a nonempty Zariski open set A ι ⊂ S n+1 m (C) such that for A ∈ A ι , 0 is a regular value of ϕ A . We finally deduce by the Jacobian Criterion (Eisenbud, 1995, Th.16.19) 

that for A ∈ A ι , V p,ι is smooth and equidimensional of co-dimension m(m -p) + m-p+1
Now we only have to prove that 0 is a regular value of ϕ. Let D ϕ be the Jacobian matrix of ϕ. We denote by a ℓ,i, j the variable representing the (i, j)-th entry of A ℓ . We consider the derivatives of elements in f red with respect to:

• the variables η = {a 0,i, j : i ≤ mp or j ≤ m -p};

• the variables y i, j with i ∈ ι.

Let (x, y, A) ∈ ϕ -1 (0). The submatrix of D ϕ(x, y, A) containing such derivatives, contains the following non-singular blocks: the derivatives of A(x)Y(y) w.r.t. elements in η, that is a unit block I (m-p)(m+p+1)/2 ; the derivatives of Y ι -I m-p , that is a unit block I (m-r) 2 . These two blocks are orthogonal, and we deduce that D ϕ is full rank at the point (x, y, A). Since (x, y, A) is arbitrary in ϕ -1 (0), we conclude that 0 is a regular value of ϕ.

Example 2. We construct an example of the relations among the polynomials defining V p,ι , computed by Proposition 1. Let A(x) = (x i, j ) i, j be a 3 × 3 symmetric matrix of unknowns x = (x 11 , x 12 , x 13 , x 22 , x 23 , x 33 ). We encode matrices of rank 1 in the pencil A(x) with kernel configuration ι = {1, 2} ⊂ {1, 2, 3} via the following polynomial equations:

A(x) •           1 0 0 1 y 31 y 32           = 0.
Denoting with f i j the (i, j)-th entry of the previous matrix product, it is straightforward to check that g 12g 21 = y 32 x 3y 31 x 5 ≡ y 31 x 6 y 32y 32 x 6 y 31 = 0, modulo the ideal I = g 31 , g 32 .

Critical points

In this section we consider polynomial systems encoding the local minimizers of the linear function ℓ c (x) : R n → R in (1) restricted to the determinantal variety D p ∩ R n , with 0 ≤ p ≤ r. We denote by L c the map L c : R n+m(m-p) → R sending (x, y) to c T x, that is L c = ℓ c • π n , with π n : R n+m(m-p) → R n , π n (x, y) = x. With analogy to the description of D p via incidence varieties of the previous section, we consider the set crit (ℓ c , V p,ι ∩ R n+m(m-p) ) of critical points of the restriction of L c to V p,ι ∩ R n+m(m-p) . 

∈ R m(m-p) such that ( x, ỹ) ∈ V p,ι . Let C ( x,ỹ) be the connected component of V p,ι ∩ R n+m(m-p) containing ( x, ỹ). We claim (and prove below) that ( x, ỹ) is a minimizer of L c on π -1 n (U) ∩ C ( x,ỹ) , hence local minimizer on π -1 n (U) ∩ V p,ι . We deduce that t = ℓ c ( x) = L c ( x, ỹ) lies in the boundary of L c (π -1 n (U) ∩ C x,ỹ ).
In particular, the differential map of L c at x is not surjective: because A ∈ A , then V p,ι is smooth and equidimensional, and hence ( x, ỹ) ∈ crit (L c , V p,ι ∩ R m(m-p) ). Now we prove our claim. Recall that L c ( x, ỹ) = ℓ c ( x) = t, and suppose that there is (x, y) ∈ π -1 n (U) ∩ C ( x,ỹ) such that L c (x, y) < t. There exists a continuous semialgebraic map τ : [0, 1] → C ( x,ỹ) such that τ(0) = ( x, ỹ) and τ(1) = (x, y). We deduce that π n • τ is also continuous and semialgebraic. Since

π n • τ(0) = x and π n • τ(1) = x, one gets x ∈ U ∩ C x. Then ℓ c (x) = L c (x, y) < t = ℓ c ( x) contradicts the hypothesis that x is a local minimizer of ℓ c on C x.
Lemma 3 states that the minimizers of ℓ c on D p ∩ R n are obtained as the projection on the first n variables of the critical points of L c over the lifted incidence variety V p ∩ R n+m(m-p) . We are now going to prove that such critical points are generically finite. Let us suppose that A ∈ A (see Proposition 1), and let c ∈ Q n . We also fix a subset ι ⊂ {1, . . . , m} of cardinality #ι = mp.

We have denoted, in Section 2.2, by f ⊂ Q[x, y] the polynomial system defining V p,ι , constituted by the entries of A(x)Y(y) and of Y ι -I m-p . By Proposition 1, we deduce that f red , and hence f , generates a radical ideal and defines a smooth equidimensional algebraic set of co-dimension m(mp) + m-p+1 2 . The set crit (L c , V p,ι ) is hence defined (after the elimination of the Lagrange multipliers) by the following polynomial system: lag(ι) :

f = 0; (g, h) = z ′ D f D L c = 0, (4) 
where z = (z 1 , . . . , z (2m-p)(m-p) , 1) is the vector of Lagrange multipliers: these are the classical first-order optimality conditions in constrained optimization. In the previous notation, the vector g (resp. h) is of size n (resp. m(mp)). For the sake of brevity, we say that a point (x, y, z) ∈ Z(lag(ι)) has rank p, if rankA(x) = p.

Our next goal in this section is to prove the following Proposition. It states that if the linear function ℓ c in Problem (1) is generic, the points x * ∈ D p ∩ R n , such that rankA(x * ) = p, that correspond to critical points (x * , y * ) of the restriction of L c to V p ∩ R n+m(m-p) , are finitely many. 

A ∈ A ∩ S n+1 m (Q).
There exists a non-empty Zariski open set C ⊂ C n such that, for c ∈ C ∩ Q n , for every p = 0, . . . , r, and for every ι ⊂ {1, . . . , m} such that #ι = mp, the projection of the solutions of the system lag(ι) of rank p over the x-space is a finite set.

In order to prove Proposition 4, we use the local description of determinantal varieties as developed in (Henrion et al., 2015a, Sec. 4.1) and in (Henrion et al., 2015c, Sec. 5.1). This is briefly recalled below. Suppose that x ∈ D p ∩ R n , with rank A(x) = p, and that the upper-left p × p submatrix N of A(x) is non-singular (at least one of the p × p submatrices of A(x) is non-singular). That is

A(x) = N Q P R (5) 
and det N 0. Suppose also w.l.o.g. that ι = {1, . . . , m -p}. By (Henrion et al., 2015a, Sec.4.1) or (Henrion et al., 2015b, Lemma 13), the local equations of V p,ι over x are given by

I p N -1 Q 0 Σ(N) Y(y) = 0 and Y ι -I m-p = 0, (6) 
where 2) ) be the matrix obtained by isolating the first p rows (resp. last mp rows) from Y(y). Let U ι be such that U ι Y(y) = Y ι , and let 2) and hence that both Y (2) and

Σ(N) = R -PN -1 Q is the Schur complement of A(x) at N, well defined since N is not singular: these are elements of the local ring Q[x, y] det N at I = det N . Let Y (1) (resp. Y ( 
U ι = [U (1) ι |U (2) ι ] be the corresponding column subdivision of U ι . Then (6) imply I m-p = U (1) ι Y (1) + U (2) ι Y (2) = (U (2) ι -U (1) ι N -1 Q)Y ( 
U (2) ι -U (1) ι N -1 Q are invertible (in the local ring Q[x] det N ).
We deduce the following equivalent form of the previous equations: f :

Y (1) + N -1 QY (2) = 0, Σ(N) = 0, Y (2) -(U (2) ι -U (1) ι N -1 Q) -1 = 0, (7) 8 
denoted by f . Up to reordering its entries, the Jacobian matrix of f is

D f =           D x [Σ(N)] i, j 0 (m-p) 2 ×m(m-p) ⋆ I p(m-p) ⋆ 0 I (m-p) 2           . If A ∈ A , by Proposition 1 the rank of D f equals # f red = m(m -r) + m-r+1
2 at every x ∈ Z( f ). Similarly, we localize the Lagrange system lag(ι) (cf. ( 4)) by defining:

( g, h) = z ′ D f D L c .
By the structure of D f , one gets hi = z (m-p) 2 +i , for i = 1, . . . , m(mp), and hence one can substitute z (m-p) 2 +i = 0, i = 1, . . . , m(mp), in ( f , g). The proof is similar to that of Point 2 of Proposition 1 and hence we only sketch it. Let

ϕ : C n+d+e+m(m-p) × C n -→ C n+d+e+m(m-p) (x, y, z, c) -→ ( f , g, h)(x, y, z, c).
Then the Jacobian matrix of ( f , g, h) is D ϕ as a polynomial map. We prove that 0 is a regular value of ϕ, and apply Thom's Weak Transversality Theorem (Safey El Din, M. and Schost, É., 2017, Sec.4.2) as in the proof of Proposition 1. Let (x, y, z, c) ∈ ϕ -1 (0) (if it does not exist, define C N = C n ). Since polynomials in f only depend on x and y, then D f is a submatrix of D ϕ and the columns corresponding to the derivatives of f with respect to z, c are zero. Hence the rank of D ϕ is at most n + d + m(mr) since D f has e rank defects by Proposition 1 (recall that A ∈ A ). A full-rank submatrix of D ϕ at (x, y, z, c) is then given in this case by the derivatives with respect to: (1) x, y, (2) c 1 , . . . , c n , and (3) z (m-p) 2 +i , i = 1, . . . , m(mp). Now, we can conclude the proof. Let c ∈ C = ∩ N C N (previously defined). From the previous claim, we deduce that the locally closed set E = Z(lag(ι)) ∩ {(x, y, z) : rank A(x) = p} is empty or equidimensional of dimension e. Let

π : C n+m(m-p)+d+e -→ C n (x, y, z) -→ x
be the projection over the x-space, and x * ∈ π(E). In particular rankA(x * ) = p, and there is a unique y * ∈ C m(m-p) such that f (x * , y * ) = 0. We deduce that π -1 (x * ) is isomorphic to the linear space defined by (z 1 , . . . , z d+e ) : (z 1 , . . . , z d+e )D f = (c ′ , 0) .

Since the rank of D f is d, π -1 (x * ) is a linear space of dimension e, and by the Theorem on the Dimension of Fibers (Shafarevich, 1977, Sect. 6.3, Theorem 7) π x (E) has dimension 0.

From semi-algebraic to algebraic optimization

In order to prove that our algorithm is correct, we present in this section the main geometric result of this work. By the independent interest of the results of this section, we need to introduce, first, some notation.

Given c ∈ Q n and A ∈ S n+1 m (Q), for 0 ≤ r ≤ m, we have denoted by F r (A, c) the (possibly empty or infinite) set of minimizers of ℓ c on S ∩ D r . By simplicity, we also call F r (A, c) the set of minimizers of (SDP) r . When r = m, F m (A, c) is the convex optimal face of the spectrahedron S in direction c. Indeed, since every face of a spectrahedron is exposed, it is exactly defined as the set of minimizers of some semidefinite program (SDP) m . We denote by

R r (A, c) = p : 0 ≤ p ≤ r, ∃ x ∈ F r (A, c), rank A(x) = p
the rank profile of F r (A, c), namely the set of ranks of matrices in F r (A, c). Clearly, F r (A, c) ∅ if and only if R r (A, c) ∅. This is our main theorem in this section.

Theorem 5. Suppose that F r (A, c) ∅, and let p ∈ R r (A, c). For x * ∈ F r (A, c) such that rank A(x * ) = p, then x * is a local minimizer of ℓ c on D p ∩ R n .

Proof. Suppose that x * is as in the hypothesis. We denote by C * ⊂ D p ∩ R n the connected component of D p ∩ R n containing x * . Hence there are three possible (non mutually exclusive) cases, that we analyze below. Recall that p ≤ r, hence D p ⊂ D r .

First case: C * ⊂ S . Hence C * ⊂ S ∩ D p ⊂ S ∩ D r . Since S ∩ D r is the feasible set of (SDP) r and x * is a minimizer of (SDP) r , hence x * is a minimizer of ℓ c on C * . Hence it is a local minimizer of ℓ c on D p ∩ R n , as claimed. We prove two corollaries of Theorem 5 and of previous results, which are worth to be made explicit and highlighted. Corollary 6. Let x * ∈ F r (A, c) satisfy the following property: for all Euclidean open sets U ⊂ R n containing x * , U contains a singular matrix with a negative eigenvalue. Then, if p = rank A(x * ), the connected component C * ⊂ D p ∩ R n containing x * is contained in S .

Proof. We apply mutatis mutandis the argument of the Third case in the proof of Theorem 5, without the hypothesis that C * S . Hence we conclude that necessarily C * ⊂ S .

The second corollary gives a finiteness theorem for the set of solutions of a generic rank constrained semidefinite program (1). Proof. Remark that F r (A, c) is the union of sets B p ⊂ F r (A, c), for p ∈ R r (A, c), corresponding to minimizers of rank p, that is F r (A, c) = ∪ p∈R r (A,c) B p . We prove that B p is finite for all p ∈ R r (A, c).

Let x * ∈ B p . By Theorem 5, x * is a local minimizer of ℓ c on D p ∩ R n . Since A ∈ A , by Lemma 3 B p is included in the union of the projections of the sets of critical points of L c on V p,ι , for ι ⊂ {1, . . . , m}, #ι = mp. Since c ∈ C , and since rank A(x * ) = p, by Proposition 4 B p is the projection of a finite set, hence finite.

The algorithm

The main algorithm described in this work is called SolveSDP.

Description

We first describe the main subroutines of SolveSDP.

CheckReg. With input A ∈ S n+1 m (Q) and p ≤ r, it returns true if for all ι ⊂ {1, . . . , m}, with #ι = mp, the set V p,ι is smooth and equidimensional; otherwise, it returns false.

Optimize. With input A, c and p, it returns the vector of ideals (lag(ι 1 ), . . . , lag(ι ( m p ) )) ⊂ Q[x, y, z], where ι j ⊂ {1, . . . , m}, with #ι j = mp, j = 1, . . . , m p . The set ∪ j Z(lag(ι j )) encodes the union of the critical points of L c restricted to the components V p,ι of V p .

Project. With input the output of Optimize, it substitutes each ideal lag(ι j ) with the elimination ideal I ι j = lag(ι j ) ∩ Q[x], for j = 1, . . . , m p , returning I = (I ι j , i = 1, . . . , m p ). We recall the definition of rational parametrization of a finite set S ⊂ R n : this is given by a vector Q = (q, q 0 , q 1 , . . . , q n ) ⊂ Q[t] such that S admits a representation (2). We need to define two routines performing operations on rational parametrizations of finite sets.

RatPar. Given a zero-dimensional ideal

I ι j ⊂ Q[x]
, it returns a rational parametrization Q = (q, q 0 , q 1 , . . . , q n ) ⊂ Q[t] of I ι j . If I ι j is not zero-dimensional, it returns an error message.

Union. Given rational parametrizations

Q 1 , Q 2 ⊂ Q[t] encoding two finite sets V 1 , V 2 ⊂ C n , it returns a rational parametrization Q ⊂ Q[t] encoding V 1 ∪ V 2 .
The following is the formal procedure of SolveSDP. We offer below a more explicit description of the algorithm for the sake of clarity.

The input is a triple (A, c, r), where A ∈ S n+1 m (Q) is (n + 1)-tuple of symmetric matrices with rational coefficients, c ∈ Q n defines the linear function ℓ c in (1) and r is the maximum admissible rank. For every value of p from 0 to r, the algorithm checks whether the regularity assumption on the incidence varieties V p,ι , ι ⊂ {1, . . . , m}, for #ι = mp, holds. If this is the case, it computes rational parametrizations Q ι of the Lagrange systems encoding the critical points of the map L c , on the components V p,ι of the incidence variety V p . The output is a rational parametrization Q encoding the union of the finite sets defined by the Q ′ ι s.

Algorithm 1 SolveSDP 1: procedure SolveSDP(A, c, r)

2: Q ← [ ] 3:
for p = 0, . . . , r do 4:

if CheckReg(A, p) = false then return error 5:

I ← Project(Optimize(A, c, p))

6:

for j = 1, . . . , m p do 7:

Q ι j ← RatPar(I ι j ) 8: Q ← Union(Q, Q ι j ) 9:
return Q

Correctness

We prove in this section that SolveSDP is correct. Our proof relies on intermediate results already stated and proved in the previous sections. 

. Let A ∈ A ∩ S n+1 m (Q), c ∈ C ∩ Q n and 0 ≤ r ≤ m.
Then the output of SolveSDP is a rational parametrization of a finite set containing all minimizers of (SDP) r .

Proof. Let (A, c, r) be the input of SolveSDP, and let x * ∈ R n be a solution of (SDP) r . Let p = rankA(x * ). By Theorem 5, x * is a local minimizer of ℓ c on D p ∩ R n . Let us denote by S the image of the union of sets crit (L c , V p,ι ), ι ⊂ {1, . . . , m}, #ι = mp under the projection π n (x, y) = x, namely

S = π n         #ι=m-p crit (L c , V p,ι )         .
Lemma 3 implies that x * ∈ S . Since A ∈ A , by Proposition 1 V p,ι is smooth and equidimensional of dimension m(mp) + m-p+1 2 . Hence, for all ι ⊂ {1, . . . , m}, with #ι = mp, the set crit (L c , V p,ι ∩R n+m(m-p) ) is defined by the Lagrange system lag(ι) introduced in (4). We conclude that there exists ι as above, and y * ∈ C n+m(m-p) and z * ∈ C (2m-p)(m-p)+1 such that (x * , y * , z * ) is a solution of lag(ι) of rank p (indeed, by hypothesis rankA(x * ) = p). By Proposition 4, the solutions of rank p of lag(ι) are finitely many.

Hence, respectively, the subroutines Optimize, Project and RatPar compute a rational parametrization Q ι = (q (ι) , q (ι) 0 , . . . , q (ι) n ) ⊂ Q[t] such that there exists t * ∈ R such that

x * = (q (ι) 1 (t * )/q (ι) 0 (t * ), . . . , q (ι) n (t * )/q (ι) 0 (t * )).
Then the output Q is a rational parametrization containing x * . By the genericity of x * among the solutions of (SDP) r , we conclude.

Complexity analysis

Degree bounds for the output representation

The output of SolveSDP is a rational univariate parametrization Q = (q, q 0 , q 1 , . . . , q n ) ⊂ Q[t]. For practical purposes, often it is useful to compute an approximation of the coordinates of the minimizers of Problem (1). This can be done by performing real root isolation on the univariate polynomial q. Hence we are interested in bounding the degree of q, which is done by the following Proposition.

Proposition 9. Let Q = (q, q 0 , q 1 , . . . , q n ) ⊂ Q[t] be the rational parametrization returned by SolveSDP. Then

deg q ≤ r p=0 m p θ(m, n, p),
where

θ(m, n, p) = k c p n -k n -1 k + c p -1 -p(m -p) p(m -p) k , with c p = (m -p)(m + p + 1)/2.
Proof. We first prove that θ gives a bound on the degree of the ideal generated by lag(ι), that is on the degree of the partial rational parametrization Q ι . Since Q encodes the union of all algebraic sets defined by the Q ′ ι s, and since the previous degree does not depend on ι, we conclude by adding all such bounds (each one multiplied by m p , the number of subset ι of cardinality mp). This relies on an equivalent construction of lag(ι) which is given below.

Given p ∈ {0, . . . , r}, we fix a subset ι ⊂ {1, . . . , m} with #ι = mp. We exploit the multilinearity of the polynomial system f defining the incidence variety V p,ι . First, we eliminate variables y i, j , with i ∈ ι, by substituting Y ι = I m-p ; we also eliminate polynomials Y ι -I m-p in f red (cf. Proposition 1). One obtains a polynomial system f of cardinality c p := (mp)(m + p + 1)/2. Moreover, by construction, f is constituted by c p polynomials of bi-degree at most (1, 1) with respect to the groups of variables x and y := (y i, j : i ι).

(8)

We also suppose without loss of generality that the linear map ℓ c in Problem (1) defines the projection over x 1 , that is that c = (1, 0, . . . , 0). Hence, the system lag(ι) is equivalent to the following. We consider the c p elements in f . Let D f be the Jacobian matrix of f w.r.t. variables

x, y, and let D 1 be the matrix obtained by eliminating the first column from D f . The critical points of the projection over x 1 restricted to Z( f ) are then defined by f = 0 and by z ′ D 1 = 0, where z := (z 1 , . . . ,

z c p -1 , 1) (9) 
is a non-zero vector of c p -1 Lagrange multipliers. Hence lag(ι) is equivalent to a polynomial system of • c p equations of bi-degree at most (1, 1, 0) w.r.t. x, y, z;

• n -1 equations of bi-degree at most (0, 1, 1) w.r.t. x, y, z;

• p(mp) equations of bi-degree at most (1, 0, 1) w.r.t. x, y, z.

We call this new polynomial system lag(ι). By the Multilinear Bézout Theorem (cf. for example (Safey El Din, M. and Schost, É., 2017, Prop. 11.1.1)) the degree of lag(ι) is bounded above by the coefficient of s n x s p(m-p)

y s c p -1 z in (s x + s y ) c p (s y + s z ) n-1 (s x + s z ) p(m-p) ,
which is exactly θ(m, n, p).

Bounds on the arithmetic complexity

Our goal in this section is to bound the number of arithmetic operations over Q performed by the main subroutine of SolveSDP, which is the computation of the rational parametrization Q ι done by RatPar. Before that, we give bounds for the complexity of routines Project and Union. Let lag(ι) ⊂ Q[x, y, z] (cf. ( 8) and ( 9)) be the equivalent Lagrange system built in the proof of Proposition 9, and θ = θ(m, n, p) be the bound on the degree of lag(ι). From (Safey El Din, M. and Schost, É., 2017, Chapter 10), one gets the following estimates:

• by (Safey El Din, M. and Schost, É., 2017, Lemma 10.1.5), Project can be performed with at most n 2 θ(m, n, p) 2 arithmetic operations;

• by (Safey El Din, M. and Schost, É., 2017, Lemma 10.1.3), Union can be performed with at most n( p s=0 m s θ(m, n, s)) 2 arithmetic operations. We now turn to the complexity of RatPar. Our complexity model is the symbolic homotopy algorithm for computing rational parametrization in [START_REF] Jeronimo | Deformation techniques for sparse systems[END_REF]. This is a probabilistic exact algorithm for solving zero-dimensional systems via rational parametrizations, exploiting their sparsity. It allows to express the arithmetic complexity of RatPar as a function of geometric invariants of the system lag(ι) (mainly of its degree, which is bounded by θ(m, n, p), cf. Proposition 9).

We briefly recall the construction of the homotopy curve in [START_REF] Jeronimo | Deformation techniques for sparse systems[END_REF]. This is similar to (Henrion et al., 2015c, Sec.4). Let t be a new variable, and recall that lag(ι) contains quadratic polynomials with bilinear structure with respect to the three groups of variables x, y, z. Let g ⊂ Q[x, y, z] be a new polynomial system such that: (1) #g = # lag(ι), (2) the i-th entry of g is a polynomial with the same monomial structure as the i-th entry of lag(ι), and (3) the solutions of g are finitely many and known. Since lag(ι) is bilinear in x, y, z, the system g can be obtained by considering suitable products of linear forms in, respectively, x, y and z. The algorithm in [START_REF] Jeronimo | Deformation techniques for sparse systems[END_REF] builds the homotopy curve Z(h) defined by

h = t lag(ι) + (1 -t)g ⊂ Q[x, y, z, t].
The proof of the following lemma is technical and we omit it.

Lemma 10. Let θ(m, n, p) be the bound on the degree of Z( lag(ι)) computed in Proposition 9. The degree of the homotopy curve Z(h) is in

O((n + c p + p(m -p)) min{n, c p }θ(m, n, p)).
The degree of Z( lag(ι)) and of the homotopy curve Z(h) are the main ingredients of the complexity bound for the algorithm [START_REF] Jeronimo | Deformation techniques for sparse systems[END_REF], which is given by (Jeronimo et al., 2009, Prop. 6.1). We use this complexity bound in our estimate. Indeed, let us denote by

∆ xy = {1, x i , y j , x i y j : i = 1, . . . , n, j = 1, . . . , p(m -p)} ∆ yz = {1, y j , z k , y j z k : j = 1, . . . , p(m -p), k = 1 . . . , c p -1} ∆ xz = {1, x i , z k , x i z k : i = 1, . . . , n, k = 1, . . . , c p -1}
the supports of polynomials in lag(ι). To state our complexity result for SolveSDP, we suppose that all the regularity assumptions on A(x) are satisfied.

Theorem 11. Suppose that A ∈ A (defined in Proposition 1). Then SolveSDP runs within Proof. Complexity bounds for subroutines Project and Union have been computed earlier in Section 5.2. By (Jeronimo et al., 2009, Prop.6.1), one can compute a rational parametrization of lag(ι) within O((ñ 2 N log ∆+ ñω+1 )ee ′ ) where: ñ = n+p(m-p)+c p -1 is the number of variables in lag(ι);

O        
N = c p #∆ xy +(n-1)#∆ yz + p(m-p)#∆ xz ∈ O(npc p (m-p)); ∆ = max{ q : q ∈ ∆ xy ∪∆ yz ∪∆ xz } ≤ ñ;
finally e is the degree of Z( lag(ι)) and e ′ the degree of Z(h), and ω is the exponent of matrix multiplication. Applying bounds computed in Proposition 9 and Lemma 10, and since ñ ≤ N and ω ≤ 3, we conclude that RatPar runs within O(N 5 θ(m, n, p) 2 ) arithmetic operations. We conclude by recalling that for every p = 0, . . . , r, the routine RatPar runs m p times.

Experiments

We present results of our tests on a Maple implementation of the algorithm SolveSDP. We integrate this implementation in the Maple library spectra, cf. Henrion et al. (2016b), whose main goal is to implement efficient exact algorithms for semidefinite programming and related problems. The Version 1.0 of spectra can be freely downloaded from the following web page: www.mathematik.tu-dortmund.de/sites/simone-naldi/software

The rational parametrizations are computed using Gröbner bases via the Maple implementation of the software FGb [START_REF] Faugère | Mathematical Software -ICMS 2010: Third International Congress on Mathematical Software[END_REF], exploiting the multilinearity of Lagrange systems already exhibited in Section 5.1 (cf. [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional gröbner bases with sparse multiplication matrices[END_REF] for a tailored algorithm). The regularity assumptions on the input (A, c) are also checked by testing the emptiness of complex algebraic sets, hence performing Gröbner bases computations.

In Section 6.1 we use SolveSDP to solve generic rank-constrained semidefinite programs, giving details of timings and output degrees of our implementations. In Section 6.2 we consider an application of our results for computing certificates of nonnegativity for multivariate polynomials. The genericity assumptions that must be checked are the smoothness of the incidence varieties V p,ι and the finiteness of the critical points encoded by the Lagrange systems. These conditions are generically satisfied, according to Proposition 1 and Lemma 4, respectively, but can be checked effectively on given instances by using Gröbner bases computations. Indeed, it amounts to checking that the singular locus of the incidence variety is empty, or that the set of critical points is finite. The (complex) dimension of an algebraic set can be checked by computing the Hilbert function of the corresponding ideal via Gröbner bases computations, see e.g. (Cox et al., 2007, Ch.9, §3), and this is what is done by spectra.

Random SDP

In this test, we draw (n + 1)-tuples of random m × m symmetric linear matrices A 0 , A 1 , . . . , A n with rational coefficients. The numerators and denominators of the rational entries are generated with respect to the uniform distribution in a given interval (in our case, in Z ∩ [-10 3 , 10 3 ]). We also draw random linear forms ℓ c = c T x, and we consider different rank-constrained semidefinite programs.

As explained in Section 4, the most costly routine in SolveSDP is the computation of rational parametrizations of the Lagrange systems lag(ι) defined in (4), namely Step 7 in the formal description in Section 4.1. We report in Table 1 on timings (column SolveSDP) and output degrees (column Deg) relative to the computation of the rational parametrization of a single Lagrange system. Ideally, we recall that to get the total time for SolveSDP one should take the sum of these timings for p = 0, . . . , r weighted by We remark that our implementation is able to tackle from small to medium-size input semidefinite programs and different rank constraints. As an example, for (m, n, p) = (5, 7, 2) one should compute the critical points of a general linear form over the algebraic set defined by 5 3 5 3 = 100 polynomials of degree 3 in 7 variables, which is unreachable by the state-of-the-art algorithms: our implementation computes a rational parametrization of degree 140 after seven hours. Further, when the size m is fixed, the cost in terms of computation seems to reflect suitably both the growth of output degree and of the number of variables n.

Moreover, it is worth to highlight that the entries of column Deg coincide exactly with the algebraic degree of SDP with parameters (m, n, p), as computed in (Nie et al., 2010, Table 2). This fact is not obvious. Indeed, in [START_REF] Nie | The algebraic degree of semidefinite programming[END_REF] the algebraic degree of SDP in rank p (that is, on a solution of rank p) is understood as the degree of the complex variety (CD p ) ‹ dual to the variety CD p = {x ∈ C n : rank(A(x)) ≤ p}. Our algorithm builds intermediate incidence varieties whose degree is typically larger than the degree of the determinantal varieties and of their duals: hence one could a priori expect the degree of the output representation to be larger than the expected degree (which is computed in [START_REF] Nie | The algebraic degree of semidefinite programming[END_REF]). Even though the estimate of the output degree in Proposition 9 does not depend explicitly on formulas in [START_REF] Nie | The algebraic degree of semidefinite programming[END_REF], but only on multilinear bounds, this fact is remarkable and represents a guarantee of optimality of our method.

Sum-Of-Squares certificates

In this final section, we consider an interesting application of rank-constrained semidefinite programming. Let u = (u 1 , . . . , u k ) and let f ∈ R[u] 2d be a homogeneous polynomial of degree 2d, for d ≥ 1. Let b = { i u j i i } i j i =d be the monomial basis of R[u] d . The sum-of-squares (SOS) decompositions of f are parametrized by the so-called Gram spectrahedron of f : [START_REF] Woermann | An algorithm for sums of squares of real polynomials[END_REF]. Remark here that the constraint f = b T Xb is linear in the entries of X.

G( f ) = {X ∈ S ( k+d-1 d ) (R) : X 0, f = b T Xb}, and any X ∈ G( f ) is called a Gram matrix for f , cf.
If f = f 2 1 + • • • + f 2 r
, we say that f has a SOS decomposition of length r. We deduce that deciding whether f has a SOS decomposition of length at most r is equivalent to the following rank-constrained semidefinite program:

f = b T Xb X 0 rank X ≤ r. (10) 
We have generated nonnegative polynomials by taking sums of squares of random homogeneous polynomials of degree d. Applying SolveSDP to this subfamily of problem (SDP) r , we have been able to handle example with k ≤ 3 and 2d ≤ 6, corresponding to Gram matrices of size 10. We believe that this is due to the particular sparsity of these linear matrices. We give below direct examples of how the algorithm developed in this paper can be used in practice to compute certificates of positivity for a given f ∈ R[u].

Example 12 (Chua, Plaumann, Sinn, Vinzant). We consider the homogeneous binary sextic

f = u 6 1 -2u 5 1 u 2 + 5u 4 1 u 2 2 -4u 3 1 u 3 2 + 5u 2 1 u 4 2 -2u 1 u 5 2 + u 6 2 ∈ R[u 1 , u 2 ] 6
in (Chua et al., 2016, Ex. 4.4), and its Gram matrix

A =               1 -1 x 1 -2 -x 2 -1 -2x 1 + 5 x 2 x 3 x 1 x 2 -2x 3 + 5 -1 -2 -x 2 x 3 -1 1               .
Essentially by the Fundamental Theorem of Algebra, since f is globally positive on R 2 , we know that it can be expressed as a sum of two squares. In a Maple worksheet, after the library spectra and the matrix A(x) above has been entered, with the command > SolveLMI (A,{rnk,deg,all},[2,3]);

our library computes many solutions corresponding to different SOS-representations of f . In particular, decompositions of length 2 (minimal) and 3, with information on the rank of A on every solution, and on the algebraic degree of its entries. It solves the rank-constrained semidefinite program given in (10). We give below the approximation to 20 decimal digits of two SOSrepresentations, one of length 2:

x 1 ∈ - In addition, some rational SOS-representations are computed, such as

x 1 ∈ [0, 0] x 1 ∈ [2, 2] x 2 ∈ [-2, -2] and x 2 ∈ [-2, -2] x 3 ∈ [2, 2]
x 3 ∈ [0, 0]

Finally, the following rational parametrization defines a finite set (of 4 elements) containing one point where the matrix A(x) is positive semidefinite and has rank 2: q(t) = t 4 -2t 3 -5t 2 + 16t -11 q 0 (t) = 20t 9 -180t 8 + 576t 7 -448t 6 -1917t 5 + 6130t 4 -8058t 3 + 5475t 2 -1787t + 187 q 1 (t) = 20t 9 -156t 8 + 284t 7 + 1070t 6 -6294t 5 + 13725t 4 -16087t 3 + 10434t 2 -3371t + 374 q 2 (t) = -36t 9 + 330t 8 -1116t 7 + 1233t 6 + 2230t 5 -9040t 4 + 12678t 3 -9040t 2 + 3138t -374 q 3 (t) = 20t 9 -144t 8 + 192t 7 + 1278t 6 -6130t 5 + 12087t 4 -12775t 3 + 7148t 2 -1683t.

Example 13. The following ternary quartic f = u 4 1 + u 1 u 3 2 + u 4 2 -3u 2 1 u 2 u 3 -4u 1 u 2 2 u 3 + 2u 2 1 u 2 3 + u 1 u 3 3 + u 2 u 3 3 + u 4 3 . is a sum of two squares, while the general nonnegative ternary quartic is a sum of three squares. This degeneracy can be checked by our algorithm. The Gram matrix of f is a 6 × 6 linear symmetric matrix in 6 variables x 1 , . . . , x 6 . The exact representation of the nonnegativity certificate for f is then given by the following representation:

x 1 = 3 + 16t -8 + 24t 2 x 2 = 8 -24t 2 -8 + 24t 2 x 3 = 8 + 6t + 8t 2 -8 + 24t 2 x 4 = 16 + 6t -16t 2 -8 + 24t 2 x 5 = -3 -16t -8 + 24t 2 x 6 = 3 + 16t -8 + 24t 2
where t is one of the roots of q(t) = t 3t -1. The corresponding Gram matrix has rank 2.

Final remarks

This paper addresses a fundamental problem in computational real algebraic geometry, that is rank-constrained semidefinite programming. Our algorithm is able to return an exact algebraic representation of all minimizers, with explicit bounds on its output degree and whose complexity is essentially quadratic on the mentioned degree bound. The algorithm works under assumptions on the input, which are proved to be generically satisfied. This is done by exploiting the determinantal structure of this optimization problem, and by reducing it to linear optimization over determinantal varieties. This reduction step allows to manage (non-convex) additional rank constraints. To the best of our knowledge, this is the first exact algorithm for solving (SDP) r .

Lemma 3 .

 3 Let A ⊂ S n+1 m (C) be the Zariski open set given in Proposition 1, and let A ∈ A . The set of local minimizers of ℓ c on D p ∩ R n is contained in the image of the union of the sets crit (L c , V p,ι ), for ι ⊂ {1, . . . , m}, with #ι = mp, via the projection map π n (x, y) = x. Proof. Let x ∈ R n be a local minimizer of ℓ c on D p ∩ R n , and let C x ⊂ D p ∩ R n be the connected component containing x. Let t = ℓ c ( x). Then ℓ c (x) ≥ t for all x ∈ U ∩ C x, for some U connected open set. By definition of V p , and since x ∈ D p , there exists ι ⊂ {1, . . . , m -p} and ỹ

Proposition 4 .

 4 Let A ⊂ S n+1 m (C) be the Zariski open set defined by Proposition 1, and let

  Proof of Proposition 4. Let d = m(m-p)+ m-p+1 2 and e = m-p 2 so that d +e = (2mp)(m-p) = #z. First, we claim that there exists a non-empty Zariski open set C N ⊂ C n such that if c ∈ C N ∩Q n the Jacobian matrix of the local system ( f , g, h) has maximal possible rank. Here N refers to the upper left p × p submatrix of A as above. We conclude by defining C = ∩ N C N (where N runs over the family of p × p submatrices of A), which is non-empty and Zariski open.

  Second case: There exists an open set U ⊂ R n such that x * ∈ U and U ∩ (D m-1 \ S ) = ∅. This means that U intersects D m-1 ∩ R n only at positive semidefinite matrices, and U ∩ S is an open subset of S containing x * . We deduce that x * is a minimizer of ℓ c on U ∩ D p ⊂ U ∩ S , hence a local minimizer of ℓ c on D p ∩ R n . Third case: C * S , and for all U ⊂ R n open set, such that x * ∈ U, then U ∩(D m-1 \ S ) ∅. We prove below that such a situation cannot occur. Indeed, one first deduces that, for all U as above, U ∩ (D p \ S ) ∅ since C * S . For a positive integer d ∈ N, we denote by B(x * , 1/d) the open ball with center x * and radius 1/d, that is B(x * , 1/d) = {x ∈ R n : xx * < 1/d}, where x is the Euclidean norm of x. By hypothesis, for all d ∈ N there exists x(d) ∈ B(x * , 1/d) ∩ D p such that A(x(d)) 0. Hence x(d) → x * when d → ∞. Denoting by e 1 (x) ≤ e 2 (x) ≤ • • • ≤ e m (x) the ordered eigenvalues of A(x), one deduces that, for all d ∈ N, e 1 (x(d)) < 0 and hence e m-p+1 (x(d)) ≤ 0 (since the matrix A(x(d)) has at least mp null eigenvalues). In particular e m-p+1 (x(d)) → e m-p+1 (x * ) ≤ 0 when d → ∞. Since x * ∈ S , then e 1 (x * ) = • • • = e m-p (x * ) = e m-p+1 (x * ) = 0, and the rank of A(x * ) is at most p -1, which contradicts the hypotheses.

Corollary 7 .

 7 Let A ⊂ S n+1 m (C) and C ⊂ C n be the Zariski open sets defined respectively in Proposition 1 and 4. If A ∈ A ∩ S n+1 m (Q) and c ∈ C ∩ Q n , the set F r (A, c) of minimizers of the rank-constrained semidefinite program (SDP) r is finite.

Theorem 8 .

 8 Let A ⊂ S n+1 m (C) and C ⊂ C n be the Zariski open sets defined respectively by Proposition 1 and 4

  p (mp)) 5 θ(m, n, p) 2        arithmetic operations over Q, where c p = (mp)(m + p + 1)/2.

Table 1 :

 1 Optimization over D p ∩ R n

	Theorem 11).		m p (similarly to the complexity bound in
	(m, n, p) SolveSDP Deg (m, n, p) SolveSDP Deg
	(3, 3, 2)	11 s	4 (5, 3, 3)	3 s	20
	(4, 3, 2)	2 s	10 (5, 4, 3)	1592 s	90
	(4, 4, 2)	9 s	30 (5, 5, 3)	16809 s	207
	(4, 5, 2)	29 s	42 (5, 2, 4)	7 s	20
	(4, 6, 2)	71 s	30 (5, 3, 4)	42 s	40
	(4, 7, 2)	103 s	10 (5, 4, 4)	42 s	40
	(4, 3, 3)	10 s	16 (5, 5, 4)	858 s	16
	(4, 4, 3)	21 s	8 (6, 6, 3)	704 s	112
	(5, 7, 2)	25856 s	140 (6, 3, 5)	591 s	80

, and that the ideal generated by f red is radical. We conclude defining A = ∩ ι A ι .
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