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Computing isogenies from modular equations in genus two

We present an algorithm solving the following problem: given two genus 2 curves over a field k with isogenous Jacobians, compute such an isogeny explicitly. This isogeny can be either an ℓ-isogeny or, in the real multiplication case, an isogeny with cyclic kernel; we require that k have large enough characteristic and that the curves be sufficiently generic. Our algorithm uses modular equations for these isogeny types, and makes essential use of an explicit Kodaira-Spencer isomorphism in genus 2.

Introduction

We are interested in the following version of the isogeny problem: given two isogenous abelian varieties, compute an isogeny between them explicitly.

Let us start with some motivation. The isogeny problem in the case of elliptic curves was solved by Elkies [START_REF] Elkies | Elliptic and modular curves over finite fields and related computational issues[END_REF]. Given two ℓ-isogenous elliptic curves, where ℓ is a prime, his algorithm uses modular polynomials of level ℓ to compute rational fractions defining this isogeny. Elkies's algorithm is used to speed up Schoof's point counting algorithm for elliptic curves over finite fields [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod p[END_REF]: replacing kernels of endomorphisms by kernels of isogenies yields smaller subgroups of the elliptic curve, and therefore smaller polynomial computations, while giving the same amount of information on the Frobenius. This improvement is at the heart of the well-known SEA point counting algorithm [START_REF] Schoof | Counting points on elliptic curves over finite fields[END_REF].

The situation for point counting in genus 2 is different, as the existing complexity estimates and records only use kernels of endomorphisms [START_REF] Gaudry | Counting points on genus 2 curves with real multiplication[END_REF][START_REF] Gaudry | Genus 2 point counting over prime fields[END_REF]. One can therefore ask whether the idea of using isogenies generalizes. Modular polynomials have now been computed in genus 2: the smallest ones are known both for ℓ-isogenies [START_REF] Milio | A quasi-linear time algorithm for computing modular polynomials in dimension 2[END_REF] and, in the real multiplication case, cyclic βisogenies [START_REF] Milio | Modular polynomials on Hilbert surfaces[END_REF][START_REF] Martindale | Isogeny graphs, modular polynomials, and applications[END_REF]. This opened the way for Atkin-style methods in point counting [START_REF] Ballentine | Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication[END_REF], but isogeny computations remain the missing ingredient to generalize Elkies's method in genus 2. The object of this paper is precisely to fill this gap.

We now present our main result in the case of ℓ-isogenies. For any field k, we denote by A 2 (k) the coarse moduli space of principally polarized abelian surfaces over k, and we denote by j = (j 1 , j 2 , j 3 ) the Igusa invariants as introduced by Streng (see §2.2). We also denote by Ψ ℓ,i for 1 ≤ i ≤ 3 the modular equations of level ℓ in Igusa invariants (see §2.6). Recall that if C is a hyperelliptic curve of genus 2 over a field k, then its Jacobian Jac(C) is a principally polarized abelian surface which is birational to the symmetric square C 2,sym ; the points of C 2,sym over k are the Galois-invariant unordered pairs {P, Q} where P, Q ∈ C(k).

Theorem 1.1. Let ℓ be a prime, and let k be a field such that char k = 0 or char k > 8ℓ + 7. Let U ⊂ A 2 (k) be the open set consisting of abelian surfaces A such that Autk(A) ≃ {±1} and j 3 (A) = 0. Assume that there is an algorithm to evaluate derivatives of modular equations of level ℓ at a given point of U × U over k using C eval (ℓ) operations in k.

Let A, A ′ ∈ U , and let j(A), j(A ′ ) be their Igusa invariants. Assume that A and A ′ are ℓ-isogenous, and that the subvariety of A 3 ×A 3 cut out by the modular equations Ψ ℓ,i for 1 ≤ i ≤ 3 is normal at (j(A), j(A ′ )). Then, given j(A) and j(A ′ ), we can compute 1. a field extension k ′ /k of degree dividing 8, 2. hyperelliptic curve equations C, C ′ over k ′ whose Jacobians are isomorphic to A, A ′ respectively, 3. a point P ∈ C(k ′ ), 4. rational fractions s, p, q, r ∈ k ′ (u, v), such that (s, p, q, r) equals the compositum

C Jac(C) Jac(C ′ ) C ′2,sym A 4 Q →[Q-P ] ϕ ∼ m
where ϕ is an ℓ-isogeny and m is the rational map given by {(x 1 , y 1 ), (x 2 , y 2 )} → x 1 + x 2 , x 1 x 2 , y 1 y 2 , y 2 -y 1 x 2 -x 1 .

The cost of the algorithm is O C eval (ℓ) + O(ℓ) elementary operations and O(1) square roots in k ′ .

In other words, given sufficiently generic genus 2 curves C, C ′ whose Jacobians are ℓ-isogenous, obtained for instance by computing roots of modular equations of level ℓ, we compute rational fractions that determine an ℓ-isogeny completely. We also obtain a similar result in the case of β-isogenies in the real multiplication case: see Theorem 6.3. In a follow-up paper, the first author will design evaluation algorithms for genus 2 modular equations and their derivatives, thereby obtaining estimates on C eval (ℓ). Possible applications of our results to the point counting problem are a major goal for future work.

Let us describe the outline of our algorithm in the case of ℓ-isogenies from a geometric point of view, in any dimension g. The central object is the map

Φ ℓ = (Φ ℓ,1 , Φ ℓ,2 ) : A g (ℓ) → A g × A g
where A g (ℓ) denotes the stack of principally polarized abelian schemes of dimension g with an ℓ-kernel, and A g denotes the stack of principally polarized abelian schemes of dimension g; this map is given by (A, K) → (A, A/K). Both Φ ℓ,1 and Φ ℓ,2 are étale maps. Let ϕ : A → A ′ be an ℓ-isogeny, so that (A, A ′ ) lies in the image of Φ ℓ . Denote by T A (A g ) the tangent space of A g at A, and denote by T 0 (A) the tangent space of A at its neutral point. Then there is a close relation between two maps:

• the deformation map D(ϕ) : T A (A g ) → T A ′ (A g ) defined as

D(ϕ) := dΦ ℓ,2 • dΦ ℓ,1
-1 ;

• the tangent map dϕ : T 0 (A) → T 0 (A ′ ).

This relation stems from a canonical isomorphism, called the Kodaira-Spencer isomorphism, between T A (A g ) and Sym 2 T 0 (A). Therefore, in any dimension g, an isogeny algorithm could run as follows.

1. Compute the deformation map by differentiating certain modular equations giving a local model of A g (ℓ) and A g .

2.

Compute dϕ from the deformation map using an explicit version of the Kodaira-Spencer isomorphism, that is, an explicit way to map a pair (A, w) where w is an element of Sym 2 T 0 (A) to the corresponding point of T A (A g ) in the local model of A g .

3. Finally, attempt to reconstruct ϕ itself by solving a differential system in the formal group of A and performing a multivariate rational reconstruction. In this last step, the characteristic of k should be large with respect to ℓ, hence the condition on the characteristic in Theorem 1.1. Otherwise, a standard solution is to use étaleness of the modular correspondence to lift the isogeny in characteristic 0, as in [START_REF] Joux | Counting points on elliptic curves in medium characteristic[END_REF], and to control the precision losses when reconstructing the isogeny.

In practice, working with stacks would involve adding an additional level structure and keeping track of automorphisms, which is not computationally convenient. Therefore, in order to make everything explicit in the case g = 2, we choose to replace the stack A 2 by its coarse moduli scheme A 2 . We even work up to birationality, by considering the birational map from A 2 to A 3 defined by the three Igusa invariants (j 1 , j 2 , j 3 ). These reductions have the drawback of introducing singularities; this is the reason for restricting to the open set U in Theorem 1.1. When the genericity conditions of Theorem 1.1 are not satisfied, one can still compute the isogeny by working at the level of stacks, or choosing other models, for instance when A or A ′ is a product of elliptic curves.

In the genus 2 setting, the local model of A g (ℓ) that we use in Step 1 is given by modular equations in Igusa invariants; in order to compute the deformation map, it is enough to evaluate modular equations and their derivatives at (A, A ′ ). In Step 2, we choose to encode a basis of T 0 (A) in the choice of a hyperelliptic curve equation. Then, the explicit Kodaira-Spencer isomorphism is simply an expression for certain Siegel modular forms, namely derivatives of Igusa invariants, in terms of the coefficients of the curve (see Theorem 3.14). In

Step 3, we take advantage of the fact that the curve C embeds in its Jacobian to compute with power series in one variable only.

This paper is organized as follows. In Sections 2 and 3, we work over C: Section 2 is devoted to the necessary background on modular forms and isogenies, while Section 3 is devoted to the explicit Kodaira-Spencer isomorphism and the computation of the tangent map. In Section 4, we call upon the language of algebraic stacks to show that the calculations over C remain in fact valid over any base. We present the computation of the isogeny from its tangent map in Section 5, focusing on the large characteristic case which is sufficient for applications to point counting, and we sum up the algorithm in Section 6. Finally, in Appendix A, we present variants in the algorithm in the case of real multiplication by Q( √ 5) and compute an example of cyclic isogeny of degree 11.
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Background on modular forms and isogenies

We present the basic facts about Siegel and Hilbert modular only in the genus 2 case. References for this section are [van08] for Siegel modular forms, and [START_REF] Bruinier | Hilbert modular forms and their applications[END_REF] for Hilbert modular forms, where the general case is treated. We write 4 × 4 matrices in block notation using 2 × 2 blocks. We write m t for the transpose of a matrix m, and use the notations m -t = (m -1 ) t , Diag(x, y) = x 0 0 y .

Siegel modular forms

The Siegel threefold. Denote by H 2 the set of complex symmetric 2 × 2 matrices with positive definite imaginary part. For every τ ∈ H 2 , the quotient

A(τ ) = C 2 /Λ(τ ) where Λ(τ ) = Z 2 ⊕ τ Z 2
is naturally endowed with the structure of a principally polarized abelian surface over C. A basis of differential forms on A(τ ) is given by

ω(τ ) = (2πi dz 1 , 2πi dz 2 )
where z 1 , z 2 are the coordinates on C 2 . Recall that the symplectic group Sp 4 (Z) acts on H 2 in the following way: Theorem 2.2 ([BL04, Prop. 8.1.3]). Let A be a principally polarized abelian surface over C. Then there exists τ ∈ H 2 such that A is isomorphic to A(τ ), and τ is uniquely determined up to action of Sp 4 (Z).

The quotient space A 2 (C) = Sp 4 (Z)\H 2 is the set of complex points of the coarse moduli space A 2 alluded to in the introduction.

Siegel modular forms. Let ρ : GL 2 (C) → GL(V ) be a finite-dimensional holomorphic representation of GL 2 (C). We can assume that ρ is irreducible. A Siegel modular form of weight ρ is a holomorphic map f : H 2 → V satisfying the transformation rule

∀γ = a b c d ∈ Sp 4 (Z), ∀τ ∈ H 2 , f (γτ ) = ρ(cτ + d)f (τ ).
We say that f is scalar-valued if dim V = 1, and vector-valued otherwise. A modular function is only required to be meromorphic instead of holomorphic.

If A is a principally polarized abelian surface over C endowed with a basis ω of Ω 1 (A) (the space of global differential forms on A), and if if f is a Siegel modular form of weight ρ, then it makes sense to evaluate f on the pair (A, ω). We refer to §4 for a geometric interpretation of this fact. To compute this quantity, choose τ ∈ H 2 and an isomorphism η : A → A(τ ) as in Theorem 2.2. Let r ∈ GL 2 (C) be the matrix of the pullback map η * : Ω

1 (A(τ )) → Ω 1 (A) in the bases ω(τ ), ω. Then f (A, ω) = ρ(r)f (τ ).
We can check using Proposition 2.1 that f (A, ω) does not depend on the choice of τ and η.

An explicit view on Siegel modular forms in genus 2

Classification of weights. Finite-dimensional holomorphic representations of GL 2 (C) are well known. Let n ≥ 0 be an integer. We denote by Sym n the n-th symmetric power of the standard representation of GL 2 (C) on C 2 . Explicitly, Sym n is a representation on the vector space C n [x] of polynomials of degree at most n, with

Sym n a b c d W (x) = (bx + d) n W ax + c bx + d .
We take (x n , . . . , x, 1) as the standard basis of C n [x], so that we can write an endomorphism of C n [x] as a matrix; in particular we have

Sym 2 a b c d =   a 2 ab b 2 2ac ad + bc 2bd c 2 cd d 2   .
Proposition 2.3. The weight of a scalar-valued Siegel modular form f is of the form det k for some k ∈ Z, and in fact k ≥ 0. We also say that f is a scalar-valued Siegel modular form of weight k. Writing Sym n as a representation on C n [x] allows us to multiply Siegel modular forms; hence, they naturally generate a graded C-algebra.

Fourier expansions. Let f be a Siegel modular form on H 2 of any weight, with underlying vector space V . If s ∈ M 2 (Z) is symmetric, then f (τ +s) = f (τ ) for every τ ∈ H 2 . Hence, if we write τ = τ 1 τ 2 τ 2 τ 3 and q j = exp(2πiτ j ) for 1 ≤ j ≤ 3, then f has a Fourier expansion of the form

f (τ ) = n1,n2,n3∈Z c f (n 1 , n 2 , n 3 ) q n1 1 q n2 2 q n3 3 .
The Fourier coefficients c f (n 1 , n 2 , n 3 ) belong to V , and can be nonzero only when n 1 ≥ 0, n 3 ≥ 0, and n 2 2 ≤ 4n 1 n 3 . Note that n 2 can still be negative. When computing with q-expansions, we consider them as elements of the power series ring C(q 2 )[[q 1 , q 3 ]]. Writing the beginning of a q-expansion means computing modulo an ideal of the form q ν 1 , q ν 3 for some precision ν ≥ 0.

Structure of scalar-valued forms. The full graded C-algebra of Siegel modular forms in genus 2 is not finitely generated [van08, §25], but the subalgebra of scalar-valued modular forms is.

Theorem 2.4 ([Igu62; Igu67]). The graded C-algebra of scalar-valued evenweight Siegel modular forms in genus 2 is generated by four algebraically independent elements ψ 4 , ψ 6 , χ 10 , and χ 12 of respective weights 4, 6, 10, 12, and qexpansions

ψ 4 (τ ) = 1 + 240(q 1 + q 3 ) + 240q 2 2 + 13440q 2 + 30240 + 13340q -1 2 + 240q -2 2 q 1 q 3 + O q 2 1 , q 2 3 , ψ 6 (τ ) = 1 -504(q 1 + q 3 ) + -504q 2 2 + 44352q 2 + 166320 + 44352q -1 2 -504q -2 2 q 1 q 3 + O q 2 1 , q 2 3 , χ 10 (τ ) = q 2 -2 + q -1 2 q 1 q 3 + O(q 2 1 , q 2 3 ), χ 12 (τ ) = q 2 + 10 + q -1 2 q 1 q 3 + O q 2 1 , q 2 3 .
The graded C-algebra of scalar-valued Siegel modular forms in genus 2 is

C[ψ 4 , ψ 6 , χ 10 , χ 12 ] ⊕ χ 35 C[ψ 4 , ψ 6 , χ 10 , χ 12 ]
where χ 35 is a modular form of weight 35 and q-expansion χ 35 (τ ) = q 2 1 q 2 3 (q 1 -q 3 )(q 2 -q -1 2 ) + O(q 4 1 , q 4 3 ).

The q-expansions in Theorem 2.4 are easily computed from expressions in terms of theta functions, and their coefficients are integers. We warn the reader that different normalizations appear in the literature: our χ 10 is -4 times the modular form χ 10 appearing in Igusa's papers, our χ 12 is 12 times Igusa's χ 12 , and our χ 35 is 4i times Igusa's χ 35 .

The equality χ 10 (τ ) = 0 occurs exactly when A(τ ) is isomorphic to a product of elliptic curves with the product polarization; otherwise, A(τ ) is isomorphic to the Jacobian of a hyperelliptic curve.

Following Streng [Str10, §2.1] and our choice of normalizations, we define the Igusa invariants to be Remark 2.6. Proposition 2.5 shows that generically, giving (j 1 , j 2 , j 3 ) in C uniquely specifies an isomorphism class of principally polarized abelian surfaces over C. This correspondence only holds on an open set: Igusa invariants are not defined on products of elliptic curves, and do not represent a unique isomorphism class when ψ 4 = 0. If one wants to consider these points nonetheless, it is best to make another choice of invariants: for instance one could use

j 1 = 2 -8 ψ 4 ψ 6 χ 10 , j 2 = 2 -5 ψ 2 4 χ 12 χ 2 
h 1 = ψ 2 6 ψ 3 4 , h 2 = χ 12 ψ 3 4 , h 3 = χ 10 ψ 6 ψ 4 4
which are generically well-defined on products of elliptic curves. See [Liu93, Thm. 1.V] for an interpretation of these invariants in terms of j(E 1 ) + j(E 2 ) and j(E 1 )j(E 2 ) when evaluated on a product

E 1 × E 2 .
Examples of vector-valued forms. Derivatives of Igusa invariants are modular function themselves; as explained in the introduction, this property stems from the existence of the Kodaira-Spencer isomorphism.

Proposition 2.7. Let f be a Siegel modular function of trivial weight. Then

df dτ := ∂f ∂τ 1 x 2 + ∂f ∂τ 2 x + ∂f ∂τ 3 is a Siegel modular function of weight Sym 2 .
Proof. Differentiate the relation f (γτ ) = f (τ ) with respect to τ .

We will use another vector-valued modular form in the sequel.

Example 2.8. Following Ibukiyama [START_REF] Ibukiyama | Vector-valued Siegel modular forms of symmetric tensor weight of small degrees[END_REF], let E 8 ⊂ R 8 denote the lattice of half-integer vectors v = (v 1 , . . . , v 8 ) subject to the conditions

8 k=1 v k ∈ 2Z and ∀ 1 ≤ k, l ≤ 8, v k -v l ∈ Z. Set a = (2, 1, i, i, i, i, i, 0) and b = (1, -1, i, i, 1, -1, -i, i), where i 2 = -1. Define f 8,6 (τ ) = 1 111456000 6 j=0 6 j Θ j (τ ) x j
where, using the notation v, w =

8 k=1 v k w k , Θ j (τ ) = v,v ′ ∈E8 v, a j • v ′ , a 6-j • v, a v ′ , a v, b v ′ , b 4 • exp iπ v, v τ 1 + 2 v, v ′ τ 2 + v ′ , v ′ τ 3 .
Then f 8,6 is a nonzero Siegel modular form of weight det 8 Sym 6 . This definition provides an explicit, but slow, method to compute the first coefficients of the qexpansion; using the expression of f 8,6 in terms of theta series [START_REF] Cléry | Covariants of binary sextics and vector-valued Siegel modular forms of genus two[END_REF] would be faster. We have

f 8,6 (τ ) = (4q 2 2 -16q 2 + 24 -16q -1 2 + 4q -2 2 )q 2 1 q 3 + • • • x 6 + (12q 2 2 -24q 2 + 24q -1 2 -12q -2 2 )q 2 1 q 3 + • • • x 5 + (-q 2 + 2 -q -1 2 )q 1 q 3 + • • • x 4 + (-2q 2 + 2q -1 2 )q 1 q 3 + • • • x 3 + (-q 2 + 2 -q -1 2 )q 1 q 3 + • • • x 2 + (12q 2 2 -24q 2 + 24q -1 2 -12q -2 2 )q 1 q 2 3 + • • • x + (4q 2 2 -16q 2 + 24 -16q -1 2 + 4q -2 2 )q 1 q 2 3 + • • • .

Hilbert modular forms

In the context of Hilbert surfaces and abelian surfaces with real multiplication, we consistently use the following notation:

K a real quadratic number field (embedded in R) ∆ the discriminant of K, so that K = Q √ ∆ Z K the ring of integers in K Z ∨ K the trace dual of Z K , in other words Z ∨ K = 1/ √ ∆ Z K x → x real conjugation in K Σ the embedding x → (x, x) from K to R 2 .
Finally, we denote

Γ K = SL 2 Z K ⊕Z ∨ K = a b c d ∈ SL 2 (K) | a, d ∈ Z K , b ∈ Z ∨ K -1 , c ∈ Z ∨ K .
A principally polarized abelian surface A over C has real multiplication by Z K if it is endowed with an embedding

ι : Z K ֒→ End sym (A),
where End sym (A) denotes the set of endomorphisms of A that are invariant under the Rosati involution.

Hilbert surfaces. Denote by H 1 the complex upper half plane. For every t = (t 1 , t 2 ) ∈ H 2 1 , the quotient

A K (t) = C 2 /Λ K (t) where Λ K (t) = Σ Z ∨ K ⊕ Diag(t 1 , t 2 ) Σ Z K
is naturally endowed with the structure of a principally polarized abelian surface over C, and has a real multiplication embedding ι K (t) given by multiplication via Σ. It is also endowed with the basis of differential forms

ω K (t) = (2πi dz 1 , 2πi dz 2 ).
The involution σ of H 2 1 given by σ (t 1 , t 2 ) = (t 2 , t 1 ) exchanges the two differential forms in the basis, and exchanges the real multiplication embedding with its conjugate.

The embedding Σ induces a map Γ K ֒→ SL 2 (R) 2 . Through this embedding, the group Γ K acts on H 2 1 by the usual action of SL 2 (R) on H 1 on each coordinate.

Theorem 2.9 ([BL04, §9.2]). Let (A, ι) be a principally polarized abelian surface over C with real multiplication by Z K . Then there exists t ∈ H 2 1 such that (A, ι) is isomorphic to A K (t), ι K (t) , and t is uniquely determined up to action of Γ K .

The quotient H 2 (C) = Γ K \H 2 1 is the set of complex points of an algebraic variety H 2 called a Hilbert surface.

Hilbert modular forms. Let k 1 , k 2 ∈ Z. A Hilbert modular form of weight (k 1 , k 2 ) is a holomorphic function f : H 2 1 → C satisfying the transformation rule ∀γ = a b c d ∈ Γ K , ∀t ∈ H 2 1 , f (γt) = c t 1 + d k1 c t 2 + d k2 f (t).
We say that

f is symmetric if f • σ = f . If f is nonzero and symmetric, then its weight (k 1 , k 2 ) is automatically parallel, meaning k 1 = k 2 .
A Hilbert modular function is only required to be meromorphic instead of holomorphic. All irreducible representations of GL 1 (C) 2 are 1-dimensional, so there is no need to consider vector-valued forms. The analogue of Proposition 2.7 for Hilbert modular forms is the following.

Proposition 2.10. Let f be a Hilbert modular function of weight (0, 0). Then the partial derivatives ∂f /∂t 1 and ∂f /∂t 2 are Hilbert modular functions of weight (2, 0) and (0, 2) respectively.

Proof. Differentiate the relation f (γt) = f (t).

Let (A, ι) be a principally polarized abelian surface over C with real multiplication by Z K . As in the Siegel case, we would like to evaluate Hilbert modular forms when a basis of differential forms on A is given; this is possible if we restrict to bases of Ω 1 (A) which behave well with respect to the real multiplication embedding.

Definition 2.11. Let ω be a basis of Ω 1 (A). We say that (A, ι, ω) is Hilbertnormalized if for every α ∈ Z K , the matrix of ι(α) * : Ω 1 (A) → Ω 1 (A) in the basis ω is Diag(α, α).

If (A, ι, ω) is Hilbert-normalized and f is a Hilbert modular form of weight (k 1 , k 2 ), then the quantity f (A, ι, ω) is computed as follows. Choose t ∈ H 2 1 and an isomorphism η : (A, ι) → A K (t), ι K (t) as in Theorem 2.9, and let r ∈ GL 2 (C) be matrix of η * in the bases ω(t), ω. Then r is diagonal, r = Diag(r 1 , r 2 ), and f (A, ι, ω) = r k1 1 r k2 2 f (t).

The Hilbert embedding

Forgetting the real multiplication structure yields a map H 2 (C) → A 2 (C) from the Hilbert surface to the Siegel threefold. In fact, this forgetful map comes from a linear map H : H 2 1 → H 2 called the Hilbert embedding, which we now describe explicitly. Let (e 1 , e 2 ) be the Z-basis of Z K given by e 1 = 1 and

e 2 = 1 - √ ∆ 2 if ∆ = 1 mod 4, e 2 = √ ∆ otherwise. Set R = e 1 e 2
e 1 e 2 , and define

H : H 2 1 → H 2 , t = (t 1 , t 2 ) → R t Diag(t 1 , t 2 ) R.
Proposition 2.12. For every t ∈ H 2 1 , left multiplication by

R t on C 2 induces an isomorphism A K (t) → A H(t) . Proof. By definition, Σ Z K = R Z 2 , and since Z ∨ K is the trace dual of Z K , we have Σ Z ∨ K = R -t Z 2 . Then a direct computation shows that ∀t ∈ H 2 1 , Λ H(t) = R t Λ K (t).
The Hilbert embedding is compatible with the actions of the modular groups.

Proposition 2.13 ([LY11, Prop. 3.1]).

1. Under H, the action of Γ K on H 2 1 is transformed into the action of Sp 4 (Z) on H 2 by means of the morphism

a b c d → R t 0 0 R -1 a * b * c * d * R -t 0 0 R
where we write x * = Diag(x, x) for x ∈ K.

Define

M σ =     1 0 δ -1 (0) (0) 1 δ 0 -1    
where δ = 1 if ∆ = 1 mod 4, and δ = 0 otherwise. Then we have

∀t ∈ H 2 1 , H σ(t) = M σ H(t).
Moreover, pulling back a Siegel modular form via the Hilbert embedding gives a Hilbert modular form.

Proposition 2.14. Let k ∈ Z, n ∈ N, and let f : H 2 → C n [x] be a Siegel modular form of weight ρ = det k Sym n . Define the functions g i :

H 2 1 → C for 0 ≤ i ≤ n by ∀t ∈ H 2 1 , n i=0 g i (t) x i = ρ(R)f H(t) .
Then each g i is a Hilbert modular form of weight (k + i, k + n -i).

Proof. It is straightforward to check the transformation rule using Proposition 2.13. The heart of the computation is that on diagonal matrices Diag(r 1 , r 2 ), the representation det k Sym n splits: the coefficient before

x i is multiplied by (r 1 r 2 ) k r i 1 r n-i 2 .
Corollary The image of the Hilbert embedding in A 2 (C) is called a Humbert surface. It can be described by an equation in terms of Igusa invariants, which grows quickly in size with the discriminant ∆, but can be computed in small cases [START_REF] Gruenewald | Computing Humbert surfaces and applications[END_REF].

Proposition 2.16. Igusa invariants generate the field of symmetric Hilbert modular functions of weight (0, 0). They define a birational map from A 2,K (C) to the closed subset of C 3 cut out by the Humbert equation.

Proof. The image of H in A 2 (C) is not contained in the codimension 1 subset where Igusa invariants are not a local isomorphism to A 3 .

To ease notation, we also write j k for the pullback H * j k , for each 1 ≤ k ≤ 3.

Isogenies between abelian surfaces

Let k be a field, and let A be a principally polarized abelian surface over k. Denote its dual by A ∨ and its principal polarization by π : A → A ∨ . Recall that for every line bundle L on A, there is a morphism φ L : A → A ∨ defined by φ L (x) = T *

x L⊗ L -1 , where T x denotes translation by x on A. Finally, let NS(A) denote the Néron-Severi group of A, consisting of line bundles up to algebraic equivalence.

Theorem 2.17 ([Mil86a, Prop. 14.2]). For every ξ ∈ End sym (A), there is a unique symmetric line bundle L ξ A such that φ L ξ A = π • ξ. This association induces an isomorphism of groups End sym (A), + ≃ NS(A), ⊗ .

Under this isomorphism, line bundles giving rise to polarizations correspond to totally positive elements in End sym (A).

In this notation, L 1

A is the line bundle associated with the principal polarization π. We will consider two different isogeny types that we now define.

Definition 2.18. Let k be a field.

1. Let ℓ ∈ N be a prime, and let A, A ′ be principally polarized abelian surfaces over k. An isogeny ϕ :

A → A ′ is called an ℓ-isogeny if ϕ * L 1 A ′ = L ℓ A .
2. Let K be a real quadratic field, and let β ∈ Z K be a totally positive prime. Let (A, ι) and (A ′ , ι ′ ) be principally polarized abelian surfaces over k with real multiplication by Z K . An isogeny ϕ :

A → A ′ is called a β-isogeny if ϕ * L 1 A ′ = L ι(β) A and ∀α ∈ Z K , ϕ • ι(α) = ι ′ (α) • ϕ.
For a generic principally polarized abelian surface, ℓ-isogenies are the simplest kind of isogenies that occur. They have degree ℓ 2 . If we restrict to abelian surfaces with real multiplication by Z K , then β-isogenies are smaller: their degree is only

N K/Q (β) [DJR+17, Prop. 2.1].
Both ℓ-and β-isogenies are easily described over C.

For t = (t 1 , t 2 ) ∈ H 2 1 , write t/β := t 1 /β, t 2 /β .
The following well-known statement is a consequence of Theorems 2.2 and 2.9, using the facts that the kernel of an ℓ-isogeny is a maximal isotropic subgroup of the ℓ-torsion, and the kernel of a β-isogeny is a cyclic subgroup of the β-torsion.

Proposition 2.19.

1. For every τ ∈ H 2 , the identity map on C 2 induces an ℓ-isogeny A(τ ) → A(τ /ℓ).

Let A, A ′ be principally polarized abelian surfaces over C, and let ϕ : A → A ′ be an ℓ-isogeny. Then there exists τ ∈ H 2 such that there is a commutative diagram

A A ′ A(τ ) A(τ /ℓ). ϕ ∼ ∼ z →z
2. For every t ∈ H 2 1 , the identity map on C 2 induces a β-isogeny

A K (t), ι K (t) → A K (t/β), ι K (t/β) .
Let (A, ι), (A ′ , ι ′ ) be principally polarized abelian surfaces over C with real multiplication by Z K , and let ϕ : (A, ι) → (A ′ , ι ′ ) be a β-isogeny. Then there exists t ∈ H 2 1 such that there is a commutative diagram

(A, ι) (A ′ , ι ′ ) A K (t), ι K (t) A K (t/β), ι K (t/β) . ϕ ∼ ∼ z →z

Modular equations

Modular equations encode the presence of an isogeny between principally polarized abelian surfaces, as the classical modular polynomial does for elliptic curves. To define them, we use the fact that the extension of the field C j 1 (τ ), j 2 (τ ), j 3 (τ ) constructed by adjoining j 1 (τ /ℓ), j 1 (τ /ℓ), and j 3 (τ /ℓ) is finite and generated by j 1 (τ /ℓ). A similar statement holds for Igusa invariants at t/β in the Hilbert case [START_REF] Milio | Modular polynomials on Hilbert surfaces[END_REF]Prop. 4.11].

Definition 2.20.

1. Let ℓ ∈ N be a prime. We call the Siegel modular equations of level ℓ the data of the three polynomials

Ψ ℓ,1 , Ψ ℓ,2 , Ψ ℓ,3 ∈ C(J 1 , J 2 , J 3 )[J ′
1 ] defined as follows:

• Ψ ℓ,1 is the monic minimal polynomial of the function j 1 (τ /ℓ) over the field C j 1 (τ ), j 2 (τ ), j 3 (τ ) .

• For i ∈ {2, 3}, we have the following equality of meromorphic functions: j i (τ /ℓ) = Ψ ℓ,i j 1 (τ ), j 2 (τ ), j 3 (τ ), j 1 (τ /ℓ) .

2. Let K be a real quadratic field, and let β ∈ Z K be a totally positive prime. We call the Hilbert modular equations of level β the data of the three polynomials Ψ β,1 , Ψ β,2 , Ψ β,3 defined as follows:

• Ψ β,1 is the monic minimal polynomial of the function j 1 (t/β) over the field C j 1 (t), j 2 (t), j 3 (t) .

• For i ∈ {2, 3}, we have the following equality of meromorphic functions:

j i (t/β) = Ψ β,i j 1 (t), j 2 (t), j 3 (t), j 1 (t/β) .
In the Hilbert case, since Igusa invariants are symmetric by Corollary 2.15, the modular equations encode β-and β-isogenies simulaneously [MR17, Ex. 4.17]. It would be better to consider modular equations with non-symmetric invariants; however, we know of no good choice of such invariants in general.

As explained in the introduction, modular equations really are equations for the image of a map defined at the level of algebraic stacks. As a consequence, they have coefficients in Q. Since Igusa invariants have poles on A 2 and H 2 , modular equations in genus 2 have denominators [START_REF] Milio | Modular polynomials on Hilbert surfaces[END_REF]Rem. 4.20]. If we multiply by these denominators, then we may consider modular polynomials as elements of C[J 1 , J 2 , J 3 , J ′ 1 , J ′ 2 , J ′ 3 ] that vanish on the Igusa invariants of isogenous Jacobians: this is what we do in the sequel.

From a practical point of view, modular equations in genus 2 are very large. This is especially true for Siegel modular equations of level ℓ. The degree of Ψ ℓ,1 in J ′ 1 is ℓ 3 + ℓ 2 + ℓ + 1, and its degree in J 1 , J 2 , J 3 has the same order of magnitude, not mentioning the height of the coefficients. The situation is less desperate for Hilbert modular equations of level β: the degree of Ex. 4.17]. Modular equations have been computed for ℓ = 2 and 3 in the Siegel case, up to N (β) = 41 in the Hilbert case with K = Q( √ 5) using Gundlach invariants, and even up to N (β) = 97 for K = Q( √ 2) using theta constants as invariants [Mil].

Ψ β,1 in J ′ 1 is 2N K/Q (β) + 2 [MR17,

Explicit Kodaira-Spencer over C

A nonsingular hyperelliptic equation C : v 2 = E C (u) over C naturally encodes a basis of differential forms ω(C) on the principally polarized abelian surface Jac(C) ( §3.1). If f is a Siegel modular function, this gives rise to a map

Cov(f ) : C → f Jac(C), ω(C) .
Then, Cov(f ) is a covariant of the curve, and has an expression in terms of the coefficients. We give an algorithm to obtain this expression from the qexpansion of f ( §3.2), and apply it to the derivatives of Igusa invariants ( §3.3). The result is the explicit Kodaira-Spencer isomorphism. This allows us to compute the deformation map and the tangent map of a given ℓ-isogeny over C ( §3.4). Finally, we adapt these methods to the Hilbert case ( §3.5).

Hyperelliptic equations

Let C be a nonsingular hyperelliptic equation of genus 2 over C:

C : v 2 = E C (u), with deg E C ∈ {5, 6}. Then C is naturally endowed with the basis of differential forms ω(C) = u du v , du v .
Recall that the Jacobian Jac(C) is a principally polarized abelian surface over C [Mil86b, Thm. 1.1 and Summary 6.11]. Choose a base point P on C. This gives an embedding

η P : C ֒→ Jac(C), Q → [Q -P ]. Proposition 3.1 ([Mil86b, Prop. 2.2]). The map η * P : Ω 1 Jac(C) → Ω 1 (C)
is an isomorphism and is independent of P .

By Proposition 3.1, we can see ω(C) as a basis of differential forms on Jac(C). This basis depends on the particular hyperelliptic equation chosen.

Lemma 3.2. Let C be a genus 2 hyperelliptic equation over C, and let

r = a b c d ∈ GL 2 (C).
Let E C ′ be the image of E C by det -2 Sym 6 (r), and let C ′ be the curve with equation

y ′ 2 = E C ′ (x ′ ). Let η : C ′ → C be the isomorphism defined by η(x ′ , y ′ ) = ax ′ + c bx ′ + d , (det r) y ′ (bx ′ + d) 3 .
Then the matrix of

η * : Ω 1 (C) → Ω 1 (C ′ ) in the bases ω(C), ω(C ′ ) is r. Proof. Write (x, y) = η(x ′ , y ′ ). A simple calculation shows that dx y = (bx ′ + d) dx ′ y ′ and x dx y = (ax ′ + c) dx ′ y ′ ,
so the result follows.

Corollary 3.3. Let A be a principally polarized abelian surface over C that is not a product of two elliptic curves, and let ω be a basis of Ω 1 (A). Then there exists a unique hyperelliptic curve equation C of genus 2 over C such that

Jac(C), ω(C) ≃ (A, ω).
Proof. By Torelli's theorem, there is a curve equation C 0 over C such that A is isomorphic to Jac(C 0 ). Then ω differs from ω(C 0 ) by a linear transformation in GL 2 (C). By Lemma 3.2, we can make a suitable change of variables to find the correct C. It is unique because every isomorphism between hyperelliptic curves comes from such a matrix r.

Definition 3.4. The bases of differential forms chosen in §2 allows us to define particular curve equations attached to a point of H 2 or H 2 1 . 1. Let τ ∈ H 2 , and assume that χ 10 (τ ) = 0. Then, by Corollary 3.3, there exists a unique hyperelliptic equation

C(τ ) over C such that Jac C(τ ) , ω C(τ ) ≃ A(τ ), ω(τ ) .
We call C(τ ) the standard curve attached to τ . We define the meromorphic functions a i (τ ) for 0 ≤ i ≤ 6 to be the coefficients of C(τ ):

C(τ ) : y 2 = 6 i=0 a i (τ )x i .
2. Let t ∈ H 2 1 , and assume that χ 10 (H(t)) = 0, where H is the Hilbert embedding. Then, by Corollary 3.3, there exists a unique hyperelliptic equation Proof. Over C, the Torelli map is biholomorphic, so this function is meromorphic. By Corollary 3.3, it is defined everywhere on {χ 10 = 0}. Combining Proposition 2.1 with Lemma 3.2 shows the transformation rule.

C K (t) over C such that Jac C K (t) , ω C K (t) ≃ A K (t), ω K (t) .
Finally, for t ∈ H 2 1 , we can relate the standard curves C K (t) and C H(t) . Proposition 3.6. For every t ∈ H 2 1 , we have

C K (t) = det -2 Sym 6 (R) C H(t) .
Proof. Use Proposition 2.12 and Lemma 3.2.

Covariants

If f is a Siegel modular form, then we have a map

Cov(f ) : C → f Jac(C), ω(C) .
We show that Cov(f ) is a covariant of the curve equation. A recent reference for covariants is Mestre's article [START_REF] Mestre | Construction de courbes de genre 2 à partir de leurs modules[END_REF].

Definition 3.7. Denote by C 6 [x] the space of polynomials of degree at most 6.

Let ρ : GL 2 (C) → GL(V ) be a finite-dimensional holomorphic representation of GL 2 (C). A covariant, or polynomial covariant, of weight ρ is a map C : C 6 [x] → V
which is polynomial in the coefficients, and such that the following transformation rule holds: for every r ∈ GL 2 (C) and

W ∈ C 6 [x], C det -2 Sym 6 (r) W = ρ(r) C(W ).
If dim V ≥ 2, then C is said to be vector-valued, and otherwise scalar-valued. A fractional covariant is a map satisfying the same transformation rule which is only required to have a fractional expression in terms of the coefficients.

It is enough to consider covariants of weight det

k Sym n for k ∈ Z, n ∈ N.
What we call a vector-valued covariant of weight det k Sym n is in Mestre's paper a covariant of order n and degree k + n/2; what we call a scalar-valued covariant of weight det k is in Mestre's paper an invariant of degree k. The reason for this change of terminology is the following. Proof. If f is a Siegel modular function, then Cov(f ) is well defined on a Zariski open set of C 6 [x] and is algebraic, so must have a fractional expression in terms of the coefficients. We let the reader check the transformation rules (use Lemma 3.2 and Proposition 3.5). Proposition 3.8 gives a bijection between Siegel modular functions and fractional covariants, but we need more. The following theorem establishes a relation between Siegel modular forms and polynomial covariants, and was first proved in [START_REF] Cléry | Covariants of binary sextics and vector-valued Siegel modular forms of genus two[END_REF]§4].

Theorem 3.9. Let f be a holomorphic Siegel modular form. Then Cov(f ) is a polynomial covariant. Moreover, if f is a cusp form, then Cov(f /χ 10 ) is also a polynomial covariant.

Proof. The main difficulty is that nonsingular hyperelliptic equations only form a codimension 1 subset of all degree 6 polynomials: if f is a Siegel modular form, then the proof of Proposition 3.8 only shows that Cov(f ) is a polynomial divided by some power of the discriminant. However, one can show that f extends to the so-called toroidal compactification of A 2 (C), and this shows that Cov(f ) is well defined on all curve equations with at most one node. Since this set has codimension 2, the result follows.

Unlike for Siegel modular forms, the graded C-algebra generated by polynomial covariants is finitely generated.

Theorem 3.10 ([Cle72, p. 296]). The graded C-algebra of covariants is generated by 26 elements defined over Q. The number of generators of weight det k Sym n is indicated in the following table :   n \ k -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 15

0 1 1 1 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 6 1 1 1 2 8 1 1 1 10 1 12 1
We only need to manipulate a small subset of these generators. Take our scalar generators of even weight to be the Igusa-Clebsch invariants I 2 , I 4 , I 6 , I 10 , in Mestre's notation A ′ , B ′ , C ′ , D ′ [Mes91], and set

I ′ 6 := (I 2 I 4 -3I 6 )/2.
Denote the generator of weight det 15 by R, and denote by y 1 , y 2 , y 3 the generators of weights det 2 Sym 2 , det 4 Sym 2 , and det 6 Sym 2 respectively. Finally, the generator of weight det -2 Sym 6 , denoted by X, is the degree 6 polynomial itself. Note that when computing these covariants as described in [Mes91, §1], the integers m and n on page 315 should be the orders of f and g, and not their degrees. To help the reader check their computations, we mention that the coefficient of a 5 1 a 10 4 in R is 2 -2 3 -6 5 -10 .

From q-expansions to covariants

We now explain how to compute the polynomial covariant associated with a Siegel modular form whose q-expansion is known up to a certain precision. The works of Igusa already provide the answer in the case of scalar covariants.

Theorem 3.11. We have

4 Cov(ψ 4 ) = I 4 , 4 Cov(ψ 6 ) = I ′ 6 , 2 12 Cov(χ 10 ) = I 10 , 2 15 Cov(χ 12 ) = I 2 I 10 , 2 37 3 -9 5 -10 Cov(χ 35 ) = I 2 10 R. Proof. By [Igu62, p. 848],
there exists a constant λ ∈ C × such that these relations hold up to a factor λ k , for k ∈ {4, 6, 10, 12, 35} respectively. Note that Igusa's covariant E is -2 5 3 9 5 10 R. Then, Thomae's formulae ([Mum84, Thm. IIIa.8.1] and [Tho70, pp. 216-217]), which relate theta constants with the values of path integrals on the associated hyperelliptic curve, imply that λ = 1.

Therefore, the Igusa invariants satisfy

Cov(j 1 ) = I 4 I ′ 6 I 10 , Cov(j 2 ) = I 2 I 2 4 I 10 , Cov(j 3 ) = I 5 4 I 2 10 .
Let us compute the q-expansion of the standard curve C(τ ). Recall the Siegel modular form f 8,6 of weight det 8 Sym 6 introduced in Example 2.8. Proposition 3.12. We have Cov(f 8,6 /χ 10 ) = X. In other words, for every τ ∈ H 2 such that χ 10 (τ ) = 0, we have

C(τ ) = f 8,6 (τ ) χ 10 (τ ) .
Proof. Since f 8,6 is a cusp form, by Theorem 3.9, Cov(f 8,6 /χ 10 ) is a nonzero polynomial covariant of weight det -2 Sym 6 . By Theorem 3.10, this space of covariants is of dimension 1 and generated by X, so the relation holds up to a factor λ ∈ C × . This yields q-expansions for the coefficients a i (τ ) of C(τ ) up to a factor λ. Then, the relations from Theorem 3.11 imply

λ 4 = λ 6 = λ 35 = 1, hence λ = 1.
Given a Siegel modular form f of weight ρ whose q-expansion can be computed, the following algorithm recovers the expression of Cov(f ) as a polynomial.

Algorithm 3.13.

1. Compute a basis B of the vector space of polynomial covariants of weight ρ using Theorem 3.10.

2. Choose a precision ν and compute the q-expansion of f modulo (q ν 1 , q ν 3 ). 3. For every B ∈ B, compute the q-expansion of the Siegel modular function τ → B C(τ ) using Proposition 3.12.

4. Do linear algebra; if the matrix does not have full rank, go back to step 2 with a larger ν.

Sturm-type bounds [BP17] provide a theoretical limit for the precision ν that we need to consider; for the examples given in this article, ν = 3 is enough.

We now apply Algorithm 3.13 to derivatives of Igusa invariants. Recall from Proposition 2.7 that for 1 ≤ k ≤ 3, the partial derivative Proof. Let 1 ≤ k ≤ 3. The function χ 2 10 j k has no poles on A 2 (C). Therefore, the Siegel modular function

dj k dτ := ∂j k ∂τ 1 x 2 + ∂j k ∂τ 2 x + ∂j k ∂τ 3 is a
f k = χ 3 10 dj k dτ is holomorphic on A 2 (C).
Its q-expansion can be computed from the q-expansion of j k by formal differentiation. Since

1 2πi ∂ ∂τ i = q i ∂ ∂q i
for 1 ≤ i ≤ 3, we check that f k is a cusp form. Therefore, by Theorem 3.9, Cov(f k /χ 10 ) is a polynomial covariant of weight det 20 Sym 2 . Looking at the table in Theorem 3.10, we find that a basis of this space of covariants is given by covariants of the form Iy where y ∈ {y 1 , y 2 , y 3 } and I is a scalar-valued covariant of the appropriate even weight. Algorithm 3.13 succeeds with ν = 3; the computations were done using Pari/GP [START_REF]Pari/GP version 2[END_REF].

Remark 3.15. Theorems 3.11 and 3.14 can be checked numerically. Computing big period matrices of hyperelliptic curves [START_REF] Molin | Computing period matrices and the Abel-Jacobi map of superelliptic curves[END_REF] provides pairs τ, C(τ ) with τ ∈ H 2 . We can evaluate Igusa invariants at a given τ to high precision using their expression in terms of theta functions [START_REF] Dupont | Fast evaluation of modular functions using Newton iterations and the AGM[END_REF]. Therefore we can also evaluate their derivatives numerically with high precision and compute the associated covariant using floating-point linear algebra. The computations were done using the libraries hcperiods [START_REF] Molin | Hcperiods: Period matrices and Abel-Jacobi maps of hyperelliptic and superperelliptic curves[END_REF] 

Deformation matrix and action on tangent spaces

Let C, C ′ be equations of genus 2 hyperelliptic curves over C, let A, A ′ be their Jacobians, and let ϕ : A → A ′ be an ℓ-isogeny. The choice of curve equations encodes a choice of bases of Ω 1 (A) and Ω 1 (A ′ ), or equivalently, by taking dual bases, a choice of bases of the tangent spaces T 0 (A) and T 0 (A ′ ). By an abuse of notation, we identify the tangent map dϕ : T 0 (A) → T 0 (A ′ ) with its matrix written in these bases. Let us show how to compute dϕ from the data of the curve equations and modular equations of level ℓ.

Definition 3.17. It is convenient to introduce matrix notations.

• For τ ∈ H 2 , we define

D τ J(τ ) = 1 2πi ∂j k ∂τ l (τ ) 1≤k,l≤3 •   2 0 0 0 1 0 0 0 2   .
In other words, if we set

v 1 = 2 0 0 0 , v 2 = 0 1 1 0 , v 3 = 0 0 0 2 ,
then the l-th column of D τ J(τ ) contains (up to 2πi) the derivatives of Igusa invariants at τ in the direction v l . We can check that for r ∈ GL 2 (C), the l-th column of D τ J(τ ) Sym 2 (r) contains the derivatives of Igusa invariants at τ in the direction r v l r t .

Let (A, ω) be a principally polarized abelian surface over C with a basis of differential forms, let η : A → A(τ ) be an isomorphism for some τ ∈ H 2 , and let r be the matrix of η * in the bases ω(τ ), ω. Then the fact that derivatives of Igusa invariants have weight Sym 2 translates as

D τ J(A, ω) = D τ J(τ ) Sym 2 (r t ).
We denote by

C → D τ J(C)
the associated fractional covariant; Theorem 3.14 expresses the entries of this matrix up to a constant in terms of the coefficients of C.

• Consider the Siegel modular equations

Ψ ℓ,1 , Ψ ℓ,2 , Ψ ℓ,3 of level ℓ as elements of the ring Q[J 1 , J 2 , J 3 , J ′ 1 , J ′ 2 , J ′ 3 ]. We define DΨ ℓ,L = ∂Ψ ℓ,n ∂J k 1≤n,k≤3 and DΨ ℓ,R = ∂Ψ ℓ,n ∂J ′ k 1≤n,k≤3
.

Definition 3.18. Let ϕ be an ℓ-isogeny as above, write j as a shorthand for the Igusa invariants (j 1 , j 2 , j 3 ) of A, and j ′ for the invariants (j ′ 1 , j ′ 2 , j ′ 3 ) of A ′ . We say that the isogeny ϕ is generic if the 3 × 3 matrices DΨ ℓ,L (j, j ′ ), DΨ ℓ,R (j, j ′ ), D τ J(C) and D τ J(C ′ ) are invertible. In this case, we define the deformation matrix D(ϕ) of ϕ as

D(ϕ) = -D τ J(C ′ ) -1 • DΨ ℓ,R (j, j ′ ) -1 • DΨ ℓ,L (j, j ′ ) • D τ J(C).
In Section 4, we will interpret D(ϕ) as the matrix of the deformation map in the bases of T A (A 2 ) and T A ′ (A 2 ) associated with ω(C), ω(C ′ ) via the Kodaira-Spencer isomorphism. Let us relate the deformation matrix D(ϕ) with the tangent matrix dϕ.

Proposition 3.19. Assume that ϕ is generic. Then we have

Sym 2 (dϕ) = ℓ D(ϕ).
Proof. By Proposition 2.19, we can find τ ∈ H 2 and isomorphisms η, η ′ such that there is a commutative diagram

A A ′ A(τ ) A(τ /ℓ). ϕ η η ′ z →z
Let r be the matrix of η * in the bases ω(τ ), ω(C), and define r ′ similarly. Then we have dϕ = r ′t r -t . By the definition of modular equations, we have

Ψ ℓ,n j 1 (τ ), j 2 (τ ), j 3 (τ ), j 1 (τ /ℓ), j 2 (τ /ℓ), j 3 (τ /ℓ) = 0 for 1 ≤ n ≤ 3.
We differentiate with respect to τ 1 , τ 2 , τ 3 and obtain

DΨ ℓ,L (j, j ′ ) • D τ J(τ ) + 1 ℓ DΨ ℓ,R (j, j ′ ) • D τ J(τ /ℓ) = 0.
We rewrite this relation as

-ℓ DΨ ℓ,L (j, j ′ ) • D τ J(C) • Sym 2 (r t ) = DΨ ℓ,R (j, j ′ ) • D τ J(C ′ ) • Sym 2 (r ′t ),
and the result follows.

Once we compute D(ϕ), the matrix dϕ itself is easily computed up to sign.

Explicit Kodaira-Spencer in the Hilbert case

We now explain how to recover the tangent matrix in the Hilbert case, in the same spirit as the Siegel case. An important difference is that we have to restrict to Hilbert-normalized bases of differential forms (recall Definition 2.11), so not all curve equations will do. For the moment, assume that we have a β-isogeny ϕ : (A, ι) → (A ′ , ι ′ ) between abelian surfaces with real multiplication by Z K , and we are given curve equations C, C ′ such that the associated bases ω(C) and ω(C ′ ) are Hilbert-normalized. We address the question of constructing C, C ′ in §3.6.

Definition 3.20.

• For t ∈ H 2 1 , we define

D t J(t) = 1 πi ∂j k ∂t l (t) 1≤k≤3,1≤l≤2
.

If C is a curve equation such that ω(C) is Hilbert-normalized, we denote by D t J(C) the value of this modular form on C.

• We define the 3 × 3 matrices DΨ β,L and DΨ β,R in the case of Hilbert modular equations of level β as in Definition 3.17.

• Write j as a shorthand for the Igusa invariants (j 1 , j 2 , j 3 ) of A, and j ′ for the invariants (j ′ 1 , j ′ 2 , j ′ 3 ) of A ′ . We say that the isogeny ϕ is generic if the denominators of modular equations do not vanish at j and the 3 × 2 matrices

DΨ β,L (j, j ′ ) • D t J(C) and DΨ β,R (j, j ′ ) • D t J(C ′ ) have rank 2.
Lemma 3.21. Let (A, ι, ω) be Hilbert-normalized, and let t ∈ H 2 1 such that there is an isomorphism η : (A, ι) → (A K (t), ι K (t)). Let r be the matrix of η * in the bases ω K (t), ω. Then we have

D t J(A, ω) = D t J(t) • r 2 .
Proof. By Proposition 2.10, derivatives of Igusa with respect to t 1 and t 2 are Hilbert modular functions of weight (2, 0) and (0, 2) respectively. Proposition 3.22. Let (A, ι, ω) be Hilbert-normalized. Then we have

D t J(A, ω) = D τ J(A, ω) • T where T =   1 0 0 0 0 1   .
Proof. Let t, η, r as in Lemma 3.21, and write τ = H(t). By the expression of the Hilbert embedding, D t J(t) contains the derivatives of Igusa invariants at τ in the directions

1 πi R t 1 0 0 0 R and 1 πi R t 0 0 0 1 R.
Hence we have

D t J(t) = D τ J(τ ) • Sym 2 (R t ) • T.
By Proposition 2.12, we have an isomorphism

ζ : A K (t) → A(τ ) such that the matrix of ζ * in the bases ω(τ ), ω K (t) is R. Therefore D t J(A, ω) = D t J(t)r 2 , D τ J(A, ω) = D τ J(τ ) Sym 2 ((rR) t ).
The result follows.

It is natural that the matrix R defining the Hilbert embedding does not appear in Proposition 3.22: evaluating derivatives of Igusa invariants on (A, ω) has an intrinsic meaning in terms of the Kodaira-Spencer isomorphism, and the choice of Hilbert embedding does not matter. Proposition 3.23. Let ϕ : A → A ′ be a β-isogeny and let C, C ′ be Hilbertnormalized curve equations as above. Then the tangent matrix dϕ is diagonal, and we have

DΨ β,L (j, j ′ ) • D t J(C) = -DΨ β,R (j, j ′ ) • D t J(C ′ ) • Diag(1/β, 1/β) • (dϕ) 2 .
Proof. By Proposition 2.19, we can find t ∈ H 2 1 and isomorphisms η, η ′ such that there is a commutative diagram

A, ι A ′ , ι ′ A K (t), ι K (t) A K (t/β), ι K (t/β) . ϕ η η ′ z →z
Let r be the matrix of η * in the bases ω K (t), ω, and define r ′ similarly; they are diagonal. We have dϕ = r ′t r -t = r ′ r -1 . Differentiating the modular equations, we obtain

DΨ β,L (j, j ′ ) • D t J(t) + DΨ β,R (j, j ′ ) • D t J(t/β) • Diag(1/β, 1/β) = 0.
By Lemma 3.21, we have

D t J(t) = D t J(C) • r 2 , D t J(t/β) = D t J(C ′ ) • r ′2
and the result follows.

This relation allows us to compute (dϕ) 2 from derivatives of modular equations when ϕ is generic. In contrast with the Siegel case, the knowledge of (dϕ) 2 does not allow us to recover the diagonal matrix dϕ up to sign, as we have to perform two uncorrelated root extractions: we obtain two possible candidates.

Constructing Hilbert-normalized curves

Let (A, ι) is an abelian surface over C with real multiplication by Z K . Given the Igusa invariants (j 1 , j 2 , j 3 ) of A, we would like to construct a curve equation C such that (A, ι, ω(C)) is Hilbert-normalized. Our method is to compute a first curve equation using Mestre's algorithm [START_REF] Mestre | Construction de courbes de genre 2 à partir de leurs modules[END_REF], and then look for a suitable homographic change of variables. However, we are missing some information, as the two pairs (A, ι) and (A, ι), where ι denotes the real conjugate of ι, have the same Igusa invariants. The best we can hope for is to compute an equation C such that either (A, ι, ω(C)) or (A, ι, ω(C)) is Hilbert-normalized. In this case, we say that C is potentially Hilbert-normalized. This uncertainty is a consequence of our using symmetric invariants on the Hilbert surface.

Proposition 3.24. Let C be a hyperelliptic curve equation of genus 2 over C such that Jac(C) has real multiplication by Z K . Denote its Igusa invariants by (j 1 , j 2 , j 3 ). Then the curve C is potentially Hilbert-normalized if and only if the two columns of the 3 × 2 matrix

D τ J(C) • T where T =   1 0 0 0 0 1  
define tangent vectors to the Humbert surface at (j 1 , j 2 , j 3 ).

Proof. Let t ∈ H 2 1 such that there is an isomorphism η : Jac(C) → A K (t), and write τ = H(t). Let r ∈ GL 2 (C) be the matrix of η * in the bases ω K (t), ω. Then the columns of D τ J(C) • T contain, up to πi, the derivatives of Igusa invariants at τ in the directions

R t r 1 0 0 0 r t R and R t r 0 0 0 1 r t R.
These directions are tangent to the Humbert surface if and only if r is is either diagonal or anti-diagonal.

Assume that the equation of the Humbert surface for K in terms of Igusa invariants is given: this precomputation depends only on K. Given Igusa invariants (j 1 , j 2 , j 3 ) on the Humbert surface, the algorithm to reconstruct a potentially Hilbert-normalized curve equation runs as follows.

Algorithm 3.25.

1. Construct any curve equation C 0 with Igusa invariants (j 1 , j 2 , j 3 ) using Mestre's algorithm.

2. Find r ∈ GL 2 (C) such that the two columns of the matrix

D τ J(C 0 ) • Sym 2 (r t ) • T
are tangent to the Humbert surface at (j 1 , j 2 , j 3 ).

Output det

-2 Sym 6 (r)C 0 .
In step 2, if a, b, c, d denote the entries of r, we only have to solve a quadratic equation in a, c, and a quadratic equation in b, d. Therefore Algorithm 3.25 costs O K (1) square roots and field operations.

In practice, when computing a β-isogeny ϕ : A → A ′ in the Hilbert case, we are only given the Igusa invariants of A and A ′ . Constructing potentially Hilbert-normalized curves is then equivalent to making a choice of real multiplication embedding for each abelian surface. If these embeddings are incompatible via ϕ, we obtain antidiagonal matrices when computing the tangent matrix; in this case, we apply the change of variables x → 1/x on one of the curve equations to make them compatible. Even if they are compatible, ϕ will be either a β-or a β-isogeny depending on the choices of real multiplication embeddings. Therefore we really obtain four candidates for the tangent matrix, among which only one is correct.

Moduli spaces and the deformation map

In this section, we use the language of algebraic stacks to show how to compute the deformation map of a given isogeny ϕ, and to show its relation with the tangent map dϕ, for abelian schemes of any dimension over any base.

We start by recalling well-known and general facts about separated Deligne-Mumford stacks and their coarse moduli spaces ( §4.1). Then we recall the properties of several moduli stacks for principally polarized abelian schemes of dimension g, namely A g (abelian schemes with no extra structure), A g,n (abelian schemes with a level n structure), A g (ℓ) (abelian schemes endowed with the kernel of an ℓ-isogeny), and their coarse moduli schemes A g , A g,n , A g (ℓ) ( §4.2). In particular, we have a map at the level of algebraic stacks,

Φ ℓ = (Φ ℓ,1 , Φ ℓ,2 ) : A g (ℓ) → A g × A g
sending (A, K) to (A, A/K) such that both Φ ℓ,1 and Φ ℓ,2 are étale. Therefore, for an ℓ-isogeny ϕ seen as a point of A g (ℓ), the deformation map

D(ϕ) = dΦ ℓ,2 (ϕ) • dΦ ℓ,1 (ϕ) -1
is well-defined at the level of stacks. However, the induced maps at the level of coarse spaces,

(Φ ℓ,1 , Φ ℓ,2 ) : A g (ℓ) → A g × A g
are not étale everywhere, so that we can only recover the deformation map on an open set of the coarse spaces (see Corollary 4.10). In the genus 2 case, when we work with the modular polynomials Ψ ℓ,i from Section 2.6, this phenomenon worsens; still, we can give precise conditions on the isogeny that ensure genericity in the sense of Definition 3.18 (see Proposition 4.13). We also extend these results to the Hilbert case.

After that, we give the general relation between the tangent map and the deformation map of a given ℓ-or β-isogeny ( §4.3). Finally we show that in dimension 2, the relations between modular forms and covariants given in Proposition 3.12 hold over Z and not only over C ( §4.4). This allows us to give an explicit version of the Kodaira-Spencer isomorphism over any base ( §4.5), that we could use for instance to construct explicit families of abelian varieties with real multiplication.

In summary, this section explains the relationship between the fine moduli space A g (ℓ) and its coarse moduli space A g (ℓ), and the geometric meaning of the genericity conditions of Theorem 1.1; moreover it gives a purely algebraic, rather than analytic, interpretation of the results of Section 3. Another way to extend the results of Section 3 over any base would be to lift the isogeny to characteristic zero (in the case of fields), then interpolate between fibers using rigidity; however, we find that the moduli-theoretic approach is superior as it provides more geometric insight.

Coarse moduli spaces

In this paper, we always assume stacks to be of finite type over a Noetherian base scheme. Let X be a separated Deligne-Mumford stack over S; we recall that an Artin stack is Deligne-Mumford if and only if its diagonal is unramified [The18, Tag 06N3]. Here we summarize well-known results on the geometry of X and its coarse moduli space.

By a point x of X , we mean a point of the underlying topological space |X |, and we implicitly take a representative Spec k → X of x. For any scheme T , a T -point of X is a morphism T → X . We denote by I X the inertia stack of X , and if x is a point of X , we denote by I x the pullback of I X to x; this pullback is simply the space Aut(x) of automorphisms, or stabilizers, of x. Since we assume X separated, I x is in fact finite. The stabilizer I x does not depend on the representative chosen since I x is the pullback of the residual gerbe We recall that a map f : X → Y is representable if and only if the induced map I X → X × Y I Y is a monomorphism [The18, Tag 04YY]. Also, if f is unramified, then its diagonal is étale by [The18, Tag 0CIS] and [START_REF] Rydh | The canonical embedding of an unramified morphism in an étale morphism[END_REF]; hence the map I X → X × Y I Y is étale. Therefore, if f is representable and unramified, then the map

G x → k(ξ) at x through Spec k → Spec k(ξ): see [LM00,
I X → X × Y I Y is an open immersion.
A coarse moduli space X of X is an algebraic space X endowed with a map π : X → X such that π is categorical and induces a bijection π : X (k) → X(k) for every algebraically closed field k. We also use the following terminology from [START_REF] Mumford | Geometric invariant theory[END_REF] (see also [START_REF] Keel | Quotients by groupoids[END_REF]Def. 1.8] and [Ryd13, Defs. 2.2 and 6.1]): a map q : X → Z is topological if q is a universal homeomorphism, and geometric if it is topological and furthermore O Z → q * O X is an isomorphism. A GC quotient is a geometric quotient that is also (uniformly) categorical; in particular, its image is a coarse moduli space ([KM97, Def. 1.8] and [Ryd13, Def. 3.17 and Rem. 3.18]).

Theorem 4.1. Let X → S be a separated Deligne-Mumford stack.

(i) (Keel-Mori). There exists a coarse moduli space π : X → X, where X is of finite type over S. The map π is a GC quotient, is proper, quasi-finite and separated; moreover the construction is stable under flat base change. (ii) Let x ∈ X(k) be a point, and let I x be the stabilizer of any point in X above x. Then étale-locally around x, X is a quotient stack by I x and X is a geometric quotient by I x . More precisely, there is an affine scheme U , an étale morphism U → X whose image contains x, and a finite morphism V → U with an action of

I x on V such that X U := X × X U = [V /I x ] is an I x -quotient stack, and U = V /I x .
Proof. Theorem 4.1.(i) is valid for Artin stacks with finite inertia; the original proof is in [START_REF] Keel | Quotients by groupoids[END_REF], and reformulations of the proof using the language of stacks rather than groupoids are given in [START_REF] Conrad | The Keel-Mori theorem via stacks[END_REF], [START_REF] Rydh | Existence and properties of geometric quotients[END_REF] and [The18, Tag 0DUK]. Since X is a separated Deligne-Mumford stack, its inertia I X is finite, so the Keel-Mori theorem applies. For Theorem 4.1.(ii), see [AV02, Lem. 2.2.3] which shows that X is locally a quotient, and [Ols06, Thm. 2.12] which shows that we can take the quotient to be a quotient by I x . If V = Spec R, then V /I x is the affine scheme Spec R Ix . The fact that U = (Spec R)/I x then follows easily from the theory of quotients of affine schemes: see for instance [START_REF] Rydh | Existence and properties of geometric quotients[END_REF]§4] or [DR73, §I.8.2.2]. See also [The18, Tag 0DU0] for extensions of this result in the case of quasi-DM stacks, and [AHR19; AHR20] for a far reaching generalization. By Zarsiki's main theorem, the coarse moduli space X is characterized by the fact that π : X → X is proper and quasi-finite, and

O X ≃ π ⋆ O X on the étale site [Con05, §1].
The formation of coarse moduli spaces is not stable under base change in general. This causes problems when reducing coarse moduli spaces, defined for instance over Z, modulo a prime p, as the morphism Spec F p → Spec Z is not flat. Coarse moduli spaces have better properties in the case of tame stacks.

The stack X is said to be tame [START_REF] Abramovich | Tame stacks in positive characteristic[END_REF] if the map π : X → X is cohomologically affine; in particular it is a good moduli space in the sense of [START_REF] Alper | Good moduli spaces for Artin stacks[END_REF]. A finite fppf group scheme G/S is linearly reductive if BG → S is tame ([MFK94],

[AOV08, Def. 2.4], [Alp13, Def. 12.1]). In [START_REF] Abramovich | Tame stacks in positive characteristic[END_REF], it is shown that G/S is linearly reductive if and only if its geometric fibers are geometrically reductive, if and only if its geometric fibers are locally (in the fppf topology) a split extension of a constant tame group by a group of multiplicative type. If x ∈ X (k) is a geometric point of X , we say that x is a tame point of X if x has a linearly reductive stabilizer.

Theorem 4.2. Let X → S be a separated Deligne-Mumford stack, and let π : X → X be its coarse moduli space.

(i) If every geometric point of X is tame, then X is tame. If X is tame, then the formation of its coarse space commutes with arbitrary base change. (ii) More generally, if x ∈ X (k) is tame, then there is an open tame substack U of X containing x. Furthermore, the image of U in X is Cohen-Macaulay. (iii) The map π : X → X is always an adequate moduli space in the sense of [START_REF] Alper | Adequate moduli spaces and geometrically reductive group schemes[END_REF]. In particular, if T → S is a morphism of algebraic spaces, X T denotes the base change of X to T and X T denotes the coarse moduli space of X T , then the natural map X T → X × S T is an universal homeomorphism.

Proof If x is a tame point of X , then by the local structure theorem, étale-locally around x, there is an open substack of the form U = [V /I x ], and I x is linearly reductive. By the Hochster-Roberts theorem [MFK94, Appendix 1.E], the affine scheme V /I x is Cohen-Macaulay. Being Cohen-Macaulay is a local notion for the étale topology, so the image of U in X is also Cohen-Macaulay.

Finally, Theorem 4.2.(iii) is proved in [START_REF] Alper | Adequate moduli spaces and geometrically reductive group schemes[END_REF], which shows that the coarse moduli space of an Artin stack with finite inertia is always an adequate moduli space. The natural map X T → X × S T is then an adequate homeomorphism in the sense of [START_REF] Alper | Adequate moduli spaces and geometrically reductive group schemes[END_REF], and in particular is a universal homeomorphism [Alp14, Main Theorem].

Corollary 4.3. Let X be a separated Deligne-Mumford stack.

(i) The set U of points x such that I x is trivial is an open substack of X (which may be empty), and π : U → π(U ) is an isomorphism. (ii) Let x ∈ X (k) be a point, and let O X ,x be the strict Hensel ring of X at

x. Then O X,x = O Ix X ,x . (1) 
In particular, if X is a normal, then its coarse moduli space is normal.

Proof. These two statements are immediate consequences of Theorem 4.1.(ii). For Corollary 4.3.(ii), see also [DR73, §I.8.2.1] which states that the kernel of the action of I x acting on O X ,x is exactly the set of automorphisms of x that can be extended to Spec O X ,x → X .

Finally, we know when an étale map between algebraic stacks induces an étale map on their coarse moduli spaces.

Theorem 4.4 (Luna's fundamental lemma). Let f : X → Y be a representable and unramified morphism of separated Deligne-Mumford stacks. Then the set of points where f is stabilizer preserving, meaning that the monomorphism on inertia

I x → I f (x) induced by f is an isomorphism, is an open substack U of X . The morphism I U → I Y × Y U induced by f is an isomorphism.
If f is étale and U = X , that is if f is stabilizer preserving at every point, then the induced map on coarse spaces f 0 : X → Y is étale, and even strongly étale; in other words X = X × Y Y . (ii) takes a particularly nice form. Indeed, taking an étale local presentation X U = [V /I x ] as in Theorem 4.1.(ii), then (possibly after an étale extension of k and after shrinking V ) there is a strongly étale morphism [V /I x ] → [T x X /I x ] which sends x to 0, where I x acts via its natural linear action on T x X . In particular, étale locally around x the map π : X → X is given by [T x X /I x ] → T x X /I x .

Moduli stacks of abelian varieties

In this section, we apply the general results gathered in §4.1 to the case of moduli spaces of abelian schemes. This allows us to investigate the properties of the map Φ ℓ on coarse moduli spaces in the Siegel case, and its analogue Φ β in the Hilbert case.

Siegel stacks

Recall that we denote by A g the moduli stack of principally polarized abelian varieties, and by A g,n the moduli stack of principally polarized abelian varieties with a level n symplectic structure; here we mean a level (Z/nZ) 2g structure as in [START_REF] Faltings | Degeneration of abelian varieties[END_REF] rather than a (Z/nZ) g × µ g n structure as in [Mum71; de 93], so that A g,n is defined over Z[1/n] rather than over Z. Both A g and A g,n are separated Deligne-Mumford stacks, and moreover A g,n is smooth over Z[1/n] with φ(n) geometrically irreducible fibers [START_REF] Faltings | Degeneration of abelian varieties[END_REF].

We denote by A g , A g,n their corresponding coarse moduli spaces. By Mumford's Geometric Invariant Theory [START_REF] Mumford | Geometric invariant theory[END_REF], they are quasi-projective schemes. We can extend A g,n over Z by taking the normalization of A g in A g,n /Z[1/n], as in [Mum71; DR73; de 93]. Over C, the analytification of A g is the Siegel space H g / Sp 2g (Z) seen as an orbifold.

If n ≥ 3, then the inertia of the stack A g,n is trivial. Therefore A g,n is isomorphic to A g,n by Corollary 4.3.(i), and A g,n is smooth over Z[1/n]. This shows in particular that there is a p 0 such that A g is tame at every abelian variety defined over a field of characteristic p ≥ p 0 .

If n ≤ 2, then the generic automorphism group on A g,n is µ 2 . We can rigidify A g,n by µ 2 in such a way that

A g,n → [A g,n /µ 2 ] is a µ 2 -gerbe [AOV08, Appendix A]. The map A g,n → A g,n factors through [A g,n /µ 2 ], so the coarse moduli space of [A g,n /µ 2 ] is still A g,n
. By Theorem 4.1.(ii) or Theorem 4.2.(ii), there exists an affine étale open scheme U above A g,n whose image is dense and contains all points with only generic automorphisms. Then [A g,n /µ 2 ] → A g,n becomes an isomorphism over U by Corollary 4.3.(i). Since [A g,n /µ 2 ] is smooth, the image of U in A g,n is also smooth by étale descent.

We now proceed to construct the moduli stack A g (ℓ) parametrizing ℓ-isogenies. If Γ is a level subgroup of Sp 2g ( Z), and n is an integer such that the level subgroup Γ(n) is contained in Γ, we define A g,Γ /Z[1/n] as the quotient stack [A g,n / Γ] where Γ is the image of Γ in Sp 2g (Z/nZ). A T -point of [A g,n / Γ] corresponds to an abelian scheme A/T which is étale-locally endowed with a level n structure modulo the action of Γ [DR73, §IV.3.1]. The maps A g,n → A g,Γ and A g,Γ → A g are finite, étale, and representable [DR73, §IV.2, §IV.3]. We can extend A g,Γ to Z by normalization, as we did for A g,n . We can check as in [DR73, §IV.3.6] that the definition does not depend on the integer n such that Γ(n) ⊂ Γ.

We apply this construction to Γ = Γ 0 (ℓ), the standard level subgroup encoding ℓ-isogenies, and we denote by A g (ℓ) := A g,Γ0(ℓ) the resulting stack. The stack A g (ℓ) is smooth over Z[1/ℓ]. We denote by

Φ ℓ = (Φ ℓ,1 , Φ ℓ,2 ) : A g (ℓ) → A g × A g the map (A, K) → (A, A/K).
Proposition 4.7.

1. The maps Φ ℓ,1 and Φ ℓ,2 are finite, étale and representable.

Let

x ∈ A g (ℓ)(k) be a point represented by (A, K), and let K ′ ⊂ A/K be the kernel of the contragredient isogeny. Then Φ ℓ,1 is stabilizer preserving at x if and only if all automorphisms of A stabilize K, and Φ ℓ,2 is stabilizer preserving at x if and only if all automorphisms of A/K stabilize K ′ .

Proof. The automorphisms of x in A g (ℓ) are exactly the automorphisms of A stabilizing K. In particular Φ ℓ,1 induces a monomorphism of the automorphism groups, so is representable; it is stabilizer preserving if and only if all automorphisms of A stabilize K.

If α is an automorphism of (A, K), then α descends to A ′ = A/K, so Φ ℓ,2 is representable as well. An automorphism of A ′ comes from an automorphism of A if and only if it stabilizes K ′ , hence the condition for Φ ℓ,2 to be stabilizer preserving.

Finally, the map Φ ℓ,1 is finite étale because it is of the form A g,Γ → A g for Γ = Γ 0 (ℓ). Denote by π 1 : X g → A g the universal abelian scheme, and by π ℓ : X g (ℓ) → A g (ℓ) the universal abelian scheme with a Γ 0 (ℓ)-level structure. Then the universal isogeny f : g

(ℓ) → X g × Ag A g (ℓ) is separable over Z[1/ℓ].
If we let s 1 : A g → X g and s ℓ : A g (ℓ) → X g (ℓ) be the zero sections, then we have

Φ ℓ,2 = Φ ℓ,1 • π 1 × Ag A g (ℓ) • f • s ℓ .
Therefore Φ ℓ,2 : A g (ℓ) → A g is finite étale as well.

The map Φ ℓ induces a map Φ ℓ : A g (ℓ) → A 2 g on the coarse moduli spaces. This map is not injective, but the same reasoning as in [DR73, §VI.6] shows that it is generically radicial, and even a birational isomorphism. The open subscheme U of A g (ℓ) where Φ ℓ is an embedding is dense in every fiber of characteristic p ∤ ℓ.

Proposition 4.8. Let Ψ 0 denote the schematic image of Φ ℓ . Then A g (ℓ) is the normalization of Ψ 0 . If x 0 lies in the image, then Φ ℓ : A g (ℓ) → Ψ 0 induces a local isomorphism around x 0 if and only if x 0 is normal in Ψ 0 .

Proof. The map A g (ℓ) → Ψ 0 is separated quasi-finite, and birational by the discussion above. Since A g (ℓ) is normal by Corollary 4.3.(ii), we deduce that A g (ℓ) is the normalization of Ψ 0 by Zariski's main theorem [Gro64, Cor. IV.8.12.11].

If Φ ℓ induces a local isomorphism at x 0 , then x 0 is normal since A g (ℓ) is normal. In fact it suffices to ask that Φ ℓ : A g (ℓ) → Ψ 0 is étale at x, because normality is a local notion in the smooth topology [The18, Tag 034F]. The converse also follows from Zariski's main theorem [Gro64, Cor. IV.8.12.10 and Cor. IV.8.12.12]: there exists an open neighborhood U of x 0 in Ψ 0 such that the map

Φ -1 ℓ (U ) → U is an isomorphism. If x is a point of A g (ℓ)
or A g , we abuse notation by also calling x its reduction to the associated coarse moduli space. Proposition 4.9. Let x be a k-point of A g (ℓ).

1. Assume that Φ ℓ,1 is stabilizer preserving at x. Then:

• The map Φ ℓ,1 is strongly étale at x, and the point x is smooth in A g (ℓ) if and only if Φ ℓ,1 (x) is smooth in A g .

• The point x 0 = Φ ℓ (x) is normal in Ψ 0 if and only if the projection p 1 : Ψ 0 → A g is étale at x 0 . • If Φ ℓ,1 (x) is represented by an abelian variety A defined over k, then the isogeny ϕ : A → A ′ representing x is also defined over k.

2. Assume that Φ ℓ,1 (x) only has generic automorphisms. Then Φ ℓ,1 is stabilizer preserving at x, the point x is smooth in A g (ℓ), and the map

A g (ℓ) → A g (ℓ) (resp. A g → A g ) is étale at x (resp. at Φ ℓ,1 (x)).
Proof. The first part of Item 1 comes from Theorem 4.4: in this case, the map Φ ℓ,1 is étale at x, and Φ ℓ,1 is étale-locally around x the pullback of Φ ℓ,1 by the map A g (ℓ) → A g (ℓ).

For the second part, we know that Φ ℓ,1 = p 1 • Φ ℓ is étale at x, and we have seen in Proposition 4.8 that Φ ℓ is étale at x if and only if x 0 is normal in Ψ 0 . Therefore x 0 is normal in Ψ 0 if and only if p 1 is étale at x 0 .

The final part of Item 1 comes from [DR73, §VI.3.1]. Indeed, if (A, K) represents x over k, the obstruction for (A, K) to descend over k is given by an element in H 2 (Spec k, Aut(x)) in the sense of Giraud. But this obstruction vanishes since Φ ℓ,1 (x) is represented by A/k, and the automorphism groups of x and Φ ℓ,1 (x) are equal. The set of isomorphism classes over k is then canonically given by H 1 (Spec k, Aut(x)).

If y = Φ ℓ,1 (x) only has generic automorphisms, then x too, so Φ ℓ,1 is stabilizer preserving at x. The rigidification

A g → [A g /µ 2 ] is étale (it is a µ 2 -gerbe)
and [A g /µ 2 ] → A g is an isomorphism above y by Corollary 4.3.(i). Therefore A g → A g is étale at y, and y is smooth in A g . By the same reasoning, the map A g (ℓ) → A g (ℓ) is étale at x. Proposition 4.9 also holds for Φ ℓ,2 in place of Φ ℓ,1 .

Corollary 4.10. Let x be a k-point of A g (ℓ) such that both Φ ℓ,1 (x) and Φ ℓ,2 (x) only have generic automorphisms. Then x is a smooth k-point of A g (ℓ), the points Φ ℓ,1 (x) and Φ ℓ,2 (x) are both smooth k-points of A g , and we have a commutative diagram

T Φ ℓ,1 (x) (A g ) T x (A g (ℓ)) T Φ ℓ,2 (x) (A g ) T Φ ℓ,1 (x) (A g ) T x (A g (ℓ)) T Φ ℓ,2 (x) (A g ) dΦ ℓ,2 dΦ ℓ,1 dΦ ℓ,2 dΦ ℓ,1
where the vertical arrows are isomorphisms induced by the maps A g (ℓ) → A g (ℓ) and A g → A g . In particular, the deformation map of the isogeny ϕ representing x is given by D(ϕ) = dΦ ℓ,2 (x) • dΦ ℓ,1

-1 (x). Furthermore, let Ψ 0 ⊂ A g × A g be the image of Φ ℓ , denote by p 1 , p 2 : Ψ 0 → A g the two projections, and let x 0 = Φ ℓ (x). If Ψ 0 is normal at x 0 , then the deformation map D(ϕ) is given by dp 2 (x 0 ) • dp 1 (x 0 ) -1 .

Proof. For the first part, apply Proposition 4.9 for both Φ ℓ,1 and Φ ℓ,2 . For the second part, if Ψ 0 is normal at y, then Φ ℓ : A g (ℓ) → Ψ 0 is an isomorphism around x 0 by Proposition 4.8.

Remark 4.11. Let x be a k-point of A g (ℓ) such that both Φ ℓ,1 and Φ ℓ,2 are stabilizer preserving at x. Let y 1 = Φ ℓ,1 (x), y 2 = Φ ℓ,2 (x), and let y ′ 1 , y ′ 2 be lifts of y 1 , y 2 to A g . Let G = I x be the common automorphism group of these objects. Even if G contains non-generic automorphisms, strong étaleness still allows us to compute the deformation map by looking at the coarse spaces, as follows.

Indeed, suppose that x is smooth in A g (ℓ) (equivalently, by Proposition 4.9, y 1 , or y 2 , is smooth in A g ). Then, the same reasoning as in Corollary 4.10 holds for x, except that in the commutative diagram the vertical maps are not isomorphisms, since the maps to the coarse moduli spaces are not étale at x and its images. From strong étaleness, the maps on the bottom are isomorphisms, and it remains to explain how to recover the maps on the top from them.

Let B 1 be the completed local ring of A g at y ′ 1 . Then by Corollary 4.3.(ii), the completed local ring of A g at y 1 is B G 1 . Therefore, given m = g(g + 1)/2 uniformizers u ′ 1 , . . . , u ′ m of A g at y ′ 1 , we obtain g(g + 1)/2 uniformizers of A g at y 1 as G-invariant polynomials in u ′ 1 , . . . , u ′ m . Knowing these polynomials and proceeding in the same way at y 2 allows us to recover the deformation map at the level of stacks up to an action of non-generic elements of G, which amounts to changing the lifts y ′ 1 and y ′ 2 . In practice, it may be more convenient to work at the level of stacks to recover the deformation map directly, rather than using G-invariants uniformizers on A g . Algorithmically, the choice depends on the degree of the field extension one has to take to add enough level structure to rigidify the stack. For instance, if g = 2 and k is a finite field, we only need an extension of degree at most 6 to get the 2-torsion, whereas over a number field this could take an extension of degree up to 720. Remark 4.12. Let k be a field. Then Proposition 4.9 and Corollary 4.10 also apply to the map A g (ℓ)

(k) → A (k) g × A (k)
g , where A g (ℓ) (k) and A (k) g are the coarse moduli space of A g (ℓ) ⊗ k and A g ⊗ k respectively. In practice this does not change the results much, since at points x with generic automorphisms, we know that A (k) g is isomorphic to A g ⊗ k locally around x by Theorem 4.2.(ii). Moreover, if the characteristic of k is large enough, then all points above k are tame, so A (k) g = A g ⊗ k by Theorem 4.2.(i). Now assume that we are in the situation of Remark 4.11, with x a k-point of A g (ℓ) such that both Φ ℓ,1 and Φ ℓ,2 are stabilizer preserving at x. Assume furthermore that x is a tame point, and that the characteristic of k is p. Let x 0 = Φ ℓ (x). If Φ ℓ is étale at x, or equivalently x 0 is normal in Ψ 0 , then Φ ℓ is étale above lifts in characteristic 0 of x. The converse is also true: if x 0 is not normal, then it must come from a singular point in characteristic zero. Indeed, normality is equivalent to the conditions S 2 and R 1 ; since Ψ 0 ⊗ k is reduced, so is S 1 and R 0 , it suffices to check normality at lifts of characteristic zero. This generalizes the remark of [START_REF] Schoof | Counting points on elliptic curves over finite fields[END_REF]p. 248].

Birational invariants for abelian surfaces

In the case g = 2, the structure of the coarse moduli space A 2 and the possible automorphism groups have been worked out explicitly.

Recall that the Jacobian locus, denoted by M 2 , is the open locus in A 2 consisting of Jacobians of hyperelliptic curves. Igusa showed in [START_REF] Igusa | Arithmetic variety of moduli for genus two[END_REF] that

M 2 = Proj[J 2 , J 4 , J 6 , J 8 , J 10 ]/(J 2 J 6 -J 2 4 -4J 8 ) (J10) ,
and that there is only one singular point of M 2 over Z, given by the hyperelliptic curve C 0 : y 2 = x 5 -1, which corresponds to the point J 2 = J 4 = J 6 = J 8 = 0. Over C, in [START_REF] Igusa | On Siegel modular forms of genus two[END_REF], Igusa shows that A 2 has also in its singular locus two projective lines which represent products of elliptic curves, one of which being isomorphic to y 2 = x 3 -1 or to y 2 = x 4 -1. Finally, the structure of A 2 over Z is described in [START_REF] Igusa | On the ring of modular forms of degree two over Z[END_REF], but the singular locus is not determined. The possible (reduced) groups of automorphisms of genus 2 curves over an algebraic closure are determined in [START_REF] Igusa | Arithmetic variety of moduli for genus two[END_REF]§VIII]; see also [START_REF] Liu | Courbes stables de genre 2 et leur schéma de modules[END_REF]§4.1]. We restrict to a characteristic different from 2. Define C 0 : y 2 = x 5 -1 and C 1 : y 2 = x 5 -x. Then every curve C not isomorphic to C 0 or C 1 satisfies # Aut(C) ∈ {2, 4, 6}. In characteristic different from 5, we have Aut C 0 = Z/10Z and # Aut C 1 ∈ {6, 8}. In characteristic 5, Aut C 1 is an extension of PGL 2 (F 5 ), which has cardinality 120, by Z/2Z. In particular we see that in characteristic 0 and p > 5 all curves have a tame automorphism group.

From [Igu60; Str10; GL12], the covariants I 2 , I 4 , I ′ 6 , I 10 are defined over Z. They are zero modulo 2, and I 2 , I 4 , I ′ 6 are all polynomials in J 2 modulo 3. Therefore the Igusa invariants j 1 , j 2 , j 3 have bad reduction modulo 2 and do not generate the function field of M 2 modulo 3. Over Z[1/6] however, they are birational invariants, and determine an isomorphism from U = {I 4 = 0} ⊂ M 2 to {j 3 = 0} ⊂ A 3 . Every point with I 4 = 0 maps to (j 1 , j 2 , j 3 ) = (0, 0, 0).

The modular polynomials Ψ ℓ,i from §2.6 are equations for the image

Ψ 0 ⊂ A g × A g of Φ ℓ intersected with U × U in A 3 × A 3 via j 1 , j 2 , j 3 .
Proposition 4.13. Let Ψ 1 denote the normalization of the variety cut out by the modular polynomials Ψ ℓ,i . Let ϕ : A → A ′ be an ℓ-isogeny over a field k of caracteristic p > 5 or zero, and let x be the k-point of Ψ 1 corresponding to ϕ. Assume that A and A ′ are Jacobians with no extra automorphisms and that A, A ′ ∈ U . Then the deformation map D(ϕ) of ϕ is given by dp 2 (x) • dp 1 (x) -1 , where p 1 , p 2 denotes the projections

Ψ 1 ⊗ k → A 3 k . Proof.
By assumption, the Igusa invariants induce an isomorphism between the tangent spaces T A (A g ) and T j(A) (A 3 k ), and similarly for A ′ . Since A and A ′ have no extra automorphisms, Φ ℓ,1 and Φ ℓ,2 are automatically stabilizer preserving. The normalization Ψ 1 is isomorphic to the preimage of U × U in the coarse moduli space A g (ℓ) by the discussion before Proposition 4.9. Since ϕ is a tame point, by Theorem 4.2.(ii), Ψ 1 ⊗ k is still the coarse moduli space of A g,Γ0(ℓ) ⊗ k locally around ϕ, so we conclude by Proposition 4.9.

Remark 4.14. We summarize different incarnations of the deformation map.

• At the level of stacks, the two projections Φ ℓ,1 , Φ ℓ,2 : A g (ℓ) → A g are always étale and we can always compute the deformation map at an isogeny ϕ as dΦ ℓ,2 (ϕ)

• dΦ ℓ,1 (ϕ) -1 .
• At the level of the coarse moduli space A g (ℓ), we can still compute the deformation map at the points where Φ ℓ,1 and Φ ℓ,2 are stabilizer preserving. If this is not the case, we must add a level structure that kills the automorphisms that do not stabilize the kernel of the isogeny.

• We may then replace A g (ℓ) by its birational image in A 2 g . We recover the deformation map at points x ∈ A 2 g where there is a local isomorphism Φ -1 ℓ (U ) → U for some open set U containing x. If this is not the case, we may instead recover A g (ℓ) from its birational image by computing the normalization. It is usually enough to compute the normalization once and for all over Z, since by Theorem 4.2 the formation of A g (ℓ) commutes with arbitrary base change at tame points.

• Finally, when g = 2, we can use the birational morphism from A 2 to A 3

given by the three Igusa invariants. Modular polynomials are usually given in this form. With Streng's version of Igusa invariants, they can be used as long as I 4 = 0, i.e. j 3 = 0. Otherwise, one has to compute the modular polynomials for another set of invariants which are defined at A and A ′ .

As we go down the list, modular equations become algorithmically more tractable, at the expense of introducing more exceptions; but if we find such an exception, we can always spend more computation time if needed in order to recover the deformation map.

Hilbert-Blumenthal stacks

We now briefly describe Hilbert-Blumenthal stacks, and refer to [Rap78; Cha90] for more details. Let K be a real number field of dimension g, and let Z K be its maximal order. We say that an abelian scheme A → S has real multiplication by Z K (or, for short, is RM) if it is endowed with a morphism ι : Z K → End(A) such that Lie(A) is a locally free Z K ⊗ O S -module of rank 1. This last condition can be checked on geometric fibers [Rap78, Rem. 1.2] and is automatic on fibers of characteristic zero [Rap78, Prop. 1.4].

We let H g be the stack of principally polarized abelian schemes with real multiplication by Z K . It is algebraic and smooth of relative dimension g over Spec Z [Rap78, Thm. 1.14]. Moreover, H g is connected and its generic fiber is geometrically connected [Rap78, Thm. 1.28]. Forgetting the real multiplication embedding ι yields a map H g → A g , called the Hilbert embedding, which is an Isom(Z K , Z K ) ≃ Gal(K)-gerbe over its image, the Humbert stack. We described the analytification of H g and the Hilbert embedding in Section 2. The map from H g → A g is finite by [Gro64, EGA IV.15.5.9], [DR73, Lem 1.19] (or by looking at the compactifications of [START_REF] Rapoport | Compactifications de l'espace de modules de Hilbert-Blumenthal[END_REF], [START_REF] Faltings | Degeneration of abelian varieties[END_REF]).

One can define the stack H g,n → Z[1/n] of RM abelian schemes with a level n structure in the usual way. The map H g,n → H g is étale over Z[1/n] [Rap78, Thm. 1.22], its generic fiber is connected, and geometrically has φ(n) components defined over Q(ζ n ) [Rap78, Thm. 1.28]. If β is a totally positive prime of Z K , this allows us to construct, in a similar fashion to A g (ℓ), the stack H g (β) = H g,Γ0(β) of RM abelian schemes endowed with a subgroup K which is maximal isotropic for the β-pairing. We have a map

Φ β = (Φ β,1 , Φ β,2 ) : H g (β) → H g × H g
given by forgetting the extra structure and taking the isogeny respectively. The condition on β ensures that Φ β,2 sends H g (β) to H g .

The methods of Section 4.2.1 also apply to compute the Hilbert deformation map. We have the following analogue of Corollary 4.10, with a similar proof.

Proposition 4.15. Let x be a k-point of H g (β) such that Φ β,1 (x) and Φ β,2 (x) only have generic automorphisms. Then x maps to a smooth point of the coarse moduli space H g (β), both Φ β,1 (x) and Φ β,2 (x) map to smooth points of the coarse moduli space H g , and we have a commutative diagram

T Φ β,1 (x) (H g ) T x (H g (β)) T Φ β,2 (x) (H g ) T Φ β,1 (x) (H g ) T x (H g (β)) T Φ β,2 (x) (H g ) dΦ β,2 dΦ β,1 dΦ β,2 dΦ β,1
where the vertical arrows are isomorphisms induced by the maps A g (ℓ) → A g (ℓ) and A g → A g , and Φ β,i is the map induced by Φ β,i at the level of coarse spaces. In particular, the deformation map of the isogeny ϕ representing x is given by

D(ϕ) = dΦ β,2 (x) • dΦ β,1 -1 (x).
Corollary 4.16. Let x be a k-point of H g (β) such that both x 1 = Φ β,1 (x) and x 2 = Φ β,2 (x) only have generic automorphisms. Assume furthermore that (x 1 , x 2 ) does not lie in Φ β (H g (β)): this means that the corresponding abelian varieties are β-isogenous but not β-isogenous.

Let Ψ β ⊂ H g × H g be the image of Φ β . Let Ψ β,β ⊂ A g × A g
be the image of Ψ β , and let y = (y 1 , y 2 ) the image of (x 1 , x 2 ) by the forgetful morphism

H g × H g → A g × A g . Denote by p 1 , p 2 : Ψ β,β → A g the two projections. If Ψ β,β is normal at y, then the deformation map D(ϕ) is given by dp 2 (y) • dp 1 (y) -1 .
Proof. The map H g → A g is finite étale, and under our assumptions the maps H g → H g and A g → A g are étale at x 1 and x 2 (resp. at their images y 1 , y 2 in A g ). Therefore the map

H g × H g → A g × A g is étale at x ′ = (x 1 , x 2 ). Furthermore the pullback of Ψ β,β by H g × H g → A g × A g is Ψ β ∪ Ψ β ⊂ H g × H g , so the map Ψ β ∪ Ψ β → Ψ β,β is étale at x ′ . Since Φ β is finite, its image Ψ β ⊂ H g × H g is closed.
By our assumption on x, there is an open subscheme containing x which does not intersect Ψ β , so the map Ψ β → Ψ β,β is étale at x ′ . In particular, Ψ β is normal at x ′ if and only if Ψ β,β is normal at x. The same proof as in Corollary 4.10 shows that the projections maps Ψ β → H g are étale at x ′ , and can be used to compute the deformation matrix. Since H g → A g is étale at x 1 and x 2 , the projections p 1 and p 2 are also étale at y, and can be used to compute the deformation matrix as well.

The deformation and tangent maps

In this section, we present the Kodaira-Spencer isomorphism, which for a principally polarized abelian variety A identifies T A (A g ) with Sym 2 (T 0 (A)). This yields a relation between the deformation and tangent maps of a given ℓ-isogeny (Proposition 4.19). We also present an analogous result in the Hilbert case.

The Siegel case

The Kodaira-Spencer morphism was first introduced in [KS58]; we refer to [FC90, §III.9] and [And17, §1.3] for more details.

Let p : A → S be a proper abelian scheme, and assume for simplicity that S is smooth. Then, using the Gauss-Manin connection

∇ : R 1 p * Ω A/S → R 1 p * Ω A/S ⊗ Ω 1
S , one can define the Kodaira-Spencer morphism

κ : T S → R 1 p * T A/S ,
where T A/S is the dual of Ω 1 A/S . Recall that Lie S A = p * T A/S is the dual of p * Ω 1 A/S , and is canonically identified with s * T AS where s : S → A is the zero section [START_REF] Moonen | Abelian varieties[END_REF]Prop. 3.15]. By the projection formula [FGI+05, Thm. 8.3.2], [The18, Tag 0943], we have

R 1 p * T A/S = Lie S (A) ⊗ OS R 1 p * O A .
Moreover, R 1 p * O A is naturally isomorphic to Lie S (A ∨ ), where A ∨ → S is the dual of A. Therefore, we can also write the Kodaira-Spencer map as

κ : T S → R 1 p * T A/S ≃ Lie S (A) ⊗ OS Lie S (A ∨ ).
The Kodaira-Spencer map κ is invariant by duality. A polarization A → A ∨ induces another version of the Kodaira-Spencer map:

κ : T S → Sym 2 Lie S (A) = Hom Sym (Ω 1 A/S , Ω 1 ∨ A ∨ /S ) = Hom Sym Lie S (A) ∨ , Lie S (A ∨
) . If we apply this construction to the universal abelian scheme X g → A g (or rather, the pullback of X g to an étale presentation S of A g ), the Kodaira-Spencer map is an isomorphism [And17, §2.1.1]. Its analytification can be described explicitly.

Proposition 4.17. Let V be the trivial vector bundle C g on H g , identified with the tangent space at 0 of the universal abelian variety A(τ ) over H g . Then the pullback of the Kodaira-Spencer map κ :

T Ag → Sym 2 Lie S X g by H g → A g an is an isomorphism T Hg ≃ Sym 2 V given by κ 1 + δ jk 2πi ∂ ∂τ jk = 1 (2πi) 2 ∂ ∂z j ⊗ ∂ ∂z k .
for each 1 ≤ j, k ≤ g, where δ jk is the Kronecker symbol.

Proof. This is [And17, §2.2]. The identification can be derived by looking at the deformation of a section s of the line bundle on X g giving the principal polarization. On H g × C g → H g , we can take the theta function θ as a section, and its deformation along τ is given by the heat equation [Cv00, p. 9]:

2πi(1 + δ jk ) ∂θ ∂τ jk = ∂ 2 θ ∂z j ∂z k .
When identifying the tangent space at τ with the symmetric matrices, the action of Sym 2 at a matrix U on the tangent space is given by M → M U M t . It is then easy to check that this action is indeed compatible with the action of Sp 2g (Z) on τ and U . From Proposition 4.17, we recover that derivatives of Siegel modular invariants have weight Sym 2 in the sense of §2; moreover the basis of differential forms ω(τ ) from §2.1 and the matrix D τ J defined in §3.4 are correctly normalized.

To sum up, if x : Spec k → A g is a point represented by a principally polarized abelian variety A/k, we have a canonical isomorphism T x A g ≃ Sym 2 (T 0 (A)).

Definition 4.18. Let k be a field of characteristic distinct from ℓ, let ϕ : A → A ′ be an ℓ-isogeny representing a point of A g (ℓ)(k), and fix bases of T 0 (A) and T 0 (B) as k-vector spaces. We call the matrix of the tangent map dϕ in these bases the tangent matrix of ϕ.

By functoriality, this choice of bases induces bases of T A (A g ) and T A ′ (A g ) over k. We call the matrix of the deformation map D(ϕ) in these bases the deformation matrix of ϕ.

We still denote these matrices by dϕ and D(ϕ), but this abuse of notation should cause no confusion.

We can now extend the relation that we gave in Proposition 3.19 between the tangent and deformation matrices, as follows.

Proposition 4.19. Let ϕ be as in Definition 4.18, and let dϕ (resp. D(ϕ)) be its tangent (resp. deformation) matrix. Then we have Sym 2 (dϕ) = ℓD(ϕ).

Proof. It suffices to prove it for the universal ℓ-isogeny ϕ :

X g (ℓ) → X g × Ag A g (ℓ)
over Z[1/ℓ]. All line bundles involved in the relation we have to prove are locally free on smooth stacks, so are flat over Z; therefore, since Z → C is injective, it suffices to prove the relation over C. By rigidity [MFK94, Prop. 6.1 and Thm. 6.14], it suffices to prove the relation on each fiber.

Hence we may assume that ϕ : A → A ′ is an ℓ-isogeny over C. We can find τ ∈ H g such that A is isomorphic to C g /(Z g + τ Z g ) and A ′ is isomorphic to C g /(Z g + τ /ℓZ g ), with ϕ induced by the identity on C g . Then, the deformation map at ϕ is given by τ → τ /ℓ, so the result follows.

The Hilbert case

In the Hilbert case, the Kodaira-Spencer isomorphism is as follows.

Proposition 4.20. Let A → S be an abelian scheme in H g . Then we have canonical isomorphisms

T A (H g ) ≃ Hom ZK ⊗OS (Lie(A) ∨ , Lie(A ∨ )) = Lie(A ∨ ) ⊗ ZK ⊗OS Lie(A) ⊗ ZK Z ∨ K .
Proof. Combine [Rap78, Prop. 1.6] with [Rap78, Prop. 1.9].

Proposition 4.20 shows that for Hilbert-Blumenthal stacks, the deformation map is actually represented by an element of Z K ⊗ O S rather than a matrix in O S . The action of the Hilbert embedding on tangent spaces is also easy to describe. Proposition 4.21. Let A be a k-point of H g . Then the map T A (H g ) → T A (A g ) induced by the forgetful functor fits in the commutative diagram

T A (H g ) T A (A g ) Hom ZK ⊗O k (Lie(A) ∨ , Lie(A ∨ )) Hom Sym (Lie(A) ∨ , Lie(A ∨ )).
where the vertical arrows are the Kodaira-Spencer isomorphisms.

Proof. The bottom arrow is well-defined: Lie(A) is a projective Z K ⊗O k -sheaf of rank 1, so its image in Hom O k (Lie(A) ∨ , Lie(A ∨ )) obtained by forgetting the Z Kstructure is automatically symmetric. We omit the proof of commutativity.

Combining Proposition 4.21 with the analytic description of the Kodaira-Spencer in the Siegel case (Proposition 4.17) and the analytic description of the forgetful map ( §2.4), we obtain the following analytic description of the Kodaira-Spencer isomorphism in the Hilbert case.

Corollary 4.22. The pullback of κ : T Hg → Sym 2 Lie S X g by H g 1 → H g an is given by

κ 1 πi ∂ ∂t j = 1 (2πi) 2 ∂ ∂z j ⊗ ∂ ∂z j
for every 1 ≤ j ≤ g.

This result provides an algebraic interpretation of Proposition 3.22: in genus 2, the part of T A (A 2 ) that comes from the Hilbert space corresponds to the span of dz 1 ⊗ dz 1 and dz 2 ⊗ dz 2 .

We obtain the analogue of Proposition 4.19 in the Hilbert case by a similar proof; in this statement, we see D(ϕ) as an element of a Z K ⊗ O S -module.

Proposition 4.23. Let ϕ : A → A ′ be a β-isogeny. Then Sym 2 (dϕ) = βD(ϕ).

Remark 4.24. We give an algebraic interpretation of the notion of Hilbertnormalized bases from §2.3, and the reduction to diagonal matrices that we used in §3.5 to compute the tangent matrix in the Hilbert case.

Let k be a field, and let A be an abelian variety representing a k-point of H g . Then Lie(A) is a free Z K ⊗ k-module of rank 1, and any choice of basis v induces an isomorphism with Z K ⊗ k itself. Provided that char k ∤ Discr(K), and up to taking an étale extension of k, we may assume that k splits Z K :

Z K ⊗ k = ⊕ g i=1 k σi
where k σi ≃ k has a Z K -module structure induced by the i-th embedding σ i : Z K → k. We fixed such a trivialization in §2.3 in the case k = C. Then, v induces a basis of Lie(A) as a k-vector space on which Z K acts diagonally, in other words a Hilbert-normalized basis of Lie(A). With such choices of trivializations, the deformation map as given by a g × g matrix in the basis (v 1 ⊗ v 1 , . . . , v g ⊗ v g ) of the tangent spaces to H g . Let us discuss, as a generalization of §3.6, the construction of Hilbertnormalized basis when only the Humbert equation is given. Assume that k splits Z K and fix a trivialization; let (v 1 , . . . , v g ) be a Hilbert-normalized basis of Lie(A), let (w 1 , . . . , w g ) be another k-basis and let M be the base-change matrix. Then w 1 ⊗ w 1 , . . . , w g ⊗ w g are tangent to the Humbert variety if and only if they are in the image of the map

Hom ZK ⊗O k (Lie(A) ∨ , Lie(A ∨ )) → Hom Sym (Lie(A) ∨ , Lie(A ∨ )).
Via the trivialization, the left hand side is isomorphic to ⊕ g i=1 Hom k (k σi , k σi ). So w 1 ⊗ w 1 , . . . , w g ⊗ w g are tangent to the Humbert variety if and only if M is diagonal up to a permutation. When Gal(K/Q) is not the full symmetric group S g , this is not enough in general to ensure that the basis (w 1 , . . . , w g ) is potentially Hilbert-normalized. This issue does not appear in genus 2.

As a final remark, assume that ϕ : A → A ′ is an isogeny compatible with the real multiplication, and assume that we are given bases of Lie(A) and Lie(A ′ ) as Z K ⊗ k-modules (which we assume is étale for simplicity). Then, knowing Sym 2 (dϕ), the number of possibilities for dϕ is 2 s where s is the number of connected components of the étale algebra Z K ⊗ k. For instance, if g = 2 and k = F p there are 2 or 4 possibilities according to whether p is inert or split in Z K .

Siegel modular form pulls back to a polynomial covariant over any ring R in which 2 is invertible. Using Igusa's universal form [START_REF] Igusa | Arithmetic variety of moduli for genus two[END_REF]§2], one can also use binary forms of degree 6 to describe the moduli stack of genus 2 curves even in characteristic two.

Proposition 4.25. The equality Cov(f 8,6 ) = Cov(χ 10 )X from Proposition 3.12 holds over Z.

Proof. By the q-expansion principle, f 8,6 is defined over Z[1/2, 1/3, 1/5, 1/43]; the covariants I 10 and X are defined over Z[1/2] since they have integral coefficients. Checking the value of Cov(χ 10 )X on Igusa's universal hyperelliptic curve as in [START_REF] Igusa | Arithmetic variety of moduli for genus two[END_REF]§3] shows that this covariant is even defined over Z. Since the Hodge bundle is without torsion, it is enough to check equality over C, which is the content of Proposition 3.12. This suggests another, entirely algebraic proof of Proposition 3.12. By dimension considerations, we have Cov(f 8,6 ) = λ Cov(χ 10 )X for some λ ∈ Q × . We have seen above that Cov(χ 10 )X is defined over Z and primitive; therefore, if we can show that the Fourier coefficients of f 8,6 are integers with gcd 1, we will have λ = ±1. In order to obtain λ = 1, we can use Thomae's formula on one curve, perform a certified numerical evaluation over C, or study degenerations from hyperelliptic curves to elliptic curves using the formula from [Liu93, Thm. 1.II].

As a consequence of Proposition 4.25, the identification of derivatives of Igusa invariants as explicit covariants (Theorem 3.14) still holds over Z[1/2].

For the algebraic interpretation of Hilbert modular forms as sections of the Hodge bungle on H g , the Koecher principle and the q-expansion principle for Hilbert modular forms, we refer to [START_REF] Chai | Arithmetic minimal compactification of the Hilbert-Blumenthal moduli spaces[END_REF]§4] and [START_REF] Rapoport | Compactifications de l'espace de modules de Hilbert-Blumenthal[END_REF]Thm. 6.7]. We can check that the relation between derivatives of Igusa invariants on the Hilbert and Siegel sides (Proposition 3.22) and the characterization of potentially Hilbertnormalized curves (Proposition 3.24) are still valid over Z[1/2].

Computing the tangent map in dimension 2

In this section, we work over a field k of characteristic different from 2 and 3; this restriction is not essential and comes from our choice of invariants. We have seen that derivatives of Igusa invariants are defined over Z[1/2], and hence make sense over k. We keep the matrix notations from §3.4. Proposition 4.26. Let U be the open set of A 2 over k consisting of abelian surfaces A such that Aut(A) = {±1} and j 3 (A) = 0. Let ϕ : A → A ′ be an ℓ-isogeny over k. Assume that A, A ′ lie in U , and denote their Igusa invariants by j, j ′ . Assume further that the subvariety of A 3 × A 3 cut out by modular equations is normal at (j(A), j(A ′ )). Let C, C ′ be hyperelliptic equations over k whose Jacobians are isomorphic to A, A ′ respectively. Then 1. The isogeny ϕ is generic in the sense of Definition 3.18, in other words the 3 × 3 matrices DΨ ℓ,L (j, j ′ ), DΨ ℓ,R (j, j ′ ), D τ J(C) and D τ J(C ′ ) are invertible.

2. Let dϕ be the tangent matrix of ϕ with respect to C, C ′ . Then

Sym 2 (dϕ) = -ℓD τ J(C ′ ) -1 • DΨ ℓ,R (j, j ′ ) -1 • DΨ ℓ,L (j, j ′ ) • D τ J(C).
Proof. By Corollary 4.10, both A and A ′ are smooth points of A g , and the deformation map D(ϕ) is dΦ ℓ,2 (ϕ) • dΦ ℓ,1 (ϕ) -1 . Since A has generic automorphisms, A is not a product of elliptic curves; moreover j 3 (A) = 0, so the birational map (j 1 , j 2 , j 3 ) : A g → A 3 is well-defined and étale at A. The map A g → A g is also étale at A, so the Igusa invariants are local uniformizers around A in A g . This shows that ϕ is generic in the sense of Definition 3.18. We obtain the expression of Sym 2 (dϕ) by Proposition 4.19.

If A lies in the open set U defined in Proposition 4.26 and C is a hyperelliptic equation for A, then giving an element of T A (A g ) is equivalent to giving one of the following:

1. A deformation C ǫ of C over k[ǫ]/(ǫ 2 ), 2. The Igusa invariants j 1 (C ǫ ), j 2 (C ǫ ), j 3 (C ǫ ) in k[ǫ]/(ǫ 2 ),
3. If (w 1 , w 2 ) = (x dx/y, dx/y) is the canonical basis of differential forms on C, a vector v = αw 2 1 + βw 1 w 2 + γw 2 2 in Sym 2 Ω 1 (C). Switching from one representation to another can be done at the cost of O(1) operations in k using the formulae for Igusa invariants, the expression of their derivatives as a covariant, and linear algebra.

In the Hilbert case, it is more difficult to ensure genericity in the sense of Definition 3.20 because the Hilbert embedding H g → A g comes into play. We assume that k splits Z K , and fix a trivialization of Z K ⊗ k. Proposition 4.27. Let A, A ′ be abelian varieties representing k-points of H g , and let C, C ′ be hyperelliptic equations over k whose Jacobians are isomorphic to A, A ′ respectively; assume that C, C ′ are Hilbert-normalized and that there exists a β-isogeny ϕ : A → A ′ . Then we have

DΨ β,L (j, j ′ ) • D t J(C) = -DΨ β,R (j, j ′ ) • D t J(C ′ ) • Diag(1/β, 1/β) • (dϕ) 2 .
Proof. This comes from the relation between the deformation and tangent matrices (Proposition 4.23).

The equality in Proposition 4.27 only allows to compute (dϕ) 2 when ϕ is generic. Even in this case, we get several possible candidates for dϕ up to sign. The discussion of Remark 4.24 shows that Proposition 3.24, which gives an algorithm to construct potentially Hilbert-normalized curve equations in genus 2, is still valid over k.

reconstruction to obtain ϕ as a rational map. In order for the rational reconstruction algorithm to succeed, the power series precision must be large enough with respect to the degrees of the result in the variables (a i ). These degrees can be estimated from the intersection degree of ϕ * L A ′ and L A , or alternatively from the intersection degree of ϕ * L A and L A ′ . This strategy to compute ϕ is not new: the idea of using a differential equation to compute isogenies in genus 1 appears in [START_REF] Elkies | Elliptic and modular curves over finite fields and related computational issues[END_REF], and [START_REF] Bostan | Fast algorithms for computing isogenies between elliptic curves[END_REF] uses a Newton algorithm to solve this differential equation. To the best of our knowledge, the first article to extend these ideas to genus 2 is [START_REF] Couveignes | Computing functions on Jacobians and their quotients[END_REF]. The method is further extended to compute endomorphisms of Jacobians over a number field in [START_REF] Costa | Rigorous computation of the endomorphism ring of a Jacobian[END_REF]. In [CMS+19, §6], the endomorphism is represented as a divisorial correspondence; the interpolation of this divisor is done a bit differently, via linear algebra on Riemann-Roch spaces.

A necessary condition for the whole method to work is that ϕ be completely determined by its tangent map. In general, this will be the case when char k is large with respect to the degree of ϕ. For instance, we have the following statement in the case of ℓ-isogenies.

Lemma 5.1. Let A and A ′ be two principally polarized abelian varieties over a field k, and M : T 0 (A) → T 0 (A ′ ) a linear map. Assume that that char k = 0 or char k > 4N . Then there is at most one ℓ-isogeny ϕ : A → A ′ with ℓ ≤ N such that dϕ = M . Proof. Let ϕ 1 and ϕ 2 be two such isogenies. Then ϕ 1 = ϕ 2 + ψ where ψ is inseparable. If char k = 0, this implies ψ = 0 and hence ϕ 1 = ϕ 2 . Otherwise, write p = char k and denote by ϕ 1 the contragredient isogeny. Then if ψ = 0, we have

ψψ = ϕ 2 ϕ 2 + ϕ 1 ϕ 1 -ϕ 1 ϕ 2 -ϕ 2 ϕ 1 .
But ψψ is equal to p m for some m ≥ 1, and

ϕ 1 ϕ 1 = ℓ 1 , ϕ 2 ϕ 2 = ℓ 2 with ℓ 1 , ℓ 2 ≤ N by hypothesis. Therefore we obtain p m ≤ 2N + 2 √ N √ N = 4N .
In practice, Newton iterations will fail to reach sufficiently high power series precision if char k is too small, hence the bound given in Theorem 1.1.

In the rest of this section, we carry out this strategy in detail when A, A ′ are the Jacobians of genus 2 hyperelliptic curves C, C ′ . Concretely, we are given the matrix of dϕ in the bases of T 0 (A) and T 0 (A ′ ) that are dual to ω(C) and ω(C ′ ) respectively (see §3.1). In this case, a nice simplification occurs: the isogeny ϕ is completely determined by the compositum

C Jac(C) Jac(C ′ ) C ′2,sym A 4 Q →[Q-P ] ϕ ∼ m
where P is any point on C, and m is the rational map given by

{(x 1 , y 1 ), (x 2 , y 2 )} → x 1 + x 2 , x 1 x 2 , y 1 y 2 , y 2 -y 1 x 2 -x 1 .
This compositum is a tuple of four rational fractions s, p, q, r ∈ k(u, v) that we call the rational representation of ϕ at the base point P . We choose a uniformizer z of C around P and perform the Newton iterations and rational reconstruction over the univariate power series ring k[[z]].

We explain how we choose the base point P and solve the differential system in Section 5.2. One difficulty is that the differential system we obtain is singular (Lemma 5.6), so we need to use the geometry of the curves (Proposition 5.4) to find the first few terms in the series before switching to Newton iterations (Proposition 5.8). In Section 5.3, we estimate the degrees of the rational fractions that we want to compute and present the rational reconstruction step.

Solving the differential system

We keep the notation used in §5.1. Write the curve equations C, C ′ and the tangent matrix as

C : v 2 = E C (u), C ′ : y 2 = E C ′ (x), dϕ = m 1,1 m 1,2 m 2,1 m 2,2 .
We assume that ϕ is separable, so that dϕ is invertible. If P is a base point on C, we denote by ϕ P the associated map C → C ′2,sym .

Step 1: choice of base point and power series. Let P be a point on C which is not at a point at infinity; up to enlarging k, we assume that P ∈ C(k).

Since ϕ P (P ) is zero in Jac(C ′ ), we have

ϕ P (P ) = Q, i(Q)
for some Q ∈ C ′ , where i denotes the hyperelliptic involution. We say that ϕ P is of Weierstrass type if Q is a Weierstrass point of C ′ , and of generic type otherwise. If z is a local uniformizer of C at P , and R is an étale extension of k[[z]], we define a local lift of ϕ P at P with coefficients in R to be a tuple ϕ

P = (x 1 , x 2 , y 1 , y 2 ) ∈ R 4 such that we have a commutative diagram Spec R C ′ 2 Spec k[[z]] C C ′ 2,sym . (x1,y1),(x2,y2) ϕP
If the power series x 1 , x 2 , y 1 , y 2 define a local lift of ϕ P , then they satisfy the differential system (S) given by 

              x 1 dx 1 y 1 + x 2 dx 2 y 2 = (m 1,1 u + m 1,2 ) du v dx 1 y 1 + dx 2 y 2 = (m 2,1 u + m 2,2 ) du v y 2 1 = E C ′ (x 1 ) y 2 2 = E C ′ (x 2 ), (S) 
where we consider the coordinates u, v on C as elements of k[[z]], and the letter d denotes derivation with respect to z.

When solving (S), we want ϕ P to be of generic type. Proposition 5.4 shows how to choose P to enforce this condition; in order to prove it, we first study the existence of local lifts for arbitrary base points.

Lemma 5.2. Let z be a uniformizer of C at P . Then there is a quadratic extension k ′ /k such that a local lift of ϕ P at P with coefficients in

R = k ′ [[ √ z]]
exists. Moreover, if ϕ P is of generic type, or if P is a Weierstrass point of C, then the same statement holds with

R = k ′ [[z]].
Proof. First assume that ϕ P is of generic type. Since the unordered pair

Q, i(Q) is Galois-invariant, there is a quadratic extension k ′ /k such that Q is defined over k ′ . The map C ′ 2 → C ′ 2,sym is étale at Q, i(Q) , so induces an isomorphism of completed local rings. Therefore a local lift exists over k ′ [[z]].
Second, assume that ϕ P is of Weierstrass type. The map Spec k[[z]] → C ′2,sym defines a k((z))-point of C ′2,sym , and there exists a preimage of this point defined over an extension K/k((z)) of degree 2. Let R be the integral closure of k

[[z]] in K. Then R is contained in k ′ [[ √ z]] for some quadratic extension k ′ /k [The18, Tag 09E8].
By the valuative criterion of properness, our K-point of C ′2 extends to an R-point uniquely, so a local lift exists over R. Finally, assume that ϕ P is of Weierstrass type and that P is a Weierstrass

point of C. Let (x 1 , x 2 , y 1 , y 2 ) be a local lift of ϕ P over k ′ [[ √ z]]. The completed local ring of the Kummer line of C at P is k[[z 2 ]],
and the unordered pair {x 1 , x 2 } is defined on the Kummer line; by the same argument as above, x 1 and x 2 are defined over k ′ [[z]]. The system (S) can be written as

1/y 1 1/y 2 = x 1 x ′ 1 x 2 x ′ 2 x ′ 1 x ′ 2 -1 R 1 (z) R 2 (z) for some series R 1 , R 2 ∈ k[[z]],
hence y 1 and y 2 are defined over k ′ [[z]] as well.

Consider the tangent space

T (Q,i(Q)) C ′2 of C ′2 at Q, i(Q) . It decomposes as T (Q,i(Q)) C ′ 2 = T Q C ′ ⊕ T i(Q) C ′ ≃ (T Q C ′ ) 2
where the last map is given by the hyperelliptic involution on the second term. Proof. Assume the contrary. The direction (v, v) is contracted to zero in the Jacobian, so every differential form on the Jacobian is pulled back to zero via ϕ P . This is a contradiction because ϕ * is nonzero.

Proposition 5.4. The point Q is uniquely determined by the property that, up to a scalar factor, ϕ * ω ′ Q = ω P where ω P (resp. ω ′ Q ) is a nonzero differential form on C (resp. C ′ ) vanishing at P (resp. Q).

Proof. First, assume that a local lift ϕ P exists over k ′ [[z]]. By Lemma 5.3, the tangent vector d ϕ P /dz at z = 0 is of the form (v + w, w) for some v, w ∈ T Q C ′ such that v = 0. Let ω ′ be the unique nonzero differential form pulled back to ω P by ϕ. Then ω ′ must vanish on (v, 0), in other words ω ′ must vanish at Q.

Second, assume that no such lift exists. By Lemma 5.2, Q is a Weierstrass point on C ′ , and P is not a Weierstrass point on C. After a change of variables, we may assume that Q is not at infinity. Write P = (u 0 , v 0 ) with v 0 = 0, and Q = (x 0 , 0). We have to show that

x 0 = m 1,1 u 0 + m 1,2 m 2,1 u 0 + m 2,2 . Let (x 1 , y 1 , x 2 , y 2 ) be a lift over k ′ [[ √ z 
]] as in Lemma 5.2, and look at the differential system (S). Write the lift as

y 1 = v 1 √ z + t 1 z + O(z 3/2 ), y 2 = v 2 √ z + t 2 z + O(z 3/2 ).
Then the relation y 2 = E C ′ (x) forces x 1 , x 2 to have no term in √ z, so that

x 1 = x 0 + w 1 z + O(z 3/2 ), x 2 = x 0 + w 2 z + O(z 3/2 ). Using the relation dx/y = 2dy/E ′ C ′ (x), we have        2x 1 dy 1 E ′ C ′ (x 1 ) + 2x 2 dy 2 E ′ C ′ (x 2 ) = (m 1,1 u + m 1,2 ) du v , 2 dy 1 E ′ C ′ (x 1 ) + 2 dy 2 E ′ C ′ (x 2 ) = (m 2,1 u + m 2,2 ) du v .
Inspection of the ( √ z) -1 term gives the relation v 1 = -v 2 . Write e = E ′ C ′ (x 0 ). Then the constant term of the series on the left hand side are respectively

2x 0 t 1 e + t 2 e and 2 t 1 e + t 2 e .
The differential forms on the right hand side do not vanish simultaneously at P , therefore m 2,1 u 0 + m 2,2 must be nonzero. Taking the quotient of the two lines gives the result.

Using Proposition 5.4, we choose a base point P on C such that ϕ P is of generic type. By Lemma 5.2, a local lift ϕ

P = (x 1 , x 2 , y 1 , y 2 ) of ϕ P exists over k ′ [[z]],
where k ′ is a quadratic extension of k.

Step 2: initialization. Now we explain how to compute the power series x 1 , x 2 , y 1 , y 2 up to O(z 2 ). We can compute the point Q = (x 0 , y 0 ) using Proposition 5.4. Write

x 1 = x 0 + v 1 z + O(z 2 ), x 2 = x 0 + v 2 z + O(z 2 ).
Then, using the curve equations, we can compute y 1 , y 2 up to O(z 2 ) in terms of v 1 , v 2 respectively. Let u 0 (resp. d 0 ) be the constant term of the power series u (resp. du/v). Then (S) gives

v 1 + v 2 = y 0 x 0 (m 1,1 u 0 + m 2,1 )d 0 = y 0 (m 2,1 u 0 + m 2,2 )d 0 . (2) 
Combining the two lines, we also obtain

(x 1 -x 0 ) dx 1 y 1 + (x 2 -x 0 ) dx 2 y 2 = R,
where R = r 1 z + O(z 2 ) has no constant term. At order 1, this yields

v 2 1 + v 2 2 = y 0 r 1 . (3) 
Equalities ( 2) and (3) yield a quadratic equation satisfied by v 1 , v 2 . This gives the values of v 1 and v 2 in a quadratic extension k ′ /k.

Step 3: Newton iterations. Assume that the series x 1 , x 2 , y 1 , y 2 are known up to O(z n ) for some n ≥ 2. The system (S) is satisfied up to O(z n-1 ) for the first two lines, and O(z n ) for the last two lines. We attempt to double the precision, and write

x 1 = x 0 1 (z) + δx 1 (z) + O(z 2n ), etc.
where x 0 1 is the polynomial of degree at most n -1 that has been computed. The series δx i and δy i start at the term z n . From now on, we also denote by x ′ the derivative of a power series x with respect to z.

Proposition 5.5. The power series δx 1 , δx 2 satisfy a linear differential equation of the first order Proof. Linearize the system (S). We omit the calculations.

M (z) δx ′ 1 δx ′ 2 + N (z) δx 1 δx 2 = R(z) + O(z 2n-1 ) (E n ) where M, N, R ∈ M 2 k ′ [[z]] have
Since θ starts at z 2 , the values of κ that occur are 2, . . . , ν -1 when computing the solution of (S) up to precision O(z ν ). By Lemma 5.7, the constant term of A + κ is invertible. This concludes the induction, and the result follows from standard lemmas in computer algebra [BCG+17, Lem. 1.12].

Proposition 5.9. Let ν ≥ 1, and assume that char k > ν. Then we can compute the lift ϕ P up to precision O(z ν ) within O(ν) operations in k ′ .

Proof. This is a consequence of Proposition 5.8 and [BCG+17, Lem. 1.12].

Rational reconstruction

Finally, we want to recover the rational representation (s, p, q, r) of ϕ at P from its power series expansion ϕ P at some finite precision. First, we estimate the degrees of the rational fractions we want to compute; second, we present the reconstruction algorithm.

Degree estimates. The degrees of s, p, q, r as morphisms from C to P 1 can be computed as intersection numbers of divisors on Jac(C ′ ), namely ϕ P (C) and the polar divisors of s, p, q and r as functions on Jac(C ′ ). They are already known in the case of an ℓ-isogeny.

Proposition 5.10 ([CE15, §6.1]). Let ϕ : Jac(C) → Jac(C ′ ) be an ℓ-isogeny, and let P ∈ C(k). Let (s, p, q, r) be the rational representation of ϕ at the base point P . Then the degrees of s, p, q and r as morphisms from C to P 1 are 4ℓ, 4ℓ, 12ℓ, and 8ℓ respectively. Now assume that Jac(C) and Jac(C ′ ) have real multiplication by Z K given by embeddings ι, ι ′ , and that ϕ : Jac(C), ι → Jac(C ′ ), ι ′ is a β-isogeny. Denote the theta divisors on Jac(C) and Jac(C ′ ) by Θ and Θ ′ respectively, and denote by η P : C → Jac(C) the map Q → [Q -P ]. Then η P (C) is algebraically equivalent to Θ.

Lemma 5.11. The polar divisors of s, p, q, r as rational functions on Jac(C ′ ) are algebraically equivalent to 2Θ ′ , 2Θ ′ , 6Θ ′ and 4Θ ′ respectively.

Proof. See [CE15, §6.1]. For instance, s = x 1 + x 2 has a pole of order 1 along each of the two divisors (∞ ± , Q) | Q ∈ C , where ∞ ± are the two points at infinity on C, assuming that we choose a degree 6 hyperelliptic model for C ′ . Each of these divisors is algebraically equivalent to Θ ′ . The proof for p, q, and r is similar.

Recall that divisor classes on Jac(C ′ ) are in bijective correspondence with isomorphism classes of line bundles. By Theorem 2.17, if (A, ι) is a principally polarized abelian surface with real multiplication by Z K , then there is a bijection α → L ι(α) A between Z K and the Néron-Severi group of A.

Proof. Mestre's algorithm returns curve equations C, C ′ defined over extensions of k of degree at most 2, and costs O(1) operations in k and O(1) square roots. Under our hypotheses, Proposition 4.26 applies and allows us to recover Sym 2 (dϕ) using O(C eval (ℓ)) + O(1) operations in k. We recover dϕ up to sign using O(1) square roots and elementary operations; since ϕ is defined over k, extending the base field is not necessary. We choose the base point P on C such that ϕ P is of generic type using Proposition 5.4, perhaps taking another extension of degree 2. By Proposition 5.9, we can compute the local lifts ϕ P and ϕ i(P ) up to precision 8ℓ+7 within O(ℓ) field operations; this is where we use the hypothesis on char k. Finally, we recover the rational representation at P using a further O(ℓ) field operations by Proposition 5.17. The result is defined over an extension of k of degree dividing 8.

We conclude with the analogue of Theorem 6.2 in the Hilbert case. Theorem 6.3. Let K be a real quadratic field, and let β ∈ Z K be a totally positive prime. Let k be a field such that char k = 0 or char k > 4 Tr K/Q (β) + 7. Assume that there is an algorithm to evaluate derivatives of modular equations of level β at a given point (j, j ′ ) over k using C eval (β) operations in k.

Let A, A ′ be principally polarized abelian surfaces over k with real multiplication by Z K whose Igusa invariants j(A), j(A ′ ) are well defined, and assume that there exists a β-isogeny ϕ : A → A ′ defined over k which is generic in the sense of Definition 3.18. Then, given j(A) and j(A ′ ), Algorithm 6.1 succeeds and returns 1. a field extension k ′ /k of degree dividing 8, Note that C eval (β) also depends on K. We expect that the algorithm returns only one answer for the rational representation of ϕ at P ; if the algorithm outputs several answers, we could implements tests for correctness, but they might be more expensive than the isogeny algorithm itself.

Proof. We use Algorithm 3.25 to construct the curve equations C, C ′ . By Remark 4.24, we obtain potentially Hilbert-normalized curves, and each of them is defined over an extension of k of degree at most 4. This requires O K (1) elementary operations and O(1) square roots in k. We may assume that C, C ′ are A The case K = Q( √ 5)

We present a variant of our algorithm in the case of principally polarized abelian varieties with real multiplication by Z K where K = Q( √ 5). In this case, the structure of the ring of Hilbert modular form is well known, and the Humbert surface is rational: its function field can be generated by only two elements called Gundlach invariants. Having only two coordinates reduces the size of modular equations.

We work over C, but the methods of §4 show that the computations are valid in general. We illustrate our algorithm with an example of cyclic isogeny of degree 11 over a finite field.

A.1 Hilbert modular forms for K = Q( √ 5)

We keep the notation used to describe the Hilbert embedding ( §2.4). Hilbert modular forms have Fourier expansions in terms of w 1 = exp 2πi(e 1 t 1 + e 1 t 2 ) and w 2 = exp 2πi(e 2 t 1 + e 2 t 2 ) .

We use this notation and the term w-expansions to avoid confusion with expansions of Siegel modular forms. Apart from the constant term, a term in w a 1 w b 2 can only appear when ae 1 + be 2 is a totally positive element of Z K . Since e 1 = 1 and e 2 has negative norm, for a given a, only finitely many b's appear. Therefore we can consider truncations of w-expansions as elements of C(w 2 )[[w 1 ]] modulo an ideal of the form (w ν 1 ). Theorem A.1 ( [START_REF] Nagaoka | On the ring of Hilbert modular forms over Z[END_REF]). The graded C-algebra of symmetric Hilbert modular forms of even parallel weight for K = Q( √ 5) is generated by three elements G 2 , F 6 , F 10 of respective weights 2, 6 and 10, with w-expansions G 2 (t) = 1 + (120w 2 + 120)w 1 + 120w 3 2 + 600w 2 2 + 720w 2 + 600 + 120w -1 2 w 2 1 + O(w 3 1 ), F 6 (t) = (w 2 + 1)w 1 + w 3 2 + 20w 2 2 -90w 2 + 20 + w -1 2 w 2 1 + O(w 3 1 ), F 10 (t) = (w 2 2 -2w 2 + 1)w 2 1 + O(w 3 1 ).

The Gundlach invariants for K = Q( √ 5) are

g 1 = G 5 2 F 10 and g 2 = G 2 2 F 6 F 10 .
Recall that we denote by σ the involution (t 1 , t 2 ) → (t 2 , t 1 ) of H 2 (C)

Proposition A.2. The Gundlach invariants define a birational map

H 2 (C)/σ → C 2 .
Proof. This is a consequence of the theorem of Baily and Borel [BB66, Thm. 10.11] and Theorem A.1.

By Proposition 2.14, the pullbacks of the Siegel modular forms ψ 4 , ψ 6 , χ 10 and χ 12 via the Hilbert embedding H are symmetric Hilbert modular forms of even weight, so they have expressions in terms of G 2 , F 6 , F 10 . These expressions can be computed using linear algebra on Fourier expansions [MR17, Prop. 2.12]: in our case, the Hilbert embedding is defined by e 1 = 1, e 2 = (1 -√ 5)/2, so q 1 = w 1 , q 2 = w 2 , q 3 = w 1 w 2 .

As a corollary, we obtain the expression for the pullback of Igusa invariants.

Proposition A.3 ([MR17, Cor. 2.14]). In the case K = Q( √ 5), we have

H * j 1 = 8g 1 3 g 2 2 g 1 -2 5 , H * j 2 = 1 2 g 1 3 g 2 2 g 1 -2 3 , H * j 3 = 1 8 g 1 3 g 2 2 g 1 -2 2 4 g 2 2 g 1 + 2 5 3 2 g 2 g 1 -3 .
Let β ∈ Z K be a totally positive prime. We call the Hilbert modular equations of level β in Gundlach invariants the data of the two polynomials

Ψ β,1 , Ψ β,2 ∈ C(G 1 , G 2 )[G ′
1 ] defined as follows: • Ψ β,1 is the univariate minimal polynomial of the function g 1 (t/β) over the field C g 1 (t), g 2 (t) .

• We have the following equality of meromorphic functions on H 2 (C):

g 2 (t/β) = Ψ β,2 g 1 (t), g 2 (t), g 1 (t/β) .

Modular equations using Gundlach invariants for K = Q( √ 5) also have denominators. They have been computed up to N K/Q (β) = 41 [Mil].

A.2 Variants in the isogeny algorithm

Constructing potentially Hilbert-normalized curves. We give another method to reconstruct such curves using the pullback of the modular form f 8,6 from Example 2.8 as a Hilbert modular form. Let H : H 2 1 → H 2 be the Hilbert embedding from §2.4. differential system up to precision O(z 35 ), or any higher precision. It turns out that the correct tangent matrix is dϕ β,+ as the other series do not come from rational fractions of the prescribed degree. We obtain s(u) = 50255u 6 + 40618u 5 + 17196u 4 + 9527u 3 + 22804u 2 + 49419u + 11726 u 6 + 40883u 5 + 22913u 4 + 41828u 3 + 18069u 2 + 14612u + 7238 , p(u) = 35444u 6 + 9569u 5 + 52568u 4 + 3347u 3 + 9325u 2 + 32206u + 7231 u 6 + 40883u 5 + 22913u 4 + 41828u 3 + 18069u 2 + 14612u + 7238 .

The degrees agree with Proposition 5.15. The isogeny is k-rational at the level of Kummer surfaces, but not on the Jacobians themselves: α appears on the numerator of r(u, v).

∈

  Sp 4 (Z), ∀τ ∈ H 2 , γτ = (aτ + b)(cτ + d) -1 . Proposition 2.1 ([BL04, Rem. 8.1.4]). Let τ ∈ H 2 , and let γ ∈ Sp 4 (Z) with blocks a, b, c, d. Then there is an isomorphism η γ,τ : A(τ ) → A(γτ ), z → (cτ + d) -t z.

.

  They are Siegel modular functions of trivial weight, i.e. weight det 0 . Proposition 2.5. Igusa invariants define a birational map A 2 (C) → C 3 . Proof. By the theorem of Baily and Borel [BB66, Thm. 10.11], scalar-valued Siegel modular forms of sufficiently high even weight realize a projective embedding of A 2 (C). Therefore, by Theorem 2.4, Igusa invariants generate the function field of A 2 (C).

  We call C K (t) the standard curve attached to t. Proposition 3.5. The function τ → C(τ ) is a Siegel modular function of weight det -2 Sym 6 which has no poles on the open set {χ 10 = 0}.

Proposition 3. 8 .

 8 If f be a Siegel modular function of weight ρ, then Cov(f ) is a fractional covariant of weight ρ. Conversely, if F is a fractional covariant of weight ρ, then the meromorphic function τ → F C(τ ) is a Siegel modular function of weight ρ. These operations are inverse of each other.

  Ch. 11], [The18, Tag 06ML]. We identify open substacks of X with the underlying open topological spaces of |X | [The18, Tag 06FJ].

  Proof. The fact that U is open is [The18, Tag 0DUA], [Ryd13, Prop. 3.5]. Since X and Y are separated Deligne-Mumford stacks, the induced map is étale by Corollary 4.3.(ii).The general case of Artin stacks with finite inertia is treated in [Ryd13, Prop. 6.5 and Thm. 6.10]. In this reference, stabilizer preserving is called fixed point reflecting, but we prefer to use the terminology of the Stacks project [The18, Tag 0DU6]. The fact that f 0 is strongly étale comes from the cartesian diagram in [Ryd13, Thm. 6.10]. See also[START_REF] Alper | The étale local structure of algebraic stacks[END_REF] Thm. 3.14] where this is proved in a more general setting. Remark 4.5. If f : X → Y is proper (resp. finite), then the induced map f 0 : X → Y is proper (resp. finite), because the maps from X and Y to their coarse moduli spaces are proper quasi-finite [The18, Tag 02LS], [Gro64, EGA IV.8.11.1]).

Remark 4. 6 .

 6 If x is a tame smooth k-point of X , then by Luna's étale slice theorem ([Lun73], [AHR20, Thm 1.1 and Thm 2.1], [AHR19, Thm 19.4]), the étale local structure of Theorem 4.1.

Lemma 5. 3 .

 3 Assume that a local lift ϕ P of ϕ P to k ′ [[z]] exists. Then the tangent vector d ϕ P /dz at z = 0 cannot be of the form (v, v) where v ∈ T Q C ′ .

  explicit expressions in terms of x 0 1 , x 0 2 , y 0 1 , y 0 2 , u, v, E C and E C ′ . In particular, e = E ′ C ′ (x 0 ), the constant term of N is 

  2. hyperelliptic curve equations C, C ′ over k ′ whose Jacobians are isomorphic to A, A ′ respectively, 3. a point P ∈ C(k ′ ), 4. at most 4 possible values for the rational representation (s, p, q, r) ∈ k ′ (u, v) 4 of a β-or β-isogeny ϕ : Jac(C) → Jac(C ′ ) at P . The cost of Algorithm 6.1 in the Hilbert case is O C eval (β) + O Tr K/Q (β) + O K (1) elementary operations and O(1) square roots in k ′ ; the implied constants, O K (1) excepted, are independent of K.

Proposition A. 4 .

 4 Define the functions bi (t) for 0 ≤ i ≤ 6 on H 2 1 by ∀t ∈ H 2 1 , det 8 Sym 6 (R)f 8,6 H(t) = 6 i=0 b i (t) x i .

  The irreducible finite-dimensional holomorphic representations of GL 2 (C) are exactly the representations det k Sym n , for k ∈ Z and n ∈ N.Proof. Since SL 2 (C) is a simply connected Lie group, there is an equivalence between holomorphic finite-dimensional representations of SL 2 (C) and representations of its Lie algebra sl 2 (C) [Bou72, Ch. III, §6.1, Th. 1]. By[START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitres VII et VIII[END_REF] 

Ch. VIII, §1.3, Th. 1], irreducible representations of sl 2 (C) are classified by their higher weight; on the Lie group side, this shows that the holomorphic finite-dimensional irreducible representations of SL 2 (C) are exactly the representations Sym n for n ∈ N. The case of GL 2 (C) follows easily.

  2.15. If f is a scalar-valued Siegel modular form of weight det k , then H * f : t → f H(t) is a symmetric Hilbert modular form of weight (k, k).

	Proof. Since det(R) k is a nonzero constant, by Proposition 2.14, the func-
	tion H * f is a Hilbert modular form of weight (k, k). Moreover det(M σ ) = 1,
	so H * f is symmetric by Proposition 2.13.

  Siegel modular function of weight Sym 2 .

	Theorem 3.14. We have							
	1 2πi	Cov	dj 1 dτ	=	1 I 10	153 8	I 2 2 I 4 y 1 -	135 2	I 2 I 6 y 1 +	135 2	I 2 4 y 1 +	46575 4	I 2 I 4 y 2
						-30375 I 6 y 2 + 1366875 I 4 y 3 ,		
	1 2πi	Cov	dj 2 dτ	=	1 I 10	90 I 2 2 I 4 y 1 + 900 I 2 2 y 1 + 40500 I 2 I 4 y 2 ,		
	1 2πi	Cov	dj 3 dτ	=	1 I 2 10	225 I 2 I 4 4 y 1 + 101250 I 4 4 y 2 .			

  and cmh[START_REF] Enge | CMH: Computation of Igusa class polynomials[END_REF]; they provide a nice consistency check to Theorem 3.14. Another consistency check is that we can recover the relations from Theorem 3.11.Remark 3.16. From Theorem 3.14, we can easily obtain similar formulae for derivatives of other invariants, or even invariants for abelian surfaces with extra structure such as theta constants. For instance, taking the invariants h 1 , h 2 , h 3 defined in Remark 2.6, we obtain

	1 2πi	Cov	dh1 dτ	=	1 I 4 4	-	297 8	y1I 2 4 I 3 2 + -	54675 4	y2I 2 4 I 2 2 +	1701 8	y1I6I4I 2 2 +	135 2	y1I 3 4 I2
					+ 1366875y3I 2 4 I2 +		346275 4	y2I6I4I2 -	1215 4	y1I 2 6 I2 + -	405 2	y1I6I 2 4
					-4100625y3I6I4 -		273375 2	y2I 2 6 ,	
	1 2πi	Cov	dh2 dτ	=	1 4 I 4	-135y1I10I 2 2 -60750y2I10I2 + 900y1I10I4 ,
	1 2πi	Cov	dh3 dτ	=	1 I 5 4	-	747 8	y1I10I4I 2 2 -	155925 4	y2I10I4I2 + 270y1I10I6I2 +	135 2	y1I10I 2 4
					+ 1366875y3I10I4 + 121500y2I10I6 .

Modular forms and covariants

In this section, we give an algebraic interpretation of modular forms and covariants over Z, as well as a completely algebraic proof of Theorem 3.9. This yields an explicit version of the Kodaira-Spencer isomorphism in the model of A g given by Igusa invariants over Z[1/2] and not only over C.

Let π : X g → A g be the universal abelian variety. The vector bundle

Xg/Ag over A g , which is dual to Lie Xg/Ag , is called the Hodge bundle. If ρ is a representation of GL g , a Siegel modular form of weight ρ is a section of ρ(h); in particular, a scalar-valued modular form of weight k is a section of Λ g h ⊗k . In other words, a Siegel modular form f can be seen as a map

where A is a point of A g and ω is a basis of differential forms on A, with the following property: if η : A → A ′ is an isomorphism, and r ∈ GL g is the matrix of η * in the bases ω ′ , ω, then f (A ′ , ω) = ρ(r)f (A, ω ′ ). The link with classical modular forms over C is the following: if τ ∈ H g , then we define

This choice of basis is made so that the q-expansion principle holds [START_REF] Faltings | Degeneration of abelian varieties[END_REF]p. 141]. We already used it to define f (A, ω) over C in §2.1. The canonical line bundle h = Λ g h is ample, so modular forms give local coordinates on A g . The link between modular forms and covariants comes from the Torelli morphism τ g : M g → A g

where M g denotes the moduli stack of smooth curves of genus g. Let C g → M g denote the universal curve; then the pullback τ * g h of the Hodge bundle by the Torelli morphism is π * Ω 1 C g /M g , with both having canonical action by GL g . In other words a Siegel modular form of weight ρ induces a Teichmuller modular form of weight ρ. Now assume that g = 2. Over Z[1/2], the moduli stack M 2 is identified with the moduli stack of nondegenerate binary forms of degree 6. Let V = Zx ⊕ Zy, let X = det -2 V ⊗ Sym 6 V , and let U be the open locus determined by the discriminant. Then U → M 2 is naturally identified with the Hodge frame bundle on M 2 : in other words, U is the moduli space of genus 2 hyperelliptic curves π : C → S endowed with a rigidification O ⊕2 S ≃ π * Ω 1 C/S . In this identification, we send the binary form f (x, y) to the curve v 2 = f (u, 1) with a basis of differential forms given by (u du/v, du/v) [START_REF] Cléry | Covariants of binary sextics and vector-valued Siegel modular forms of genus two[END_REF]§4]. The natural action of GL 2 on the Hodge bundle corresponds to the action of GL 2 on U that we describe in Section 3.2. This shows why a Siegel modular form of weight ρ pulls back to a fractional covariant of weight ρ, at least over Z[1/2]. In fact, one can show as in Theorem 3.9, by considering suitable compactifications, that a Remark 4.28. The 3×2 matrices D t J(C) and D t J(C ′ ) have rank two when the Igusa invariants contain uniformizers of H g at A and A ′ by [Gro64, p. IV.17.11.3]. Given the relation between derivatives of Igusa invariants on the Hilbert and Siegel sides (Proposition 3.24, which is valid over k by Proposition 4.21), this will be the case at soon as the images of A and A ′ in A g lie in the open set U from Proposition 4.26.

Assume that generators of the ring of Hilbert modular forms are known, and the expression of Igusa invariants in terms of these generators is given. Since modular forms realize a projective embedding of H g , one can compute from this data an open set V in H g where the Igusa invariants contain local uniformizers. Then, if A lies in V and Aut(A) ≃ {±1}, the Igusa invariants will contain local uniformizers of H g , hence D t J(C) will have rank 2.

In the Hilbert case, if Igusa invariants contain local uniformizers of H g at A and if C is a Hilbert-normalized curve equation for A, then giving an element of T A (H g ) is equivalent to giving

Switching from one representation to another can be done at the cost of O(1) operations in k.

5 Computing the isogeny from its tangent map

General strategy

Assume that we are given the tangent map dϕ of a separable isogeny ϕ : A → A ′ of principally polarized abelian varieties of dimension g defined over a field k. In general, the task of computing ϕ explicitly may be specified as follows: given models of A and A ′ , that is given very ample line bundles L A and L A ′ on A and A ′ and a choice of global sections (a i ) (resp. (a ′ j )) which give a projective embedding of A (resp. A ′ ), express the functions ϕ * a ′ j on A as rational fractions in terms the coordinates (a i ).

One method to determine ϕ given dϕ is to work over the formal groups of A and A ′ . Let x 1 , . . . , x g be uniformizers at 0 A , and let y 1 , . . . , y g be uniformizers at 0 A ′ . Knowing the map dϕ allows us to express the differential form ϕ * dy j in term of the differential forms dx i on A, so the functions ϕ * a ′ j satisfy a differential system. A possible strategy to solve this differential system is to use a multivariate Newton algorithm, possibly over an extension of the formal group. If this algorithm is successful, we recover the functions ϕ * a ′ j as power series in k[[x 1 , . . . , x g ]] up to some precision. The next step is to use multivariate rational In order to solve (S) in quasi-linear time in the precision, it is enough to solve equation (E n ) in quasi-linear time in n. One difficulty here, that does not appear in similar works [CE15; CMS+19], is that the matrix M is not invertible in k ′ [[z]]. Still, we can adapt the generic divide-and-conquer algorithm from [BCG+17, §13.2].

Lemma 5.6. The determinant

Proof. We know that y 0 1 and y 0 2 have constant term ±y 0 = 0. The polynomials x 0 1 and x 0 2 have the same constant term x 0 , but they do not coincide at order 2: if they did, then so would y 1 and y 2 because of the curve equation, contradicting Lemma 5.3. By Lemma 5.6, we can find

Lemma 5.7. Let κ ≥ 1, and assume that char k > κ + 1. Let A = IN . Then the matrix A + κ has an invertible constant term.

Proof. By Lemma 5.6, the leading term of det(M ) is λz for some nonzero λ ∈ k ′ . Using Proposition 5.5, we compute that the constant term of det(A + κ) is λ 2 κ(κ + 1). We omit the calculations.

Proposition 5.8. Let 1 ≤ ν ≤ 2n -1, and assume that char k > ν. Then we can solve (E n ) to compute δx 1 and δx 2 up to precision O(z ν ) using O(ν) operations in k ′ .

Proof. Write θ = δx 1 δx 2 . Multiplying (E n ) by I, we obtain the equation

We show that θ can be computed from this kind of equation up to O(z d ) using a divide-and-conquer strategy.

) for some other series B. By induction, we can recover θ 1 up to O(z d ). Then

)

where E has an expression in terms of θ 1 . This is enough to recover θ 2 up to O(z n-1-d ), so we can recover θ up to O(z n-1 ). We initialize the induction with the case d = 1, where we have to solve for the constant term in

Lemma 5.12. Let ϕ be a β-isogeny as above. Then the divisor ϕ P (C) is algebraically equivalent to the divisor corresponding to the line bundle

Jac(C ′ ) . Proof. By Theorem 2.17, there exists an α ∈ Z K such that the divisor ϕ P (C) corresponds to the line bundle L ι ′ (α) Jac(C ′ ) up to algebraic equivalence. Look at the pullback ϕ * ϕ P (C) as a divisor on Jac(C): by definition, we have

and therefore, up to algebraic equivalence,

Since ϕ is a β-isogeny, by Definition 2.18, the pullback ϕ * Θ ′ corresponds to L ι(β) Jac(C) up to algebraic equivalence. Therefore, for every γ ∈ Z K ,

By Theorem 2.17 applied on Jac(C), we have

The next step is to compute the intersection degree of Θ ′ and the divisor corresponding to L ι(α) Jac(C ′ ) on Jac(C ′ ), for every α ∈ Z K . Proposition 5.13 ([Kan19, Rem. 16]). Let (A, ι) be a principally polarized abelian surface with real multiplication by Z K , and let Θ be its theta divisor. Then the quadratic form

on NS(A) corresponds via the isomorphism of Theorem 2.17 to the quadratic form on Z K given by

Corollary 5.14. Let (A, ι) be a principally polarized abelian surface with real multiplication by Z K , and let Θ be its theta divisor. Then for every α ∈ Z K , we have L

Proof. Write α = a + b √ ∆. By Proposition 5.13, we can compute

On the other hand, the Riemann-Roch theorem [START_REF] Milne | Abelian varieties[END_REF]Thm. 11.1] gives

The result follows.

Proposition 5.15. Let ϕ be a β-isogeny as above, and let (s, p, q, r) be the rational representation of ϕ at P . Then, considered as morphisms from C to P 1 , the respective degrees of s, p, q, and r are 2 Tr(β), 2 Tr(β), 6 Tr(β) and 4 Tr(β).

Proof. The degrees of s, p, q, r can be computed as the intersection of the polar divisors from Lemma 5.11 and the divisor ϕ P (C). By Lemma 5.12, the line bundle associated with ϕ P (C), up to algebraic equivalence, is L β Jac(C ′ ) . Its intersection number with Θ ′ is nonnegative, hence by Corollary 5.14, we have

The result follows by Lemma 5.11.

Rational reconstruction. Now we present the rational reconstruction algorithm, and compute the power series precision that is precisely needed.

Lemma 5.16. Let s : C → P 1 be a morphism of degree d.

1. If s is invariant under the hyperelliptic involution i, then we can write s(u, v) = X(u) where the degree of X is bounded by d/2.

2. In general, let X, Y be the rational fractions such that

Then the degrees of X and Y are bounded by d and d + 3 respectively.

Proof. For item 1, use the fact that the function u itself has degree 2. For item 2, write

The degrees of these morphisms are bounded by 2d and 2d + 6 respectively.

Proposition 5.17. Let ϕ P and ϕ i(P ) be local lifts of ϕ P at P and i(P ) in the uniformizers z and i(z). Let ν = 8ℓ + 7 in the Siegel case, and ν = 4 Tr K/Q (β) + 7 in the Hilbert case. Then, given ϕ P and ϕ i(P ) at precision O(z ν ), we can compute the rational representation of ϕ at P within O(ν) operations in k ′ .

Proof. It is enough to recover the rational fractions s and p; afterwards, q and r can be deduced from the equation of C ′ . First, assume that P is a Weierstrass point of C. Then s, p are invariant under the hyperelliptic involution. Therefore we have to recover univariate rational fractions in u of degree d ≤ 2ℓ (resp. d ≤ Tr(β)). This can be done in quasi-linear time from their power series expansion up to precision O(u 2d+1 ) [BCG+17, §7.1]. Since u has valuation 2 in z, we need to compute ϕ P at precision O(z 4d+1 ).

Second, assume that P is not a Weierstrass point of C. Then the series defining s(u, -v) and p(u, -v) are given by ϕ i(P ) . We now have to compute rational fractions of degree d ≤ 4ℓ + 3 (resp. d ≤ 2 Tr(β) + 3) in u. Since u has valuation 1 in z, this can be done in quasi-linear time if ϕ P and ϕ i(P ) are known up to precision O(z 2d+1 ).

Summary of the algorithm

In this final section, we summarize the isogeny algorithm and prove Theorem 1.1. We also state the analogous result in the case of β-isogenies (Theorem 6.3). Algorithm 6.1. Let j, j ′ the Igusa invariants of principally polarized abelian varieties A, A ′ over k. Assume that A, A ′ are ℓ-isogenous (the Siegel case), or that A, A ′ have real multiplication by Z K and are β-isogenous (the Hilbert case).

1. Use Mestre's algorithm [START_REF] Mestre | Construction de courbes de genre 2 à partir de leurs modules[END_REF] to construct curve equations C, C ′ whose Jacobians are isomorphic to A, A ′ . In the Hilbert case, use Algorithm 3.25 to ensure that C, C ′ are potentially Hilbert-normalized.

2. Compute at most 4 candidates for the tangent matrix of the isogeny ϕ using Proposition 4.26 in the Siegel case, or Proposition 4.27 in the Hilbert case. Run the rest of the algorithm for all the candidates; in general, only one will produce meaningful results.

3. Choose a base point P on C such that ϕ P is of generic type, and compute the power series ϕ P and ϕ i(P ) up to precision O z 8ℓ+7 , respectively O z 4 Tr(β)+7 using Proposition 5.9.

4. Recover the rational representation of ϕ at P using Proposition 5.17.

We recall the statement of Theorem 1.1 from the introduction.

Theorem 6.2. Let ℓ be a prime, and let k be a field such that char k = 0 or char k > 8ℓ + 7. Let U ⊂ A 2 (k) be the open set consisting of abelian surfaces A such that Aut(A) ≃ {±1} and j 3 (A) = 0. Assume that there is an algorithm to evaluate derivatives of modular equations of level ℓ at a given point of U × U over k using C eval (ℓ) operations in k.

Let A, A ′ ∈ U , and let j(A), j(A ′ ) be their Igusa invariants. Assume that A and A ′ are ℓ-isogenous over k, and that the subvariety of A 3 × A 3 cut out by the modular equations Ψ ℓ,i for 1 ≤ i ≤ 3 is normal at (j(A), j(A ′ )). Then, given j(A) and j(A ′ ), Algorithm 6.1 succeeds and returns 1. a field extension k ′ /k of degree dividing 8, 2. hyperelliptic curve equations C, C ′ over k ′ whose Jacobians are isomorphic to A, A ′ respectively,

4. the rational representation (s, p, q, r) ∈ k ′ (u, v) 4 of an ℓ-isogeny ϕ : Jac(C) → Jac(C ′ ) at P .

The cost of Algorithm 6.1 in the Siegel case is O C eval (ℓ) + O(ℓ) elementary operations and O(1) square roots in k ′ .

Hilbert-normalized for some choice of real multiplication embeddings that are compatible via ϕ, which becomes either a β-or a β-isogeny. Under our hypotheses, Proposition 4.27 applies, so we recover two possible values for (dϕ) 2 within O(C eval (β)) + O(1) operations in k, and hence 4 possible values for dϕ, using O(1) square roots. We can now make a change of variables to the (not necessarily Hilbert-normalized) curves output by Mestre's algorithm, so that each curve is defined over an extension of k of degree 2. The end of the algorithm is similar to the Siegel case: we take an extension of degree 2 to find the base point, then try to compute the rational representation for each value of dϕ using O(Tr K/Q (β)) operations in k. For the correct value of dϕ, rational reconstruction will succeed and output fractions of the correct degrees.

Then b 2 and b 4 are identically zero, and

Proof. By Proposition 2.14, each coefficient b i is a Hilbert modular form of weight (8 + i, 14 -i). We can check using the action of M σ that σ exchanges b i and b 6-i . From the Siegel q-expansion for f 8,6 , we can compute the w-expansions of the b i 's; then, we use linear algebra to identify symmetric combinations of the b i 's of parallel even weight in terms of the generators G 2 , F 6 , F 10 .

By Propositions 3.6 and 3.12, the standard curve C K (t) attached to t ∈ H 2 1 is proportional to the curve y 2 = b i (t)x i . The algorithm to compute a potentially Hilbert-normalized curve C from its Igusa invariants (j 1 , j 2 , j 3 ) runs as follows.

Algorithm A.5.

1. Compute Gundlach invariants (g 1 , g 2 ) mapping to the Igusa invariants (j 1 , j 2 , j 3 ) via H using Proposition A.3, and compute values for the generators G 2 , F 6 , F 10 giving these invariants. We can always choose values G 2 , F 6 , F 10 such that b 2 3 is a square in k; then, the output is defined over a quadratic extension of k. Even if arbitrary choices are made during Algorithm A.5, the output will be potentially Hilbertnormalized.

Computing the tangent matrix. Consider Ψ β,1 and Ψ β,2 as elements of the ring

.

Then we have an analogue of Proposition 4.27, where we replace derivatives of Igusa invariants in Proposition 3.19 by derivatives of Gundlach invariants. The relation between these derivatives is given by Proposition A.3. This time, using the formalism of §4, we can prove that all 2 × 2 matrices will be invertible if the abelian varieties A, A ′ have only Z × K as automorphisms, have g 1 = 0, and if the modular equations in Gundlach invariants cut out a normal subvariety of A 2 × A 2 at (g(A), g(A ′ )).

A.3 An example of cyclic isogeny

We illustrate our algorithm in the Hilbert case with K = Q( √ 5) by computing a β-isogeny between Jacobians with real multiplication by Z K , where

We work over the prime finite field k = F 56311 , whose characteristic is large enough for our purposes. We choose a trivialization of Z K ⊗ k, in other words a square root of 5 in k, so that β = 26213.

Consider the Gundlach invariants (g 1 , g 2 ) = 23, 56260 , (g ′ 1 , g ′ 2 ) = 8, 36073 . In order to reconstruct a Hilbert-normalized curve, we apply Algorithm A.5. We obtain the curve equations C : v 2 = 13425u 6 + 34724u 5 + 102u 3 + 54150u + 11111 C ′ : y 2 = 47601x 6 + 35850x 5 + 40476x 3 + 24699x + 40502. Computing derivatives of the modular equations as in Proposition 3.19, we find that the isogeny is compatible with the real multiplication embeddings for which C, C ′ are Hilbert-normalized. We do not known whether ϕ is a β-or a β-isogeny, so we have four candidates for the tangent matrix up to sign: where α 2 + α + 2 = 0. We see that the isogeny is only defined over a quadratic extension of k.

The curve C has a rational Weierstrass point 36392, 0 . We can bring it to (0, 0), so that C is of the standard form C : v 2 = 33461u 6 + 7399u 5 + 16387u 4 + 34825u 3 + 14713u 2 + u.

This multiplies the tangent matrix on the right by 44206 18649 0 7615 .

Choose P = (0, 0) as a base point on C, and z = √ u as a uniformizer; it is a Weierstrass point, and we check that ϕ P is of generic type. We solve the