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ASSIMILATION-BASED LEARNING OF CHAOTIC DYNAMICAL SYSTEMS
FROM NOISY AND PARTIAL DATA

Duong Nguyen, Said Ouala, Lucas Drumetz, Ronan Fablet

IMT Atlantique, Lab-STICC, F-29238 Brest, France

ABSTRACT
Despite some promising results under ideal conditions (i.e.
noise-free and complete observation), learning chaotic dy-
namical systems from real life data is still a very challeng-
ing task. We propose a novel framework, which combines
data assimilation schemes and neural network representation,
namely Auto-Encoders and Ensemble Kalman Smoother, to
learn the governing equations of dynamical systems. By
treating the learning as a Bayesian estimation problem, our
framework can deal with noisy and partial observations. Ex-
periments on the chaotic Lorenz–63 dynamics with different
noise settings demonstrate the advantages of our method over
the state-of-the-art.

Index Terms— dynamical systems, data assimilation,
neural networks.

1. INTRODUCTION

Dynamical systems are at the core of numerous scientific
fields, among which we may cite geosciences, aerodynamics,
fluid dynamics, etc. Classically, the determination of the
governing laws of a given system, usually stated as Ordinary
Dynamical Equations (ODE) or Partial Differential Equations
(PDE), combines mathematical derivation based on physical
principles and some experimental validations [1, 2, 3, 4].
An alternative approach is to learn the governing equations
from their output, i.e. the observations [5, 6]. Recently, such
data-driven paradigms have experienced a rebirth thanks to
advances in modern machine learning [7] and the availability
of more and more data. Under ideal conditions, with high
signal-to-noise ratio (SNR) and high sampling frequency,
numerous methods have successfully captured the hidden dy-
namics of systems [8, 9, 10, 11, 12, 13]. However, real life
data usually come with noise and can be irregularly sampled,
both in spatial and temporal sense, makes learning dynamical
systems an extremely difficult task, and all the methods above
fail.
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In this paper, we show that by adding an inference scheme
to any existing model, we can significantly improve its learn-
ing capacity. This framework combines the advances of
state-of-the-art machine learning—neural networks—and
data assimilation schemes for the problem of learning dy-
namical systems. The identification of dynamical models is
embedded into a Bayesian analysis problem, and is explicitly
decomposed into two parts: an assimilation part, where an
inference scheme retrieves the true hidden states from noisy
observations and a learning part where a neural network
learns the dynamics from the states identified by the assimi-
lation step. Our experiments support an extension of learning
capacities for significant noise levels and irregularly-sampled
data, which are widely-encountered for real-world dynamical
datasets.

The paper is organized as follows. In Section 2, we for-
mulate the problem of learning non-linear dynamical systems.
State-of-the-arts are briefly reviewed in Section 3. Section 4
presents the details of proposed framework, followed by the
experiments and results in Section 5. Finally, we end the pa-
per with conclusions and perspectives for future work in Sec-
tion 6.

2. PROBLEM FORMULATION

The identification of data-driven representations of dynamical
systems amounts to determining a data-driven computational
representation which approximates the true dynamical model
typically stated as an ODE (Ordinary Differential Equation):

dxt
dt

= F
(
xt
)

+ ηt (1)

where F is the unknown dynamical model of a multi-
dimensional state xt and ηt is a zero-mean additive noise
accounting for neglected physics and/or numerical approxi-
mations. State-of-the-art data-driven schemes typically ex-
ploit observation data yti as:

yti = Φti
(
H
(
xti
)

+ εt
)

(2)

where H is the observation operator, usually known, εt is a
zero-mean noise process and {ti}i refers to the time sam-
pling, typically a regular high-frequency sampling such that
ti = t0 + i.δ with respect to a time resolution δ and a refer-
ence starting point t0. We introduce a masking operator Φti to



account for the fact that observation yti may not be available
at all time ti (Φti,j = 0 if the jth variable of yti is missing).

3. RELATED WORK

Learning dynamical systems is a topic that has been studied
for decades. Before the era of deep learning, most schemes
used Expectation-Maximization (EM)-like iterative learning
procedures [6, 14, 15]. These models use a Kalman filter-
based data assimilation schemes in the E-step to estimate the
true hidden states xt, then perform an analytical calculation
to retrieve model parameters in the M-step. However, such
approaches apply only on simple distributions and processes
whose analytic form is known. Therefore, their applicability
may be fairly limited.

Recently, deep learning [16] has been leveraged across
many domains, including model identification. [12] used
DenseNet, [13] used ResNet, [17] used LSTM to identify
the nonlinear dynamical systems by minimizing the short-
term prediction error. These methods exploit the power of
neural networks to overcome the difficulties of modeling
non-linearities. Although neural networks are very power-
ful and can theoretically approximate any function [18], no
regularization techniques have been proved effective to learn
dynamical systems. Problems arise when the observations
are partial, irregular or in case of a high level of noise. When
the observations are highly corrupted by noise, using the
short-term prediction error as the objective function would
very likely lead to overfitting the data. Besides, neural net-
works, in general, do not have an efficient way to deal with
irregularly-sampled data.

There are two special methods that do not use neural
networks: the Analog Forecasting (AF) [8] and the sparse
regression (Sparse Identification of Nonlinear Dynamics-
SINDy) [9]. Analog forecasting is a non-parametric model
that “learns by heart” the dynamics from a reference catalog.
It predicts the evolution by looking for the most similar states
in the catalog and combines their successors into the predicted
state. Since AF is a k-Nearest Neighbors based method, it
does not work well in high-dimensional spaces. SINDy aims
to identify the analytic form of the dynamics by performing
a sparse regression on a basis formed by candidate functions.
This method works extremely well when the observations are
complete and clean. However, an accurate estimate of the
gradient of the data is crucial. When the observation is highly
noisy, partial or irregular, gradients may be poorly estimated
and SINDy may likely fail.

4. PROPOSED FRAMEWORK

In this Section, we present the proposed framework for the
data-driven identification of neural-network representations
of dynamical systems from noisy and irregularly-sampled
observations. Rather than considering the learning as a short-
term prediction error optimization problem, the proposed
framework is inspired by the Bayesian formulation used for

data assimilation. It provides neural networks the ability to
deal with noise and irregularities.

Formally, we consider a discrete state-space formulation,
which amounts to reformulating Eqs. (1) and (2) as follows:

xt+δ = fδ
(
xt
)

+ ωt+δ (3)

yt = Φt
(
H
(
xt
)

+ εt
)

(4)

Where xt+δ results from an integration of operator F from
state xt: fδ

(
xt
)

= xt +
∫ t+δ
t
F
(
xt
)
dt. ωt and εt represent

the uncertainty of the model and the observation, respectively.
For the sake of simplicity, δ is arbitrarily set to 1 without any
loss of generality. Within this Bayesian setting, Eqs. (3) and
(4) relate respectively to the dynamical prior p

(
xt+δ|xt

)
and

the observation likelihood p
(
yt|xt

)
.

Using a fixed integration scheme, the problem results in
maximizing ln pθ(y1:T ) = ln

∫
pθ(y1:T ,x1:T )dx1:T for a se-

quence of T observations y1:T = y1..yT . Apart from simple
cases, ln pθ(y1:T ) is intractable [19]. We usually maximize
the following Evidence Lower BOund (ELBO) instead:

L(y1:T , pθ, q) =

∫
q(x1:T |y1:T ) ln

pθ(y1:T ,x1:T )

q(x1:T |y1:T )
dx1:T

(5)

with arbitrary function qφ. Here we focus on the family of
distributions that can be factored over t:

pθ(y1:T ,x1:T ) = pθ(x1)

T−1∏
t=1

pθ(xt+1|xt)
T∏
k=1

pθ(yk|xk)

(6)

q(x1:T |y1:T ) =

T∏
t=1

q(xt|y1:T ) (7)

In geosciences, aerodynamics and fluid dynamics, dy-
namical systems are usually modeled as deterministic func-
tions [2, 4]. If we restrict q to Dirac distributions (in other
words, we use a Maximum A Posteriori—MAP estimator),
Eq. (5) becomes:

L(y1:T , pθ, q) = ln pθ(x
∗
1) +

T−1∑
t=1

ln pθ(x
∗
t+1|x∗t )

+

T∑
k=1

ln pθ(yk|x∗k) (8)

with x∗t = E [q(xt|y1:T )].
Assuming that the covariance matrices of the observation

operator are constant and diagonal, we define a new loss func-
tion:

L′(y1:T , pθ, q) =

T−1∑
t=1

||f(x∗t )− x∗t+1||22+

λ

T∑
t=1

||Φt(H(x∗t ))− yt||22 (9)



where ||.||2 is the Euclidean distance. This formulation com-
prises a short-term prediction error ||f(x∗t ) − x∗t+1||22, which
is the loss function widely used in most of data-driven dynam-
ical systems identification models [10, 11, 12, 13]. We may
stress that here the prediction is applied on the true states xt
instead of on the observations yt. As such, the model does not
overfit the noise in data. The second term on the right hand
side of Eq. (9) is analogous to the innovation (the measure-
ment of pre-fit residual) in data assimilation schemes [20]. It
is trivial to prove that minimizing the loss function in Eqs.
(9) amounts to maximizing a lower bound in Eq. (5) with
the two assumptions above, although this bound is infinitely
loose. However, on one hand, tighter variational bounds are
not necessarily better [21]. And, on the other hand, this sim-
plification significantly reduces the computational cost.

So far we have presented the mathematical assumptions
and derived the formulations that support the combination
of a short-term predicting model for learning dynamical sys-
tems and a data assimilation scheme. We may sum up the
the key idea as follows. A data-driven method for dynami-
cal system identification should involve two key components:
(i) a data assimilation stage that retrieves from the observa-
tions the true hidden states where the dynamics lie on, (ii) a
learning stage that learns the dynamics of the true states. This
framework is general and can be applied for many kinds of
models. fδ can be modeled by any current state-of-the-art
dynamical systems identification model. We here focus on
neural-network-based models, because of their generality and
computational efficiency. For the assimilation scheme, we
investigate two strategies: the Ensemble Kalman Smoother
(EnKS) and LSTM Auto-Encoder (LSTMAE), the former be-
ing among the state-of-the-art schemes in data assimilation
and the latter among the state-of-the-art inference schemes in
machine learning.

5. EXPERIMENTS AND RESULTS

The proposed methodology was tested on the Lorenz–63
dynamics [1]. They are representative of chaotic dynamics,
which make them appealing for our benchmarking experi-
ments. We examined the learning performance under signif-
icant noise level with partial and irregular sampling of the
observations. We consider benchmarking experiments with
state-of-the-art methods, namely Analog forecasting (AF) [8],
Sparse regression model (SINDy) [9] and Bilinear residual
Neural Network (BiNN) [11].

5.1. Set up

We simulated a Lorenz-63 state sequence of length 4000 us-
ing the LOSDA (Livermore Solver for Ordinary Differential
Equations) ODE solver [22] with an integration step of 0.01,
then added Gaussian noise with several variance levels σ2.
We evaluated the considered schemes given the noisy and
sub-sampled (possibly irregularly) training data. This means,

H was an identity operator, εt was a zero-mean Gaussian
white noise.

We applied AF, SINDy and BiNN using the setting pro-
posed in the related original papers. As stated above, our
methodology can be applied to any neural-network-based
model. Here, we chose the BiNN to model F , as this ar-
chitecture embeds the true parametrization of the Lorenz-63
system. The integration scheme was a neural network imple-
mentation of the Runge-Kutta 4 as in [11]. For the EnKS,
we chose an ensemble of 50 members. For the LSTMAE,
the approximate posterior q(x1:T |y1:T ) was modeled by a 2-
layer bi-directional LSTM with a size of 9. Both the encoder
and the decoder were modeled by a fully connected network,
with one hidden layer of size 7. We used RMSprop as the
optimizer, with a learning rate of 1e− 3. λ was set to 0.01.

5.2. Identification with noisy observations
We first assess the identification performance with noisy ob-
servations only, which means that the masking operator Φt
is an identity matrix at all time steps. We evaluated both
the short-term prediction and the capacity of maintaining the
very-long-term topology through the first Lyapunov exponent
λ1 calculated in a forecasting sequence of length of 10000
time steps (the true λ1 of the Lorenz-63 system is 0.91 [3]).

As shown in Table 1, both the implementations of the pro-
posed framework (BiNN with EnKS, denoted as BiNN-EnKS
and BiNN with LSTMAE, denoted as BiNN-LSTMAE)
outperform existing methods. BiNN-EnKS gives the best
forecasting when the noise level is small, however, when
the noise level increases, the forecasting gradually becomes
worse. This is because the increase of noise level leads to the
increase of uncertainty (error covariance). On the other hand,
BiNN-LSTMAE can maintain its performance level even
when the noise level is very high. We believe that this relates
to the ability of LSTM-based models to capture long-term
patterns in the data. The Lorenz-63 system has a positive
Lyapunov exponent, meaning that any small initial differ-
ence model grows exponentially in the long-term. However,
Lorenz-63 sequences clearly involve a pattern, referred to an
attractor. As discussed in [9] and [10], for dynamical models
identification, the most important criterion is the ability to
maintain this topology in very-long forecasting sequences.
Fig. 1 depicts the attractor of the sequences generated by
the models in Table 1. Topology-wise, we can see that the
attractors generated by BiNN-EnKS and the BiNN-LSTMAE
are visually better.

When the training data are clean, many data-driven meth-
ods can successfully identify the underlying dynamics. For
example, BiNN and BiNN-LSTMAE have similar result
when σ2 = 0.5. However, when the data are very noisy,
AF, SR and BiNN schemes fail. The explicit assimilation
schemes help disentangle the true latent states from noisy
observations. As a result, the learning part is weakly affected
by the noise level compared with the learning under ideal
conditions.



Table 1: Short-term forecasting error and very-long-term
forecasting topology of data-driven models learned on noisy
Lorenz-63 data.

Model σ2

0.5 2 8 32

AF t0 + 4 0.245 0.698 2.213 3.887
λ1 -1.356 -2.496 -1.900 32.432

SiNDy t0 + 4 0.037 0.104 0.326 0.933
λ1 0.890 0.876 -0.367 nan

BiNN t0 + 4 0.043 0.061 0.296 0.773
λ1 0.912 0.833 nan -0.014

BiNN-EnKS t0 + 4 0.013 0.027 0.055 0.156
λ1 0.859 0.842 0.878 0.892

BiNN-LSTMAE t0 + 4 0.013 0.028 0.030 0.047
λ1 0.899 0.872 0.919 0.912

σ2 = 0.5 σ2 = 2.0 σ2 = 8.0 σ2 = 32.0
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Fig. 1: Attactors generated by models trained on noisy data.

5.3. Identification with noisy and partial observations

In many application domains of dynamical systems, one can-
not monitor data at high frequency continuously. This section
evaluates the performance of the proposed framework on not
only noisy but also partial observations. Specifically, 80% of
data were missing. We considered two scenarios for partial
observations: i) s1: one complete observation is observed ev-
ery 8 time steps, regularly; and ii) s2: the data are observed
irregularly, along multivariate and time dimensions, but over-
all, 20% of data are observed.

We used the same evaluation criteria as those in Section
5.2. The results are shown in Table. 2 and Fig. 2. Un-
less the noise level is extremely high, both BiNN EnKS and
BiNN LSTMAE are able to capture the dynamical laws the
govern the observations.

Table 2: Short-term forecasting error and very-long-term
forecasting topology of data-driven models learned on noisy
and partial Lorenz-63 data.

Model σ2

0.5 2 8 32

BiNN-EnKS s1 t0 + 4 0.015 0.038 0.066 0.186
λ1 0.903 0.896 0.744 0.894

BiNN-LSTMAE s1 t0 + 4 0.057 0.060 0.165 0.232
λ1 0.899 0.911 0.923 0.468

BiNN-EnKS s2 t0 + 4 0.065 0.075 0.156 0.149
λ1 0.894 0.758 0.475 0.658

BiNN-LSTMAE s2 t0 + 4 0.036 0.117 0.253 0.318
λ1 0.908 0.868 0.854 0.312

σ2 = 0.5 σ2 = 2.0 σ2 = 8.0 σ2 = 32.0
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Fig. 2: Attractors generated by models trained on partially
observed data scenario 1 and 2. (The terms “BiNN” in the
name of the models are omitted)

6. CONCLUSIONS

This paper has showed that by explicitly adding an assimila-
tion scheme, we could significantly improve the capacity of
neural networks to learn chaotic dynamical systems. Our pro-
posed framework combines state-of-the-art data assimilation
schemes and recent advances in neural networks for the data-
driven identification of governing equations of non-linear dy-
namical systems. Different communities may value our con-
tributions for different aspects. For the data assimilation com-
munity, we introduce neural networks as a means to go be-
yond the limit of using analytic functions/processes, such as
the nonlinearity. For deep learning practitioners, our experi-
ments point out that assimilation schemes can be loosely con-
sidered as a regularization technique to prevent overfitting.

A number of open problems remain for future work. We
use the two hypotheses to derive the short-term prediction er-
ror term used in existing dynamics learning methods. How-
ever, the first one (q is a Dirac distribution) can be relaxed to
model stochastic systems, the second one (constant diagonal
variance) can be relaxed to estimate the observation errors.
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