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DEGREE AND HEIGHT ESTIMATES FOR MODULAR

EQUATIONS ON PEL SHIMURA VARIETIES

JEAN KIEFFER

Abstract. We define modular equations in the setting of PEL Shimura vari-
eties as equations describing Hecke correspondences, and prove upper bounds
on their degrees and heights. This extends known results about elliptic mod-
ular polynomials, and implies complexity bounds for number-theoretic algo-
rithms using these modular equations. In particular, we obtain tight degree
bounds for modular equations of Siegel and Hilbert type for abelian surfaces.

1. Introduction

Modular equations encode the presence of isogenies between polarized abelian
varieties. An example is given by the elliptic modular polynomial Φℓ, where ℓ is a
prime: this bivariate polynomial vanishes on the j-invariants of ℓ-isogenous elliptic
curves [9, §11.C], and can be used to detect and compute such isogenies [11]. Elliptic
modular polynomials are used for instance in the SEA algorithm to count points on
elliptic curves over finite fields [32], and in multi-modular methods to compute class
polynomials of imaginary quadratic fields [34]; being able to compute isogenies also
has applications in cryptography. Analogues of Φℓ for principally polarized abelian
surfaces, called Siegel and Hilbert modular equationss in dimension 2, have recently
been defined and computed [24, 25, 21], and are of similar interest.

In the first part of this paper, we define modular equations in the general set-
ting of PEL Shimura varieties of finite level; these varieties are moduli spaces for
abelian varieties with polarization, endomorphisms, and level structure, hence the
name. Choose connected components S and T of such a Shimura variety of dimen-
sion n ≥ 1; they have a canonical model over a certain number field L. Choose
coordinates on S and T that are defined over L. Let Hδ be an absolutely ir-
reducible Hecke correspondence defined by an adelic element δ of the underlying
reductive group, and let d(δ) be the degree of Hδ. In the modular interpretation,
Hδ parametrizes isogenies of a certain degree l(δ) between abelian varieties with
PEL structure. Then the modular equations of level δ are a family of n+1 univari-
ate polynomials (Ψδ,m)1≤m≤n+1 with coefficients in the function field L(S) of S,
of degree at most d(δ), describing Hδ on S × T . This definition includes all the
examples of modular polynomials cited above, and provides a unified context to
study them.

For each 1 ≤ m ≤ n + 1, the coefficients of Ψδ,m can be seen as multivariate
rational fractions with coefficients in L. From an algorithmic point of view, two
quantities are of interest: first, the total degree of these fractions; and second,
their height, which measures the size of their coefficients. For instance, if F ∈
Q(Y1, . . . , Yn), write F = P/Q where P,Q ∈ Z[Y1, . . . , Yn] are coprime; then the
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height h(F) of F is defined as the maximum of log |c|, where c runs through the
nonzero coefficients of P and Q.

Our main result gives upper bounds on the degrees and heights of the coefficients
of modular equations on a given PEL Shimura variety in terms of d(δ) and l(δ).
This provides complexity bounds for algorithms involving these modular equations.

Theorem 1.1. Let S and T be connected components of a simple PEL Shimura
variety of type (A) or (C) of finite level and dimension n ≥ 1, with underlying
reductive group G. Let L be the field of definition of S and T , and choose coordinates
on S and T that are defined over L. Then there exist constants C1 and C2 such
that the following holds. Let Hδ be an absolutely irreducible Hecke correspondence
on S × T defined by an adelic element δ of G; let d(δ) be the degree of Hδ, and
let l(δ) be the degree of the isogenies described by Hδ in the modular interpretation.
Let F be a multivariate rational fraction over L occuring as a coefficient of one of
the modular equations Ψδ,m for 1 ≤ m ≤ n+ 1. Then

(1) The total degree of F is bounded above by C1 d(δ).

(2) The height of F is bounded above by C2 d(δ)max{1, log l(δ)}.

This result generalizes known bounds on the size of the elliptic modular polyno-
mial Φℓ, which has degree ℓ+1 in both variables. We have h(Φℓ) ∼ 6ℓ log ℓ as ℓ tends
to infinity [8], and explicit bounds can be given [4]. Since d(δ) = ℓ+1 and l(δ) = ℓ
in this case, Theorem 1.1 seems optimal up to the value of the constants.

In the case of Siegel and Hilbert modular equations in dimension 2, this result is
new, and we can provide explicit values for the constants C1 and C2. In particular,
the degree bounds that we obtain match exactly with experimental data.

The strategy to prove part 1 of Theorem 1.1 is to exhibit a particular modular
form that behaves as the denominator of Ψδ,m, and to control its weight; then, we
show that rewriting quotients of modular forms in terms of the chosen coordinates
transforms bounded weights into bounded degrees. The proof of part 2 is inspired
by previous works on Φℓ [31]. We prove height bounds on evaluations of modu-
lar equations at certain points using well-known results on the Faltings height of
isogenous abelian varieties [12]. Then we use a general tight relation between the
height of a rational fraction over a number field and the height of its evaluations at
sufficiently many points, proved by the author in a separate paper [18].

This paper is organized as follows. In Section 2, we recall the necessary back-
ground on PEL Shimura varieties. In Section 3, we define the modular equations
associated with a choice of PEL setting and absolutely irreducible Hecke corre-
spondence, and explain how we recover the Siegel and Hilbert modular equations
in dimension 2 as special cases. Sections 4 and 5 are devoted to the proof of the
degree and height bounds respectively.

2. Background on PEL Shimura varieties

Our presentation is based on Milne’s expository notes [27], which serve as a
general reference for this section. These notes are themselves based on Deligne’s
reformulation of Shimura’s works [10]. We use the following notation: if G is a
connected reductive algebraic group over Q, then

• Gder is the derived group of G,
• Z is the center of G,
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• Gad = G/Z is the adjoint group of G,
• T = G/Gder is the largest abelian quotient of G,
• ν : G→ T is the natural quotient map,
• Gad(R)+ is the connected component of 1 in Gad(R) for the real topology,
• G(R)+ is the preimage of Gad(R)+ in G(R), and finally
• G(Q)+ = G(Q) ∩G(R)+.

We write Af for the ring of finite adeles of Q.

2.1. Simple PEL Shimura varieties of type (A) or (C). .
PEL data. Let (B, ∗) be a finite-dimensional simple Q-algebra with positive invo-
lution. The center F of B is a number field; let F0 ⊂ F be the subfield of invariants
under ∗. For simplicity, we make the technical assumption that B is either of
type (A) or (C) [27, Prop. 8.3]: this means that for every embedding θ of F0 in
an algebraic closure Q of Q, the algebra with positive involution (B ⊗F0,θ Q, ∗) is
isomorphic to a product of factors of the form, respectively,

(A) Mn(Q)×Mn(Q) with (a, b)∗ = (bt, at), or

(C) Mn(Q) with a∗ = at.

Let (V, ψ) be a faithful symplectic (B, ∗)-module. This means that V is a finite-
dimensional Q-vector space equipped with a faithful B-module structure and a
nondegenerate alternating Q-bilinear form ψ such that for all b ∈ B and for all u, v ∈
V ,

ψ(b∗u, v) = ψ(u, bv).

Let GLB(V ) denote the group of automorphisms of V respecting the action of B,
and let G be its reduced algebraic subgroup defined by

G(Q) =
{
g ∈ GLB(V ) | ψ(gx, gy) = ψ(µ(g)x, y) for some µ(g) ∈ F×

0

}
.

The group G is connected and reductive, and its derived group is Gder = ker(µ) ∩
ker(det) [27, Prop. 8.7]. We warn the reader that our G is denoted by G1 in [27, §8
of the 2017 version]. In Milne’s terminology, our G will define a Shimura variety (so
that the results of [27, §5] apply), but not strictly speaking a PEL Shimura variety.
This choice of reductive group will allow us to consider more Hecke correspondences
later on.

Let x be a complex structure on V (R), meaning an endomorphism of V (R)
such that x2 = −1. We say that x is positive for ψ if it commutes with the
action of B and if the bilinear form (u, v) 7→ ψ

(
u, x(v)

)
on V (R) is symmetric

and positive definite. In particular, x ∈ G(R) and µ(x) = 1. Such a complex
structure x0 exists [27, Prop. 8.14]. Define X+ to be the orbit of x0 under the
action of G(R)+ by conjugation; the space X+ is a hermitian symmetric domain
[27, Cor. 5.8]. We call the tupe (B, ∗, V, ψ,G,X+) a simple PEL Shimura datum
of type (A) or (C), or simply a PEL datum. To simplify notations, we abbreviate
PEL data as pairs (G,X+), the underlying data (V, ψ) and (B, ∗) being implicit.

.
PEL Shimura varieties. Let (G,X+) be a PEL datum as above, letK be a compact
open subgroup of G(Af ), and let K∞ be the stabilizer of x0 in G(R)+. The PEL
Shimura variety associated with (G,X+) of level K is the double quotient

(1)
ShK(G,X+)(C) = G(Q)+\(X+ ×G(Af ))/K

= G(Q)+\(G(R)+ ×G(Af ))/K∞ ×K.
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Actually, this quotient will be the set of C-points of the Shimura variety, hence the
notation. In the first line of (1), the group G(Q)+ acts on both X+ and G(Af )
by conjugation and left multiplication respectively, and K acts on G(Af ) by right
multiplication. When the context is clear, we omit (G,X+) from the notation.
The set ShK(C) is given the quotient topology obtained from the real topology
on G(R)+ and the adelic topology on G(Af ).

In order to describe ShK(C) more explicitly, we study its connected compo-
nents. The projection to the second factor induces a map with connected fibers
from ShK(C) to the double quotientG(Q)+\G(Af )/K, which is finite [27, Lem. 5.12].
Let C be a set of representatives in G(Af ) for this double quotient. The connected
component Sc of ShK(C) indexed by c ∈ C can be identified with Γc\X+, where
Γc = G(Q)+ ∩ cKc−1 is an arithmetic subgroup of Aut(X+) [27, Lem. 5.13]. Thus,
the Shimura variety ShK(C) has a natural structure of a complex analytic space,
and is an algebraic variety by the theorem of Baily and Borel [27, Thm. 3.12].

Since Gder is simply connected, by [27, Thm. 5.17 and Lem. 5.20] (the assumption
that K is sufficiently small is not actually needed there), the map ν induces an
isomorphism

G(Q)+\G(Af )/K ≃ ν(G(Q)+)\T (Af)/ν(K).

Therefore the set of connected components of ShK(C) is a finite abelian group.
Moreover, each connected component is itself a Shimura variety with underlying
group Gder [27, Rem. 5.23].

A fundamental theorem states that ShK(G,X+) exists as an algebraic variety
defined over the reflex field E(G,X+), which is a number field contained in C,
depending only on the PEL datum [27, §12-14]. The field of definition of the
individual connected components of ShK(C) depends on K, and is a finite abelian
extension of E(G,X+).

2.2. The modular interpretation. Our motivation in constructing PEL Shimura
varieties is to obtain moduli spaces of complex abelian varieties with polarization,
endomorphism, and level structures. This modular interpretation of PEL Shimura
varieties is usually formulated in terms of isogeny classes of abelian varieties [27,
Thm. 8.17]. In order to obtain a modular interpretation in terms of isomorphism
classes of abelian varieties in the spirit of [6, §2.6.2], we fix

• a PEL datum (G,X+),
• a lattice Λ0 ⊂ V ,
• a compact open subgroup K ⊂ G(Af ) which stabilizes the lattice Λ̂0 =

Λ0 ⊗ Ẑ ⊂ V (Af ), and
• a set C ⊂ G(Af ) of representatives for the finite double quotientG(Q)+\G(Af )/K.

By definition, a lattice in V is a subgroup of V (Q) generated by a Q-basis of V ,
hence a free Z-module of rank dimV . If p is a prime number, then a lattice in V (Qp)
is a subgroup of the form

⊕
i∈I Zpei where (ei)i∈I is a Qp-basis of V (Qp). Finally, a

lattice in V (Af ) is a product of lattices in V (Qp) for each p that are equal to V (Zp)
for all p but finitely many. Recall that the local-global principle for lattices holds:

the map Λ 7→ Λ̂ = Λ⊗ Ẑ is a bijection between lattices in V and lattices in V (Af ),

and its inverse is intersection with V (Q). The assumption that K stabilizes Λ̂0

does not imply a loss of generality, because every compact open subgroup of G(Af )
stabilizes some lattice in V (Af ).
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To complete the setup, let O be the largest order in B stabilizing Λ0. We keep
the notation of §2.1: for every c ∈ C, we write Γc = G(Q)+∩ cKc−1, and we denote
by Sc = Γc\X+ the connected component of ShK(C) associated with c.

We define a polarized lattice to be a pair (Λ, φ) where Λ is a free Z-module of
finite rank and φ : Λ×Λ→ Z is a nondegenerate alternating form. Given a polarized
lattice (Λ, φ), we can extend φ to the Q-vector space Λ ⊗Q, and we define

Λ⊥ = {v ∈ Λ⊗Q | ∀w ∈ Λ, φ(v, w) ∈ Z}.

Then Λ⊥/Λ is a finite abelian group called the polarization type of (Λ, φ). We say
that φ is a principal polarization on Λ if Λ⊥ = Λ.

.
A modular interpretation in terms of lattices. Using the data above, we define a
standard polarized lattice for every connected component of ShK(C) as follows.

Definition 2.1. For each c ∈ C, we define

Λ̂c = c(Λ̂0) and Λc = Λ̂c ∩ V (Q).

The action of c, or any other element of G(Af ), on adelic lattices is easily defined
locally at each prime. Since c respects the action ofB on V (Af ), the orderO is again

the stabilizer of Λ̂c, and thus of Λc. Let λc ∈ Q×
+ be such that the nondegenerate

alternating form ψc = λcψ satisfies ψc(Λc × Λc) = Z. We call (Λc, ψc) with its
structure of O-module the standard polarized lattice associated with (Λ0, c).

Choose c ∈ C, and let (Λc, ψc) be the standard polarized lattice associated
with (Λ0, c). We consider tuples (Λ, x, ι, φ, ηK) where

• Λ is a free Z-module of rank dim V ,
• x ∈ End(Λ⊗ R) is a complex structure on Λ⊗ R,
• ι is an embedding O →֒ EndZ(Λ),
• φ : Λ× Λ→ Z is a nondegenerate alternating Z-bilinear form on Λ,
• ηK is a K-orbit of Ẑ-linear isomorphisms of O-modules Λ̂0 → Λ⊗ Ẑ,

satisfying the following condition of compatibility with (Λc, ψc):

(⋆) There exists an isomorphism of O-modules a : Λ→ Λc, carrying ηK to cK
and x to an element of X+, such that

∃ζ ∈ µ(Γc), ∀u, v ∈ Λ, φ(u, v) = ψc

(
ζa(u), a(v)

)
.

For short, we will call such a tuple a lattice with PEL structure defined by (Λ0, c), or
simply a lattice with PEL structure when the dependency on (Λ0, c) is understood.

An isomorphism between two lattices with PEL structure (Λ, x, ι, φ, ηK) and (Λ′, x′, ι′, φ′, η′K)
is an isomorphism of O-modules f : Λ → Λ′ that sends x to x′, sends ηK to η′K,
and such that φ(u, v) = φ′

(
ζf(u), f(v)

)
for some ζ ∈ µ(Γc).

For every lattice with PEL structure (Λ, x, ι, φ, ηK), the compatibility con-
dition (⋆) implies in particular that the complex structure x is positive for φ,
the adjunction involution defined by φ coincides with ∗ on B, the action of B
on Λ⊗Q leaves the complex structure x invariant, and the polarized lattices (Λ, φ)
and (Λc, ψc) have the same polarization type.
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Proposition 2.2. Let c ∈ C, and let Zc be the set of isomorphism classes of lattices
with PEL structure defined by (Λ0, c). Then the map

Zc −→ Sc
(Λ, x, ι, φ, ηK) 7−→ [axa−1, c] where a is as in (⋆)

is well-defined and bijective. The inverse map is

[x, c] 7→ (Λc, x, ι, ψc, cK).

where ι is the natural action of O on Λc.

Proof. The proof is direct and omitted; the details are similar to [27, Prop. 6.3]. �

.
A modular interpretation in terms of isomorphism classes of abelian varieties. Giv-
ing an abelian variety A over C is the same as giving the lattice Λ = H1(A,Z) and
a complex structure on the universal covering Λ⊗R of A. Under this identification,
endomorphisms of A correspond to endomorphisms of Λ that respect the complex
structure. Moreover, giving a polarization on A is the same as giving a nondegen-
erate alternating form φ : Λ × Λ → Z such that the bilinear form (u, v) 7→ φ(u, iv)
is symmetric and positive definite. The polarization type of A is the polarization
type of (Λ, φ).

Recall that for every prime number p, the Tate module Tp(A) is defined as the
projective limit of the torsion subgroups A[pn] as n tends to infinity:

Tp(A) = lim←−A[p
n] = lim←−Λ/pnΛ = Λ⊗ Zp.

Therefore Λ ⊗ Ẑ is canonically isomorphic to the global Tate module T̂ (A) of A,
defined as

T̂ (A) =
∏

p prime

Tp(A).

Fix c ∈ C, and let (Λc, ψc) be the standard polarized lattice associated with (Λ0, c).
We define a complex abelian variety with PEL structure defined by (Λ0, c) to be a
tuple (A, φ, ι, ηK) where

• (A, φ) is a complex polarized abelian variety of dimension dimV ,
• ι is an embedding O →֒ End(A),
• ηK is a K-orbit of Ẑ-linear isomorphisms of O-modules Λ̂0 → T̂ (A),

satisfying the following condition of compatibility with (Λc, ψc):

(⋆⋆) There exists an isomorphism of O-modules a : H1(A,Z) → Λc, carrying φ
to ψc, carrying ηK to cK, and such that the complex structure induced
by a on V (R) belongs to X+.

If (A, φ, ι, ηK) is a complex abelian variety with PEL structure defined by (Λ0, c),
then condition (⋆⋆) implies that A and (Λc, ψc) have the same polarization type,
and that the Rosati involution on End(A) ⊗ Q (which is adjuction with respect
to φ) restricts to ∗ on B.

An isomorphism between complex abelian varieties with PEL structure (A, φ, ι, ηK)
and (A′, φ′, ι′, η′K) is an isomorphism of complex polarized abelian varieties f : (A, φ)→
(A,′ φ′) respecting the action of O and sending ηK to η′K.

The difference with the setting of Proposition 2.2 is that isomorphisms of complex
abelian varieties with PEL structure must respect the polarizations exactly, rather
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than up to an element of µ(Γc). In general, µ(Γc) 6= {1}, but there is the following
workaround. If ε ∈ F× lies in the center of B, then multiplication by ε defines an
element in the center of G(Q). Therefore it makes sense to define

EK = {ε ∈ F× | ε ∈ K} = {ε ∈ F× | ε ∈ Γc}, for every c ∈ G(Af ).

Proposition 2.3. Let c ∈ C, and let (Λc, ψc) be the standard polarized lattice
associated with (Λ0, c). If µ(EK) = µ(Γc), then the map

[x, c] 7−→
(
V (R)/Λc, ψc, ι, cK

)
,

where V (R) is seen as a complex vector space via x, and ι is the action of O
on V (R)/Λc induced by the action of B on V (R), is a bijection between Sc and the
set of isomorphism classes of complex abelian varieties with PEL structure defined
by (Λ0, c).

Proof. When defining Zc as in Proposition 2.2, we can impose ζ = 1 in condition (⋆)
and strengthen the notion of isomorphism between lattices with PEL structure to
respect the polarizations exactly. Indeed, multiplying the isomorphism a by ε ∈ EK
leaves everything invariant except the alternating form, which is multiplied by µ(ε).
The result follows then from the equivalence of categories between lattices and
complex abelian varieties outlined above. �

Remark 2.4. The group µ(EK) always has finite index in µ(Γc). Indeed, if Z×
F0

denotes the unit group of F0, then

µ(EK) ⊂ µ(Γc) ⊂ Z×
F0

and µ(EK) contains a subgroup of finite index in Z×
F0

, namely all the squares of

elements in Z×
F0
∩ K. By [7, Thm. 1], there exists a compact open subgroup M

of µ(K) such that Z×
F0
∩M = µ(EK). Define K ′ = K ∩ µ−1(M). Then EK′ = EK ,

and for every c ∈ G(Af ), we have

G(Q)+ ∩ cK ′c−1 = {γ ∈ Γc | µ(γ) ∈ µ(EK)}.
Therefore the hypothesis of Proposition 2.3 will be satisfied for the smaller level
subgroup K ′.

When considering the classical modular curves as Shimura varieties associated
with the reductive group G = GL2 acting on V = Q2, we can take Λ0 = Z2

and ψ =
(

0 1
−1 0

)
. Then Proposition 2.3 applies, and we let the reader check that

we recover the usual modular interpretation of modular curves in terms of complex
elliptic curves with level structure.

2.3. Modular forms on PEL Shimura varieties. Our definition of modular
equations will involve choices of coordinates on connected components of PEL
Shimura varieties. These coordinates, also called modular functions, are obtained
as quotients of modular forms. This section briefly presents modular forms on PEL
Shimura varieties without going into technical details.

Let (G,X+) be a PEL datum, and let K∞ ⊂ G(R)+ be the stabilizer of a fixed
complex structure x0 ∈ X+. Attached to this data is a certain canonical character
of K∞ [1, §1.8], denoted by ρ : K∞ → C×. Let K be a compact open subgroup
of G(Af ). A modular form of weight w ∈ Z on ShK(G,X+)(C) is a function

f : G(Q)+\
(
G(R)+ ×G(Af )

)
/K → C
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that satisfies suitable growth and holomorphy conditions [26, Prop. 3.2], and such
that

∀x ∈ G(R)+, ∀g ∈ G(Af ), ∀k∞ ∈ K∞, f([xk∞, g]) = ρ(k∞)wf([x, g]).

The weight of f is denoted by wt(f). We also say that f is of level K.
Let S be a connected component of ShK(C), or a union of these, and let L be its

field of definition. A modular form of weight w on S is the restriction of a modular
form of weight w on ShK(C) to the preimage of S in G(Q)+\

(
G(R+)×G(Af )

)
/K

by the natural projection. There is a canonical notion of modular forms on S
being defined over L [26, Chap. III]. A modular function on S is the quotient of
two modular forms of the same weight, the denominator being nonzero on each
connected component of S.

The following result is well known; since we did not find a precise reference in
the literature, we present a short proof.

Theorem 2.5. Let S be a connected component of the Shimura variety ShK(C),
and let L be its field of definition. Then the graded L-algebra of modular forms
on S defined over L is finitely generated, and there exists a weight w ≥ 1 such
that modular forms of weight w defined over L realize a projective embedding of S.
Every element of the function field L(S) is a quotient of two modular forms of the
same weight defined over L.

Proof. Choose an element c ∈ C ⊂ G(Af ) defining the connected component S,
so that S = Γc\X+ where Γc = G(Q)+ ∩ cKc−1. Assume first that the level
subgroup K of G(Af ) is sufficiently small, so that Γc is torsion-free. Then, by the
Baily–Borel theorem [1, Thm. 10.11], there exists an ample line bundle MC on S
such that for every w ≥ 1, the algebraic sections of M⊗w

C are exactly the modular
forms of weight w on S.

In fact,MC is the inverse determinant of the tangent bundle on S [1, Prop. 7.3].
Since S has a model over L, there is a line bundle M on S defined over L such
thatM⊗LC =MC. This is a particular case of a general result on the rationality
of automorphic vector bundles [26, Chap. III, Thm. 4.3]. For every w ≥ 1, the
L-vector space modular forms of weight w on S defined over L is H0(S,M⊗w).
Since M⊗L C is ample, M is ample too, and this implies the conclusions of the
theorem.

In general, we can always find a level subgroup K ′ of finite index in K such
that the arithmetic subgroups G(Q)+ ∩ cK ′c−1 for c ∈ G(Af ) are torsion free [27,
Prop. 3.5], and we can assume that K ′ is normal in K. Let S ′ be a connected
component of ShK′(C) lying over S, and let L′ be its field of definition. Then the
conclusions of the theorem hold for S ′. We can identify the modular forms on S
defined over L with the modular forms on S ′ defined over L′ that are invariant
under the action of a subgroup of K/K ′. Therefore the conclusions of the theorem
also hold for S by Noether’s theorem [29] on invariants under finite groups. �

We can also consider modular forms that are symmetric under certain automor-
phisms of ShK . Let Σ be a finite group of automorphisms of V as a Q-vector space
that leaves the symplectic form ψ invariant, and also acts on B in such a way that

∀u ∈ V, ∀b ∈ B, ∀σ ∈ Σ, σ(bu) = σ(b)σ(u).

This implies that the elements of Σ commute with the involution ∗, and hence
leave F0 stable. Under these assumptions, each σ ∈ Σ induces an automorphism
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of G defined over Q, also denoted by σ. Assume further that these automorphisms
leave G(R)+, X+, K, K∞, ν and the character ρ invariant. Then Σ can be seen
as a finite group of automorphisms of S, and one can check as in [27, Thm. 13.6]
that these automorphisms are defined over L. Then for every modular form f of
weight w on S defined over L, and every σ ∈ Σ, the function

σ · f : [x, g] 7→ f([σ−1(x), σ−1(g)])

is a modular form of weight w on S defined over L. We say that f is symmetric
under Σ if σ · f = f for every σ ∈ Σ.

Proposition 2.6. Let Σ be a finite group of automorphisms of G as above. Then
the graded L-algebra of symmetric modular forms on S defined over L is finitely
generated, and every symmetric modular function on S defined over L is the quo-
tient of two symmetric modular forms of the same weight defined over L.

Proof. This results from Theorem 2.5 and another application of Noether’s theorem.
�

2.4. Hecke correspondences. We fix a PEL datum (G,X+) as above, as well as
a compact open subgroup K ⊂ G(Af ). Let δ ∈ G(Af ), and let K ′ = K ∩ δKδ−1.
Consider the diagram

(2)

ShK′(C) Shδ−1K′δ(C)

ShK(C) ShK(C)

p1

R(δ)

p2

where the map R(δ) is [x, g] 7→ [x, gδ], and p1 and p2 are the natural projections.
This diagram defines a correspondence Hδ in ShK × ShK , called the Hecke cor-
respondence of level δ, consisting of all pairs of the form

(
p1(x), p2(R(δ)x)

)
for

x ∈ ShK′ . Hecke correspondences are algebraic: the diagram (2) is the analyti-
fication of a diagram existing at the level of algebraic varieties. Moreover, Hecke
correspondences are defined over the reflex field [27, Thm. 13.6].

We define the degree of Hδ to be the index

d(δ) = [K : K ′] = [K : K ∩ δKδ−1].

This index is finite as both K and K ′ are compact open subgroups of G(Af ), and is
the degree of the map ShK′ → ShK . One can also considerHδ as a map from ShK to
its d(δ)-th symmetric power, sending z ∈ ShK to the set {z′ ∈ ShK | (z, z′) ∈ Hδ}.

It is easy to see how Hδ behaves with respect to connected components: if z
lies in the connected component indexed by t ∈ T (Af), then its images lie in the
connected component indexed by t ν(δ).

We call the Hecke correspondenceHδ absolutely irreducible if for every connected
component S of ShK(C) with field of definition L, the preimage of S in ShK′ is
absolutely irreducible as a variety defined over L (or equivalently, connected as
a variety over C). A sufficient condition for Hδ to be absolutely irreducible is
that ν(K ′) = ν(K).

.
Modular interpretation of Hecke correspondences. In the modular interpreta-
tion, Hecke correspondences describe isogenies of a certain type between polarized
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abelian varieties. Let Λ0, C, and O be as in §2.2, and write

K =

d(δ)⊔

i=1

κiK
′,

where κi ∈ G(Af ) for each 1 ≤ i ≤ d(δ). Let c ∈ C, denote by Sc the con-
nected component of ShK(C) indexed by c, and consider the lattice with PEL
structure (Λc, x, ι, ψc, cK) associated with a point [x, c] ∈ Sc by Proposition 2.2.

In order to construct the lattices associated with [x, c] via the Hecke correspon-
dence Hδ, we partition the orbit cK into the K ′-orbits cκiK

′ for 1 ≤ i ≤ d(δ). Each

element cκiδ ∈ G(Af ) is then a Ẑ-linear embedding of O-modules Λ̂0 →֒ V (Af ); it
is well defined up to right multiplication by δ−1K ′δ, hence by K. Let Λi ⊂ V (Q)

be the lattice such that Λi ⊗ Ẑ is the image of this embedding. There is still a
natural action of O on Λi. The decomposition cκiδK = qic

′K, with qi ∈ G(Q)+
and c′ ∈ C, is well defined, and the element c′ does not depend on i.

Proposition 2.7. Let δ ∈ G(Af ), let z = [x, c] ∈ Sc, and construct Λi, qi, c
′ as

above. Then the image of z under the Hecke correspondence Hδ in the modular
interpretation of Proposition 2.3 is given by the d(δ) isomorphism classes of tuples
with representatives

(
Λi, x,

λc′

λc
ψc

(
µ(q−1

i ) · , ·
)
, cκiδK

)
for 1 ≤ i ≤ d(δ).

Proof. By construction, the images of [x, c] via the Hecke correspondence are the
points [q−1

i x, c′] of ShK(C). The relation cκiδK = qic
′K shows that the map q−1

i

sends the lattice Λi to Λc′ . This map also respects the action of O, and sends the
complex structure x to q−1

i x. Finally, it sends the polarization (u, v) 7→ ψc(u, v)
on Λi to (u, v) 7→ ψc

(
µ(qi)u, v

)
on Λc′. �

After multiplying δ by a unique suitable element in Q×
+, which does not changeHδ,

we can assume that δ(Λ̂0) ⊂ Λ̂0 and δ(Λ̂0) 6⊂ pΛ̂0 for every prime p; we say that δ is
normalized with respect to Λ0. In this case, we define the isogeny degree of Hδ as

the unique integer l(δ) ≥ 1 such that l(δ)−1 det(δ) is a unit in Ẑ. In other words,

l(δ) = #
(
Λ̂0/δ(Λ̂0)

)
.

For a general δ ∈ G(Af ), we set l(δ) = l(λδ) where λ ∈ Q×
+ is chosen such that λδ

is normalized with respect to Λ0.

Corollary 2.8. Let δ ∈ G(Af ). Then, in the modular interpretation of Proposi-
tion 2.3, the Hecke correspondence Hδ sends an abelian variety A with PEL struc-
ture to d(δ) abelian varieties A1, . . . , Ad(δ) such that for every 1 ≤ i ≤ d(δ), there
exists an isogeny Ai → A of degree l(δ).

Proof. We can assume that δ is normalized with respect to Λ0. Then, in the result
of Proposition 2.7, each lattice Λi for 1 ≤ i ≤ d(δ) is a sublattice of Λc endowed
with the same complex structure x. Moreover, for every 1 ≤ i ≤ d(δ), we have

Λc/Λi ≃ Λ̂0/δ(Λ̂0), so the index of each Λi in Λc is l(δ). �

.
A relation between degrees For later purposes, we state an inequality relating d(δ)
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and a power of l(δ). Since K ⊂ G(Af ) is open, there exists a smallest integer N ≥ 1
such that {

g ∈ G(Af ) ∩GL(Λ̂0) | g = 1 mod N Λ̂0

}
⊂ K,

that we call the level of K with respect to Λ̂0.

Proposition 2.9. There exists a constant C depending on K and Λ0 such that

for every δ ∈ G(Af ), we have d(δ) ≤ C l(δ)(dimV )2 . We can take C = N (dimV )2 ,

where N is the level of K with respect to Λ̂0.

Proof. We can assume that δ is normalized with respect to Λ̂0. Then K ∩ δKδ−1

contains all the elements g ∈ G(Af ) ∩ GL(Λ̂0) that are the identity modulo Λ̂ =

l(δ)N Λ̂0. In other words we have a morphism K → GL(Λ0/N l(δ)Λ0) whose kernel
is contained in K ∩ δKδ−1. This yields the result since #GL(Λ0/N l(δ)Λ0) ≤
(N l(δ))(dimV )2 . �

Remark 2.10. The upper bound on d(δ) given in Proposition 2.9 is far from

optimal in many cases: for instance, if δ is normalized with respect to Λ̂0, if l(δ)
is prime to N , and if moreover δ normalizes the image of K in GL(Λ0/NΛ0), then

d(δ) ≤ l(δ)(dimV )2 . But in general, the level of K does enter into account. As an
example, take G = GL2, δ = ( 0 1

1 0 ), and

K =
{ (

a b
c d

)
∈ GL2(Ẑ) | a = d = 1 mod N and c = 0 mod N

}
.

Then d(δ) = N even though l(δ) = 1. In the modular interpretation, the Hecke
correspondence Hδ has the effect of forgetting the initial K-level structure entirely.

3. Modular equations on PEL Shimura varieties

This section presents a general definition of modular equations on PEL Shimura
varieties, generalizing three examples mentioned in the introduction: the elliptic
modular polynomials, and the modular equations of Siegel and Hilbert type for
abelian surfaces (see §3.3 and §3.4).

3.1. The example of elliptic modular polynomials. Elliptic modular polyno-
mials are the simplest example of modular equations. They are usually defined
in terms of classical modular forms [9, §11.C]. In order to motivate the general
definition, we translate this definition in the adelic language.

The underlying PEL datum is obtained by taking V = Q2, ψ =
(

0 1
−1 0

)
, and B =

Q with ∗ the trivial involution. Then G = GL2, and G(Q)+ consists of all ratio-

nal 2×2 matrices with positive determinant. We take Λ0 = Z2 and K = GL2(Ẑ), so
that ShK(C) has only one connected component S (indexed by the identity matrix)
and the maximal order of B stabilizing Λ0 is O = Z. If we take the complex struc-
ture x0 =

(
0 1
−1 0

)
as a base point, then X+ is naturally identified with the Poincaré

upper half plane H1, with x0 corresponding to i ∈ H1. Then S is identified with the
modular curve SL2(Z)\H1, and modular forms on S in the sense of §2.3 correspond
exactly to modular forms of level SL2(Z) on H1 in the classical sense. The reflex
field E(G,X+) is equal to Q in this case, and the j-invariant realizes an isomor-
phism between ShK and the affine line A1

Q; in particular j generates the function
field of S over Q.
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Let ℓ be a prime number. Then the function on H1 given by τ 7→ j(τ/ℓ) is
invariant under the following congruence subgroup of SL2(Z):

Γ0(ℓ) =
{(

a b
c d

)
∈ SL2(Z) | b = 0 mod ℓ

}
.

Therefore, the coefficients of the polynomial

Pℓ(τ) =
∏

γ∈Γ0(ℓ)\ SL2(Z)

(
Y − j(1ℓγτ)

)
, for τ ∈ H1

are modular functions of level SL2(Z). The elliptic modular polynomial Φℓ is the
unique element of C(X)[Y ] satisfying the relation Φℓ(j(τ), Y ) = Pℓ(τ) for every τ ∈
H1; actually Φℓ ∈ Z[X,Y ]. In other words, we have a map

(3) Γ0(ℓ)\H1 → S × S, τ 7→ (τ, τ/ℓ),

and the product S×S is birational to P1×P1 via (j, j). The modular curve Γ0(ℓ)\H1

is birational to its image in P1 × P1, and Φℓ is an equation of this image.
Remark that for every τ ∈ H1, we have

τ/ℓ = δ−1τ, where δ = ( ℓ 0
0 1 ) ∈ G(Q)+.

Therefore, if τ ∈ H1 corresponds to a point [x, I2] ∈ ShK(C), then τ/ℓ corresponds
to the point [x, δ]. Moreover Γ0(ℓ) = SL2(Z)∩

(
δ SL2(Z)δ

−1
)
. Therefore the map (3)

is precisely the Hecke correspondence Hδ given in diagram (2).
The function τ 7→ j(τ/ℓ) corresponds to the modular function

jδ : G(Q)+\
(
G(Af )×G(R)+

)
→ C

[x, g] 7→ j([x, gδ]),

which is right-invariant under δKδ−1. Let K ′′ be a normal subgroup of finite index
in K contained in K ′ = K ∩ δKδ−1. We let K act (on the left) on the set of
modular functions of level K ′′ as follows: if k ∈ K and f is such a function, then
we define

k · f : [x, g] 7→ f([x, gk]).

Since K ′ is contained in the stabilizer of jδ, the coefficients of the polynomial

(4) Qℓ =
∏

γ∈K/K′

(
Y − γ · jδ

)

are modular functions of level K; the analogue of Qℓ in the classical world is
exactly Pℓ, as inversion induces a bijection between right cosets of Γ0(ℓ) in SL2(Z)
and left cosets of K ′ in K. The general definition of modular equations involves
analogues of the product (4) for other Hecke correspondences.

3.2. General definition of modular equations. Let (G,X+) be a PEL datum,
let K be a compact open subgroup of G(Af ), and let Σ be a finite group of au-
tomorphisms of G as in §2.3. Let n be the complex dimension of X+; we assume
that n ≥ 1. Let S, T be connected components of ShK(G,X+)(C), and let L be
their field of definition.

To complete the picture, we also need to choose coordinates on S and T . Since
the field L(S) of modular functions on S has transcendence degree n over L, the
field L(S)Σ of modular functions on S that are symmetric under Σ also has tran-
scendence degree n over L. Choose a transcendence basis (j1, . . . , jn) of L(S)Σ
over L, and another symmetric function jn+1 that generates the remaining finite
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extension, whose degree is denoted by e. On S, the function jn+1 satisfies a minimal
relation of the form
(5)

E(j1, . . . , jn+1) = 0 where E =

e∑

k=0

Ek(J1, . . . , Jn)J
k
n+1 ∈ L[J1, . . . , Jn+1]

and E is irreducible. If L(S)Σ is purely transcendental over L (if Σ = {1}, this
means that S is birational to Pn

L), then we take jn+1 = 1, ignore eq. (5), and work
with n invariants only.

We proceed similarly to define coordinates on T : no confusion will arise if we
also denote them by j1, . . . , jn+1. We refer to all the data defined up to now as the
PEL setting. Throughout the paper, our constants will depend on this data only.

Given a PEL setting as above, let δ ∈ G(Af ) be an adelic element ofG defining an
absolutely irreducible Hecke correspondence Hδ that intersects S × T nontrivially.
We want to define explicit polynomials with coefficients in L(S), called the modular
equations of level δ, describing Hδ in the product S × T . To do this, we mimic the
definition of elliptic modular polynomials in the language of PEL Shimura varities
given in §3.1. As in §2.4, we write K ′ = K ∩ δKδ−1.

LetK ′′ be a normal subgroup of finite index inK, contained inK ′, and stabilized
by Σ. Let S ′′ be the preimage of S in ShK′′(C). There is a left action of K ⋊Σ on
the space of modular functions on S ′′, given by

(k, σ) · f : [x, g] 7→ σ · f([x, gk]).

The modular functions that are invariant under K ′⋊ {1} (resp. K⋊Σ) are exactly
the rational functions on Hδ ∩ (S × T ) defined over C (resp. the rational functions
on S defined over C and invariant under Σ). The modular functions

ji,δ : [x, g] 7→ ji([x, gδ])

for 1 ≤ i ≤ n+1 are defined over L and generate the function field of Hδ ∩ (S ×T ).
We define the decreasing chain of subgroups

K ⋊ Σ = K0 ⊃ K1 ⊃ · · · ⊃ Kn+1 ⊃ K ′

as follows: for each 1 ≤ i ≤ n+1, the subgroup Ki is the stabilizer of the functions
j1,δ, . . . , ji,δ. In §3.1, we had K0 = K and K1 = K ′.

Galois theory applied to the Galois covering S ′′ → S tells us that for every 1 ≤
i ≤ n+1, the field L(j1, . . . , jn+1, j1,δ, . . . , ji,δ) is the function field of the preimage
of S in the Shimura variety ShKi

, and consists of all modular functions on S ′′
defined over L that are invariant under Ki. In other words, we have a tower of
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function fields:

L(j1, . . . , jn+1, j1,δ, . . . , jn+1,δ) = L(Hδ ∩ (S × T ))

...

L(j1, . . . , jn+1, j1,δ)

L(S)Σ.

degree dn+1

degree d2

degree d1

where di = [Ki−1 : Ki] for 1 ≤ i ≤ n + 1. The modular equations of level δ are
defining equations for the successive extensions in the tower.

Definition 3.1. The modular equations of level δ on S×T are the tuple (Ψδ,1,Ψδ,2, . . . ,Ψδ,n+1)
defined as follows: for each 1 ≤ m ≤ n+ 1, Ψδ,m is the multivariate polynomial in
the m variables Y1, . . . , Ym defined by

Ψδ,m =
∑

γ∈K0/Km−1



(

m−1∏

i=1

∏

γi

(
Yi − γi · ji,δ

)) ∏

γm∈Km−1/Km

(
Ym − γγm · jm,δ

)



where the middle product is over all γi ∈ K0/Ki such that γi = γ modulo Ki−1,
but γi 6= γ modulo Ki. The expression for Ψδ,m makes sense, because multiplying γ
on the right by an element in Km−1 only permutes the factors in the last product.

In the case of the Hecke correspondence considered in §3.1, the polynomial Ψδ,1

is precisely Qℓ. The precise formula is inspired from preexisting definitions of
modular equations for abelian surfaces [3, 24, 25, 21]. We will return to these
examples in §3.3 and §3.4.

Let us give elementary properties of modular equations. First, we need a lemma.

Lemma 3.2. Let γ, γ′ ∈ K0 and 1 ≤ i ≤ n+ 1. Assume that the equality γ · ji,δ =
γ′ · ji,δ holds on one connected component of S ′′. Then it holds on all connected
components of S ′′.

Proof. Write γ = (k, σ) and γ′ = (k′, σ′) where k, k′ ∈ K and σ, σ′ ∈ Σ. Let c ∈
G(Af ) be an adelic element of G defining the connected component S in ShK(C),
so that S = Γc\X+ with Γc = G(Q)+ ∩ cKc−1. By assumption, there exists an
element g ∈ G(Af ) such that g = c in the double quotient space G(Q)+\G(Af )/K,
and

(6) ∀x ∈ X+, ji,δ
(
[σ−1(x), σ−1(gk)]

)
= ji,δ

(
[σ′−1(x), σ′−1(gk′)]

)
.

Since Hδ is absolutely irreducible, we have G(Q)+\G(Af )/K = G(Q)+\G(Af )/K
′.

Using the description of connected components of a PEL Shimura variety in §2.1,
and the fact that the action Σ leaves ν invariant, we find that there exist γ1, γ2 ∈
G(Q)+ such that gk = γ1σ(c) mod σ(K ′) and gk′ = γ2σ

′(c) mod σ′(K ′). Then
equation (6) is equivalent to the following:

(7) ∀x ∈ X+, ji,δ
(
[x, c]

)
= ji,δ

(
[σ′−1(γ−1

2 γ1σ(x)), c]
)
.
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Note that γ−1
2 γ1 is well-defined and independent of g, up to multiplication on

the left by an element of G(Q)+ ∩ σ′(cK ′c−1), and on the right by an element
of G(Q)+ ∩σ(cK ′c−1). Therefore equation (7) holds for every g ∈ G(Af ) such that
g = c in G(Q)+\G(Af )/K. In other words, the equality γ · ji,δ = γ′ · ji,δ holds on
every connected component of S ′′. �

Proposition 3.3. Let 1 ≤ m ≤ n + 1, and let γ ∈ K0/Km−1. Then, up to
multiplication by an element in L(j1, . . . , jn+1, γ · j1,δ, . . . , γ · jm−1,δ)

×, we have

Ψδ,m(γ · j1,δ , . . . , γ · jm−1,δ , Ym) =
∏

γm∈Km−1/Km

(
Ym − γγm · jm,δ

)
.

Proof. By Definition 3.1, the above equality holds true after multiplying the right
hand side by

f =

m−1∏

i=1

∏

γi∈K0/Ki

γi 6=γ
γi=γ mod Ki−1

(
γ · ji,δ − γi · ji,δ

)

The function f a product of nonzero modular functions on S ′′ defined over L. In
order to show that f ∈ L(j1, . . . , jn+1, γ · j1,δ, . . . , γ · jm−1,δ), we check that f is
invariant under the action of γKm−1γ

−1. By definition of the subgroups Ki, no
factor of f is identically zero on S ′′. Therefore f is invertible by Lemma 3.2. �

Let 1 ≤ m ≤ n + 1. Proposition 3.3 implies that up to scaling, the univari-
ate polynomial Ψδ,m(j1,δ, . . . , jm−1,δ, Ym) is the minimal polynomial of jm,δ over
the field L(j1, . . . , jn+1, j1,δ, . . . , jm−1,δ). In other words, when the multiplicative
coefficient in Proposition 3.3 does not vanish, which is generically the case, Ψδ,m

provides all the possible values for jm,δ once j1, . . . , jn+1 and j1,δ, . . . , jm−1,δ are
known. In particular, modular equations vanish on Hδ as promised.

We could also define other modular equations Φδ,m for which there is true equal-
ity in Proposition 3.3, as in the case of the classical modular polynomial Φl, but
they have a more complicated expression. In practice, using the polynomials Ψδ,m

is more convenient as they are typically smaller.

Proposition 3.4. Let 1 ≤ m ≤ n+1. The coefficients of Ψδ,m lie in L(j1, . . . , jn+1).
The degree of Ψδ,m in Ym is [Km−1 : Km], and for each 1 ≤ i < m, the degree
of Ψδ,m in Yi is at most [Ki−1 : Ki]− 1.

Proof. It is clear from Definition 3.1 that the action of K0 leaves Ψδ,m invariant.
Hence the coefficients of Ψδ,m are rational functions on S invariant under Σ and
defined over L, so the first statement holds. The second part is obvious. �

In general, using a nontrivial Σ increases the degree of modular equations. This
has a geometric interpretation: modular equations describe the Hecke correspon-
dence Hδ and its conjugates under Σ simultaneously.

Let J1, . . . , Jn+1 be indeterminates, and let 1 ≤ m ≤ n+1. By the equation (5)
satisfied by jn+1 on S, there exists a unique element of the ring L(J1, . . . , Jn)[Jn+1, Y1, . . . , Ym]
with degree at most e−1 in Jn+1 which, when evaluated at Ji = ji for 1 ≤ i ≤ n+1,
yields Ψδ,m. In the sequel, we also denote it by Ψδ,m for simplicity. Therefore the
coefficients of Ψδ,m will be either functions on S, i.e. as elements of L(j1, . . . , jn+1),
or multivariate rational fractions in the indeterminates J1, . . . , Jn+1 that are poly-
nomial in Jn+1 of degree at most e− 1, depending on the context.
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Remark 3.5. In several cases, the function j1,δ already generates the whole ex-
tension of function fields, so that K1 = · · · = Kn+1 = K ′,

Ψδ,1 =
∏

γ1∈K0/K′

(
Y1 − γ1 · j1,δ

)
,

and for every 2 ≤ m ≤ n+ 1,

(8) Ψδ,m =
∑

γ∈K0/K′



(
∏

γ1 6=γ

(
Y1 − γ1 · j1,δ

)
)
(
Ym − γ · jm,δ

)

 .

In this case, for each 2 ≤ m ≤ n + 1, we have Ψδ,m(j1,δ) = ∂Y1Ψδ,1(j1,δ)(Ym −
jm,δ), where ∂Y1 denotes derivative with respect to Y1. Therefore Ψδ,m is just the
expression of jm,δ as an element of L(S)Σ[ j1,δ] in a compact representation inspired
from [14].

In this case, we often keep only the constant term in equation (8), and consider
the modular equations Ψδ,m for 2 ≤ m ≤ n+1 as elements of the ring L(J1, . . . , Jn)[Jn+1, Y ]
with degree at most e in Jn+1, defined by

Ψδ,m(j1, . . . , jn+1) =
∑

γ∈K0/K′

(
γ · jm,δ

) ∏

γ1 6=γ

(
Y − γ1 · j1,δ

)
.

Then, we simply have jm,δ = Ψδ,m(j1,δ)/∂Y1Ψδ,1(j1,δ).

3.3. Modular equations of Siegel type for abelian surfaces. The Siegel mod-
ular varieties are prominent examples of PEL Shimura varieties. They are moduli
spaces for complex abelian varieties of dimension g with a certain polarization and
level structure. Another example is given by the Hilbert modular varieties, for
which the PEL structure contains an additional real multiplication embedding. In
this subsection and the next, we explain how these examples fit in the general
setting of PEL Shimura varieties, and we show that modular equations of Siegel
and Hilbert type in dimension 2 [24, 25] are special cases of modular equations as
defined above.

.
Siegel moduli spaces. Let g ≥ 1. The Siegel modular variety of dimension g [27, §6]
is obtained by taking B = Q, with trivial involution ∗, and taking the symplectic
module (V, ψ) to be V = Q2g with

∀u, v ∈ V, ψ(u, v) = ut
(

0 Ig
−Ig 0

)
v.

Then G = GSp2g. The Q-algebra B is simple of type (C). We can choose X+ to be
the set of all complex structures on V (R) that are positive for ψ [27, §6], and we
have

G(R)+ = {g ∈ G(R) | µ(g) > 0}.
The reflex field is Q [27, §14]. Generalizing the example of modular curves, we
can identify X+ with the Siegel upper half-space Hg endowed with the usual action
of GSp2g(R)+: (

a b
c d

)
· τ = (aτ + b)(cτ + d)−1

for every τ ∈ Hg and
(
a b
c d

)
∈ G(R)+, where a, b, c, and d are g × g blocks.

Let (e1, . . . , e2g) be the canonical basis of V (Q). Choose positive integersD1| · · · |Dg

such thatD1 = 1, and let Λ0 ⊂ V (Q) be the lattice generated by e1, . . . , eg, D1eg+1, . . . , Dge2g.
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Then the type of the polarization ψ on Λ0 is a product of cyclic groups of or-
der D1, . . . , Dg; we also say that ψ is of type (D1, . . . , Dg). Let K be a compact

open subgroup of G(Af ) that stabilizes Λ0⊗ Ẑ, and let S be the connected compo-
nent of ShK(C) defined by the identity matrix in G(Af ). Then S is identified with
the quotient Γ\Hg, where

Γ = GSp2g(Q)+ ∩K = Sp2g(Q) ∩K.

By Proposition 2.3, S is a moduli space for polarized abelian varieties with po-
larization type (D1, . . . , Dg) and level K structure such that H1(A,Z) is isomorphic
to the standard polarized lattice to (Λ0, ψ). This modular interpretation coincides
with the classical one [2, §8.1]. Also, modular forms on S can be identified with
Siegel modular forms in the classical sense, as we mentioned in §3.1 in the case g = 1.

.
Siegel modular equations. We now focus on the special case given by

g = 2, D1 = D2 = 1, Λ0 = Z2g, K = GSp2g(Ẑ).

Then ShK(C) has only one connected component defined over Q, and classifies
principally polarized abelian surfaces over C. Modular forms on ShK are identified
with classical Siegel modular forms of level Sp4(Z). As shown by Igusa [17], the
graded Q-algebra of these modular forms is generated by four elements of respective
weights 4, 6, 10, and 12. These generators can be taken to be I4, I

′
6, I10, and I12 in

Streng’s notation [33, p. 42]. The function field of ShK over Q is therefore generated
by the three algebraically independent Igusa invariants:

j1 =
I4I

′
6

I10
, j2 =

I24 I12
I210

, j3 =
I54
I210

.

Let ℓ be a prime, and consider the Hecke correspondence of level

δ =

(
ℓI2 0
0 I2

)
as a 4× 4 matrix in 2× 2 blocks.

The group K ∩ δKδ−1 ∩G(Q)+ is usually denoted by Γ0(ℓ), and the degree of Hδ

is

d(δ) = ℓ3 + ℓ2 + ℓ+ 1.

The Hecke correspondence Hδ is absolutely irreducible, and describes all principally
polarized abelian surfaces ℓ-isogeous to a given one; the degree of these isogenies is
l(δ) = ℓ2. In this case, the function j1,δ generates the function field on the Hecke
correspondence [3, Lem. 4.2], so that d1 = d(δ) and d2 = d3 = 1, in the notation
of §3.2. The modular equations from Definition 3.1 are called the Siegel modular
equations of level ℓ in Igusa invariants. They have been computed for ℓ = 2 and
ℓ = 3 [24].

3.4. Modular equations of Hilbert type for abelian surfaces. .
Hilbert moduli spaces. Let F be a totally real number field of degree g over Q,
and let B = F with trivial involution ∗. The Q-algebra B is simple of type (C).
Let V = F 2, which is a Q-vector space of dimension 2g, and define the symplectic
form ψ on V as follows:

∀a, b, c, d ∈ F, ψ
(
(a, b), (c, d)

)
= TrF/Q(ad− bc).
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Then (V, ψ) is a faithful symplectic (B, ∗)-module, where B acts on V by multi-
plication. The associated algebraic group is G = GL2(F ). The g real embeddings
of F induce identifications

V (R) = (R2)g and G(R) =

g∏

i=1

GL2(R).

The subgroup G(R)+ consists of matrices with totally positive determinant.
There is a particular complex structure x0 ∈ G(R) on V (R) given by

x0 =
((

0 1
−1 0

))
1≤i≤g

.

Let X+ be the G(R)+-conjugacy class of x0. Then (G,X+) is called a Hilbert
Shimura datum. Its reflex field is Q: see [35, §X.4] when g = 2, and [27, Ex. 12.4]
in general. The domain X+ can be identified with H

g
1, where H1 is the complex

upper half-plane, endowed with the action of GL2(R)+ on each coordinate.
Let ZF be the integer ring of F , and take Λ0 = ZF ⊕ Z∨

F , where Z∨
F is the dual

of ZF with respect to the trace form. Then the stabilizer of Λ0 in B is ZF , and ψ

is principal on Λ0. Let K be a compact open subgroup of GL(Λ0 ⊗ Ẑ).

Remark 3.6. In the Hilbert setting, the group µ(Γc) is not equal to µ(E) in general.

For instance, if K = GL(Λ0 ⊗ Ẑ), and c = ( 1 0
0 1 ), then

Γc = G(R)+ ∩K = {g ∈ GL(Λ0) | det(g) is totally positive},
so µ(Γc) is the set of totally positive units in ZF . On the other hand, µ(E) is the
set of all squares of units. For instance, if g = 2, then µ(E) = µ(Γc) if and only if
the fundamental unit in ZF has negative norm.

We now assume that K has been chosen in such a way that

(9) G(Q)+ ∩K =
{
g ∈ GL(Λ0) | µ(g) ∈ Z×2

F

}
.

The Shimura variety ShK(G,X+)(C) has several connected components: the nar-
row class group of F is a quotient of π0(ShK(C)) [35, Cor. I.7.3]. Let S be the
connected component defined by the identity matrix in G(Af ). Then there is a
natural isomorphism

S = (G(Q)+ ∩K)\Hg
1 ≃ SL(ZF ⊕ Z∨

F )\Hg
1.

By Proposition 2.3, the component S parametrizes principally polarized abelian
varieties with real multiplication by ZF and level K structure such that H1(A,Z)
is isomorphic to the polarized lattice (Λ0, ψ) with its additional data. The modular
forms of weight w on S are identified with the classical Hilbert modular forms of
weight (w,w, . . . , w) for F and level SL(ZF ⊕ Z∨

F ) [13, §4].
In the special case g = 2, let Σ = {1, σ}, where σ is the involution of V coming

from real conjugation in F . On G(R)+, the involution σ acts as permutation of
the two factors. Modular forms that are symmetric under Σ are symmetric Hilbert
modular forms in dimension 2 in the usual sense [5, §1.3].

.
Hilbert modular equations. Let F be a real quadratic field, and assume more-

over that the fundamental unit of F has negative norm; then K = GL(Λ0 ⊗ Ẑ)
satisfies (9). Let β ∈ ZF be totally positive and prime, and let

δ =

(
β 0
0 1

)
∈ G(Af ).
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The Hecke correspondenceHδ is absolutely irreducible, has degree d(δ) = NF/Q(β)+
1, and parametrizes isogenies of degree l(δ) = NF/Q(β). One can check that Hδ

intersects S × S nontrivially. Being able to consider this Hecke correspondence is
the reason for our different choice of G in §2 compared to [27, §8].

As invariants on S, one possibility is to use the pullback of Igusa invariants by
the forgetful map to the Siegel threefold, i.e. the Siegel moduli space for g = 2
[20]. They are symmetric with respect to Σ, and the equation relating these three
invariants is the equation of the associated Humbert surface, the image of the Hilbert
surface S inside the Siegel threefold. In this case, the modular equations describe
simultaneously β- and σ(β)-isogenies [25].

In special cases, the field of Σ-invariant modular functions can be generated by
two elements called Gundlach invariants. This reduction of the number of variables
is interesting in practice. For instance, if F = Q(

√
5), then the graded Q-algebra

of symmetric Hilbert modular forms is free over three generators F2, F6, and F10

of respective weights 2, 6, and 10 [15]; therefore, L(S)Σ = Q(g1, g2) where the
Gundlach invariants g1 and g2 are defined by

g1 =
F 5
2

F10
, g2 =

F 2
2 F6

F10
.

Moreover, g1 and g2 are algebraically independent. The associated modular equa-
tions are called the Hilbert modular equations of level β in Gundlach invariants
for F = Q(

√
5), and have been computed up to NF/Q(β) = 59 [23]. They also

describe both β- and σ(β)-isogenies.

4. Degree estimates for modular equations

We fix a PEL setting as in §3.2; in particular we make a choice of invari-
ants j1, . . . , jn+1 on the Shimura components S and T . Let δ ∈ G(Af ), and assume
that the Hecke correspondence Hδ intersects S × T nontrivially. In Definition 3.1,
we defined the modular equations Ψδ,1, . . . ,Ψδ,n+1; they are multivariate polyno-
mials in the variables Y1, . . . , Yn+1 describing Hδ and its conjugates under Σ. Their
coefficients are uniquely determined rational fractions in L(J1, . . . , Jn)[Jn+1] of de-
gree at most e in Jn+1, where the integer e is defined as in equation (5). The
goal of this section is to prove the upper bounds on the degree of the coefficients
of the modular equations Ψδ,m given in the first part of Theorem 1.1. We also
give explicit variants in the case of modular equations for abelian surfaces. As
indicated in the introduction, the proof works by identifying a denominator of the
modular equations, then by analyzing the degree of the rational fractions we obtain
when rewriting a quotient of modular forms of bounded weights in terms of the
invariants j1, . . . , jn+1.

4.1. The common denominator of Ψδ,m. We keep the notation used in §3.2: in
particular

K ′ = K ∩ δKδ−1, K0 = K ⋊ Σ,

and K ′′ is a normal subgroup of finite index in K, contained in K ′ and stabilized
by Σ. The natural action of K0 on modular functions of level K ′′ extends to an
action on modular forms.

For each 1 ≤ i ≤ n+ 1, fix a nonzero modular form χi invariant under Σ and
defined over L such that χiji is again a modular form (i.e. has no poles); we say
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that χi is a denominator of ji. This is possible by Proposition 2.6. For each i, the
function

χi,δ : [x, g] 7→ χi([x, gδ])

is a modular form of weight wt(χi) on the preimage of S in ShK′(C). We define
the functions gδ,m on S for 1 ≤ m ≤ n+ 1 as follows:

gδ,m =
m∏

i=1

∏

γ∈K0/K′

γ · χi,δ.

Lemma 4.1. For every 1 ≤ m ≤ n+ 1, the function gδ,m is a nonzero symmetric
modular form on S, and

wt(gδ,m) = (#Σ) d(δ)

m∑

i=1

wt(χi).

Proof. By construction, the function gδ,m is a modular form of level K ′′ and weight∑m
i=1 #(K0/K

′) wt(χi). We have #(K0/K
′) = (#Σ) d(δ). Each modular form γ ·

χi,δ is nonzero on every connected component of ShK′′(C) above S, hence gδ,m is
nonzero as well.

Acting by an element of K0 permutes the factors in the product defining gδ,m,
so gδ,m is in fact a symmetric modular form on S. �

Proposition 4.2. For every 1 ≤ m ≤ n + 1, the coefficients of the multivariate
polynomial gδ,mΨδ,m are symmetric modular forms on S.

Proof. By Definition 3.1, the polynomial Ψδ,m is a sum of terms of the form
(

m−1∏

i=1

∏

γi

(
Yi − γi · ji,δ

)) ∏

γm∈Km−1/Km

(
Ym − γγm · jm,δ

)

where γ ∈ K0 is fixed, and the middle product is over all γi ∈ K0/Ki such that γi =
γ modulo Ki−1, but γi 6= γ modulo Ki. In this expression, all the cosets γi and γγm
are simultaneously disjoint as subsets of K0/K

′. Each denominator is accounted
for by some factor in the product defining gδ,m, so the coefficients of gδ,mΨδ,m are
modular forms. �

When the modular functions j1, . . . , jn+1 have similar denominators, it is possible
to make a better choice for gδ,m.

Proposition 4.3. Assume that there exists a modular form χ on S such that for
every i, we have χi = χαi for some integer αi ≥ 0. Let 1 ≤ m ≤ n+ 1, and define

gδ,m =
( ∏

γ∈K0

γ · χδ

)α
, where α = max

1≤i≤m
αi.

Then gδ,m is a nonzero symmetric modular form on S, and

wt(gδ,m) = (#Σ) d(δ)αwt(χ).

Moreover, the coefficients of gδ,mΨδ,m are symmetric modular forms on S.

The proof is similar to that of Proposition 4.2, and omitted.
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4.2. Writing quotients of modular forms in terms of invariants. Let f/g
be a quotient of symmetric modular forms of weight w on S. We show that when
we rewrite such a quotient in terms of the invariants j1, . . . , jn+1, the degree of the
rational fractions we obtain is bounded linearly in w. To make the proportionality
constant explicit, we define the symmetric geometric complexity of our invariants
as follows.

Definition 4.4. Let fk for 1 ≤ k ≤ r be nonzero generators over L for the graded
ring of symmetric modular forms on S, with respective weights wk. For each 1 ≤
k ≤ r − 1, let βk ≥ 1 be the minimal integer such that

βkwk ∈ Zwk+1 + · · ·+ Zwr .

We can find nonzero modular forms λk, ξk ∈ L[fk+1, . . . , fr] such that wt(λk) −
wt(ξk) = βkwk. For every 1 ≤ k ≤ r − 1, the function ξkf

βk

k /λk is a quotient of
two symmetric modular forms of the same weight on S; hence there exist polyno-
mials Pk, Qk ∈ L[J1, . . . , Jn+1] such that

ξkf
βk

k

λk
=
Pk(j1, . . . , jn+1)

Qk(j1, . . . , jn+1)
.

Denote the total degrees of Pk and Qk by deg(Pk) and deg(Qk) respectively. We
define the symmetric geometric complexity of j1, . . . , jn+1 relative to the choice
of fk, λk, ψk, Pk, Qk to be the positive rational number given by, either

(1) (
1 + max

1≤k≤r−1

wt(ξk)

βkwk

)
max

1≤k≤r−1

deg(Pk)

βkwk +wt(ξk)
,

if the following conditions are satisfied: for every 1 ≤ k ≤ r − 1, the
modular forms λk and ξk are powers of fr and fr−1 respectively (in partic-
ular ξr−1 = 1), and Qk = 1; or

(2)
r−1∑

k=1

(
1

βkwk
max

{
deg(Pk), deg(Qk)

} k−1∏

l=1

(
1 +

wt(ξl)

βlwl

))
,

otherwise.

Note that formula 1, when it applies, yields a smaller result than formula 2.
The symmetric geometric complexity of j1, . . . , jn+1, denoted by SGC(j1, . . . , jn+1),

is the infimum of this quantity over all possible choices of modular forms fk, λk, ξk
and polynomials Pk, Qk.

Given Definition 4.4, explicit upper bounds on the geometric complexity are easy
to obtain if a generating set of modular forms is known. Note that the symmetric
geometric complexity is invariant under permutations of the invariants j1, . . . , jn+1,
in contrast with their geometric complexity to be defined later, which takes into
account the fact that jn+1 is considered differently in equation (5).

Proposition 4.5. Let w ≥ 0, let f, g be symmetric modular forms on S of
weight w, and assume that g is nonzero. Then there exist polynomials P, Q ∈
L[J1, . . . , Jn+1] of total degree at most SGC(j1, . . . , jn+1)w such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.
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Moreover, Q can be chosen independently of f .

Proof. We keep the notation used in Definition 4.4, and make a choice of gener-
ators fk for 1 ≤ k ≤ r, modular forms λk, ξk for 1 ≤ k ≤ r − 1, and polynomi-
als Pk, Qk ∈ L[J1, . . . , Jn+1] for 1 ≤ k ≤ r − 1. Let C be symmetric geometric
complexity of j1, . . . , jn+1 relative to this choice.

Let f , g be as in the proposition. Then f and g can be expressed as a sum of
monomial terms of the form

cfα1
1 · · · fαr

r with c ∈ L and

r∑

k=1

αkwk = w.

We give algorithms to rewrite the fraction P/Q = f/g (currently a rational fraction
in terms of the modular forms fk) as a fraction of invariants, and bound the total
degree of the output.

.
Case 1 of Definition 4.4. We assume that λk and ξk are powers of fr and fr−1

respectively for every 1 ≤ k ≤ r − 1. In this case, for each 1 ≤ k ≤ r − 2, the
integer βk can be seen as the order of wk in the group Z/(Zwr−1 + Zwr). We can
write

w =

r−2∑

k=1

skwk (mod Zwr−1 + Zwr)

for some integers 0 ≤ sk < βk, and this determines the integers sk uniquely (if such
a linear combination vanishes, considering the smallest nonzero sk yields a contra-
diction). Then each monomial appearing in P and Q is divisible by f s1

1 · · · f
sr−2

r−2 .
After simplifying by this common factor, we can assume that the common weight w
of P and Q satisfies w ∈ Zwr−1 +Zwr . Then, for each 1 ≤ k ≤ r− 2, the exponent
of fk in each monomial of P and Q is divisible by βk. For convenience, write

a = max
1≤k≤r−1

wt(ξk)

βkwk
.

In order to rewrite P/Q in terms of invariants, we proceed as follows.

(1) Multiply P and Q by f
⌊aw/wt(fr−1)⌋
r−1 .

(2) For each 1 ≤ k ≤ r − 2, replace each occurence of fβk

k by λkPk/ξk in P
and Q.

(3) Let 0 ≤ sr−1 < βr−1 be such that w = sr−1wr−1 mod wr, and divide P
and Q by f

sr−1

r−1 .

(4) Replace each occurence of f
βr−1

r−1 by λr−1Pr−1 in P and Q.

(5) Finally, divide P and Q by f
(w−sr−1wr−1)/wr
r .

This algorithm runs independently on each monomial of P and Q. Let M =
c
∏r

k=1 f
αk

k , with c ∈ L, be such a monomial after step 1. Let us show that the
exponent of fr−1 in M remains nonnegative after step 2. In this step, we introduce
a denominator given by

r−2∏

k=1

ξ
αk/βk

k =

r−2∏

k=1

f
wt(ξk)αk

wt(fr−1)βk

r−1 .
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We have
r−2∑

k=1

wt(ξk)αk

wt(fr−1)βk
≤ a

r−2∑

k=1

αkwk

wt(fr−1)
≤ aw

wt(fr−1)
,

hence
r−2∑

k=1

wt(ξk)αk

wt(fr−1)βk
≤
⌊

aw

wt(fr−1)

⌋
≤ αr−1 by step 1

because the left hand side is an integer. Therefore, at the end of step 2, M
belongs to the polynomial ring L[J1, . . . , Jn+1][fr−1, fr]. Hence, we have M ∈
L[J1, . . . , Jn+1][f

βr−1

r−1 , fr] after step 3, and finally M ∈ L[J1, . . . , Jn+1] after step 5.
It remains to bound the total degree of M after step 5. To do this, we consider

the total weight of M in f1, . . . , fr−1. For each 1 ≤ k ≤ r− 1, the modular form λk
is a power of fr; hence replacing fβk

k by λkPk/ξk in steps 2 or 4 reduces this
weight by βkwk + wt(ξk), and increases the total degree of M in J1, . . . , Jn+1 by
at most deg(Pk). At the beginning of step 2, the total weight of M in f1, . . . , fr−1

is at most (1 + a)w. Therefore the total degree of M in J1, . . . , Jn+1 at the end of
the algorithm is bounded above by

(1 + a)w max
1≤k≤r−1

deg(Pk)

βkwk + deg(ξk)
= Cw.

.
Case 2 of Definition 4.4. In the general case, we perform replacements and sim-
plifications in a sequential way.

We start by defining integers zk, dk for 0 ≤ k ≤ r−1 and sk, ak for 1 ≤ k ≤ r−1
by induction as follows:

• z0 = w and d0 = 0;
• For each 1 ≤ k ≤ r, the integer 0 ≤ sk < βk is defined by the relation

zk−1 = skwk (mod Zwk+1 + · · ·+ Zwr);

• ak =

⌊
zk−1

βkwk

⌋
for each 1 ≤ k ≤ r − 1;

• zk = zk−1 − skwk + ak wt(ξk) for each 1 ≤ k ≤ r − 1;

• dk = dk−1 + ak max{deg(Pk), deg(Qk)} for each 1 ≤ k ≤ r − 1.

In order to rewrite P/Q in terms of invariants, we use the following algorithm.
For k = 1 up to k = r − 1, do:

(1) Divide P and Q by f sk
k ;

(2) Replace each occurence of fβk

k by
λkPk

ξkQk
in P and Q;

(3) Multiply P and Q by ξak

k Qak

k .

Finally, simplify the remaining occurences of fr. We prove the following state-
ment (Hk) by induction for every 1 ≤ k ≤ r:
(Hk) At the beginning of the k-th loop, P and Q are elements of the ring L[J1, . . . , Jn+1][fk, . . . , fr]
of weight zk−1, with total degree at most dk−1 in J1, . . . , Jn+1, such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.
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The statement (H1) is true by definition of z0 and d0; assume that (Hk) is true
for some k ≥ 1. Then we see, in order, that during the k-th loop:

• zk−1 ∈
∑r

i=k Zwi, so sk is well defined.
• In each monomial of P and Q, the exponent of fk is of the form aβk + sk

for some integer a ≤ ak. Therefore step 1 is an exact division, and after
step 2 there are no more occurences of fk in P or Q.

• After step 3, P and Q are elements of L[J1, . . . , Jn+1][fk+1, . . . , fr] of weight

zk−1 − skwk + ak wt(ξk) = zk.

It remains to show that the degree of P, Q in J1, . . . , Jn+1 is bounded by dk
after step 3. This comes from the following observation: during the k-th loop, we
only multiply the polynomials in J1, . . . , Jn+1 already present by P b

kQ
ak−b
k for some

0 ≤ b ≤ ak. This proves our claim (Hk) for all 1 ≤ k ≤ r.
At the end of the algorithm, all the occurences of fr cancel out. Therefore we

obtain polynomials P and Q of total degree at most dr−1 such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.

By induction, we obtain

zk ≤ w
k∏

l=1

(
1 +

wt(ξl)

βlwl

)

and

dr−1 ≤
r−1∑

k=1

(
w

βkwk
max{deg(Pk), deg(Qk)}

k−1∏

l=1

(
1 +

wt(ξl)

βlwl

))
= Cw.

In both cases 1 and 2, the algorithm runs independently on the numerator and
denominator, hence Q can be chosen independently of f . �

4.3. Degree bounds in canonical form. Recall that the modular function jn+1

satisfies eq. (5): we have E(j1, . . . , jn+1) = 0 where

E =

e∑

k=0

Ek(J1, . . . , Jn)J
k
n+1 ∈ L[J1, . . . , Jn, Jn+1]

has degree e in Jn+1 and is irreducible. Let dE denote the total degree of E in
the variables J1, . . . , Jn. In this section, we work in the ring L(J1, . . . , Jn)[Jn+1]
modulo E. We say that a fraction R ∈ L(J1, . . . , Jn+1) is in canonical form if R is
a polynomial in Jn+1 of degree at most e− 1.

Proposition 4.6. Let d ≥ 0, let P, Q ∈ L[J1, . . . , Jn+1] be polynomials of total
degree at most d, and assume that Q(j1, . . . , jn+1) is not identically zero. Let R ∈
L(J1, . . . , Jn)[Jn+1] be the fraction in canonical form such that P/Q = R mod E.
Then the total degree of R in J1, . . . , Jn is bounded above by (e + 2dE)d.

Proof. In this proof, degrees and coefficients are taken with respect to the vari-
able Jn+1 unless otherwise specified. First, we invert the denominator Q. Consider
the resultant

Z = ResJn+1(Q,E) ∈ L[J1, . . . , Jn],
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which is nonzero by hypothesis. Let U, V ∈ L[j1, . . . , jn+1] be the associated Bézout
coefficients, so that

Z = UQ+ V E.

The inverse of Q modulo E is U/Z, so we have P/Q = UP/Z mod E.
It is well-known that Z (resp. Q) has a polynomial expression of degree e

(resp. e − 1) in the coefficients of Q, and degree deg(Q) in the coefficients of E.
Since the total degree of Q is at most d, the total degrees of Z and UP in J1, . . . , Jn
are bounded above by d(e+ dE). The degree of UP in Jn+1 is at most d+ e− 1.

Now, we reduce UP/Z modulo E to obtain a numerator of degree at most e −
1 in Jn+1. We can decrease this degree by 1 by multiplying above and below
by Ee(J1, . . . , Jn) and using the relation

EeJ
e
n+1 = −

e−1∑

k=0

EkJ
k
n+1 mod E.

When doing so, the total degree in J1, . . . , Jn increases by at most dE . This opera-
tion is done at most d times; therefore the result has total degree at most (e+2dE)d
in J1, . . . , Jn and degree at most e− 1 in Jn+1. �

Definition 4.7. We define the geometric complexity of the invariants j1, . . . , jn+1

to be

GC(j1, . . . , jn+1) = (e+ 2dE) SGC(j1, . . . , jn+1) + e− 1.

This quantity depends on the choice of jn+1 as a distinguished invariant.

Proposition 4.8. Let w ≥ 0, let f, g be symmetric modular forms on S of weight w,
and assume that g is nonzero. Let R ∈ L(J1, . . . Jn)[Jn+1] be the rational fraction
in canonical form such that

f

g
= R(j1, . . . , jn+1).

Then the total degree of R in J1, . . . , Jn+1 is bounded above by GC(j1, . . . , jn+1)w.

Proof. Combine Propositions 4.5 and 4.6. �

We are ready to prove the first part of Theorem 1.1 on degree bounds for modular
equations, with an explicit expression for the constant C1.

Theorem 4.9. Let Hδ be an absolutely irreducible Hecke correspondence on S ×T
defined by an adelic element δ of G, and let d(δ) be the degree of Hδ. For each 1 ≤
i ≤ n+1, let χi be a denominator of ji as in §4.1. Let 1 ≤ m ≤ n+1. Finally, let

C1 = GC(j1, . . . , jn+1) (#Σ)

m∑

i=1

wt(χi).

Then there exists a polynomial Dm ∈ L[J1, . . . , Jn] of total degree at most C1 d(δ)
such that DmΨδ,m is a polynomial in J1, . . . , Jn+1, Y1, . . . , Ym whose total degree
in J1, . . . , Jn+1 is also bounded above by C1 d(δ). In particular, if F ∈ L(J1, . . . , Jn)[Jn+1]
is a coefficient of Ψδ,m, then the total degree of F is bounded above by C1 d(δ).

Proof. Let gδ,m be the modular form on S defined in §4.1, and let F be a coeffi-
cient of Ψδ,m. By Proposition 4.2, the modular function F(j1, . . . , jn+1) is of the
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form f/gδ,m, where f is a modular form on S of weight wt(gδ,m). By Lemma 4.1,
we have

wt(gδ,m) = (#Σ) d(δ)

m∑

i=1

wt(χi),

so the degree bound on F follows from Proposition 4.8. By Proposition 4.5, the
denominator can be chosen independently of the coefficient of Ψδ,m we consider,
hence the existence of a common denominator Dm of the correct total degree. �

4.4. Explicit degree bounds in dimension 2. Our methods provide new results
about the degrees of the coefficients of modular equations of Siegel and Hilbert type
for abelian surfaces, introduced in §3.3 and §3.4 respectively. In the Hilbert case,
we restrict to the quadratic field F = Q(

√
5), and consider modular equations in

terms of Gundlach invariants.
In both cases, we can take jn+1 = 1 and E = Jn+1 − 1 in the notation of §3.2.

Then the notions of geometric complexity and symmetric geometric complexity
coincide.

Lemma 4.10. Let j1, j2, and j3 denote the Igusa invariants on the Siegel three-
fold Sp4(Z)\H2, as defined in §3.3. Then we have

GC(j1, j2, j3, 1) ≤
1

6
.

Proof. Recall that the graded Q-algebra of Siegel modular forms of level Sp4(Z) is
generated by

f1 = I ′6, f2 = I12, f3 = I4, and f4 = I10.

We are in case 1 of Definition 4.4, since

I ′6I4
I10

= j1,
I12I

2
4

I210
= j2, and

I54
I210

= j3.

The definition gives

SGC(j1, j2, j3, 1) ≤
(
1 +

2

3

)
· 1
10

=
1

6
.

�

Proposition 4.11. Let ℓ be a prime number, and let Ψℓ,m for 1 ≤ m ≤ 3 denote
the Siegel modular equations of level ℓ in Igusa invariants. Let F ∈ Q(J1, J2, J3)
be a coefficient of Ψℓ,1 (resp. Ψℓ,2 or Ψℓ,3). Then the total degree of F is bounded
above by 5 d(ℓ)/3 (resp. 10 d(ℓ)/3), where d(ℓ) = ℓ3 + ℓ2 + ℓ+ 1.

Proof. The integer d(ℓ) is the degree of the Hecke correspondence. The denomina-
tors of j1, j2, and j3 can be taken to be the modular forms I10, I

2
10, and I210. Let gℓ,m

for 1 ≤ m ≤ 3 be the common denominators of the modular equations Ψℓ,m defined
in Proposition 4.3, so that gℓ,2 = gℓ,3 = g2ℓ,1 and wt(gℓ,1) = 10 d(ℓ).

Then F(j1, j2, j3) is the quotient of two modular forms of degree 10 d(ℓ) (resp. 20 d(ℓ))
on S, by Proposition 4.3. Therefore the result follows from Lemma 4.10 and Propo-
sition 4.8. �

Lemma 4.12. Let F = Q(
√
5), and let g1, g2 denote the Gundlach invariants on

the Hilbert surface SL(ZF ⊕ Z∨
F )\H2

1, as defined in §3.4. Then we have

GC(g1, g2, 1) ≤
1

6
.
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Proof. Choose F6, F2, and F10 as generators of the graded Q-algebra of Hilbert
modular forms of level SL(ZF ⊕ Z∨

F ). We have

F6F
2
2

F10
= g2 and

F 5
2

F10
= g1.

Therefore we are in case 1 of Definition 4.4, and

GC(g1, g2, 1) ≤
(
1 +

2

3

)
· 1

10
=

1

6
.

�

Proposition 4.13. Let F = Q(
√
5), let β ∈ ZF be a totally positive prime, and

let Ψβ,m for m ∈ {1, 2} denote the Hilbert modular equations of level β in Gundlach
invariants. Let F ∈ Q(J1, J2) be a coefficient of Ψβ,1 or Ψβ,2. Then the total degree
of F is bounded above by 10 d(β)/3, where d(β) = NF/Q(β) + 1.

Proof. The integer d(β) is the degree of the Hecke correspondence, and the auto-
morphism group Σ used to define the Hilbert modular equations has order 2. We
can take the modular F10 as denominator of both g1 and g2; the common denom-
inators gβ,1 = gβ,2 from Proposition 4.3 have weight 20 d(β), so the result follows
from Lemma 4.10 and Proposition 4.8. �

The degree bounds in Propositions 4.11 and 4.13 are both reached experimen-
tally. In the Siegel case with ℓ = 2, the maximum degree is 25; in the Hilbert case
with NF/Q(β) = 41, the maximum degree is 140 [23].

5. Height estimates for modular equations

Another important information when manipulating modular equations, besides
their degrees, is the size of their coefficients. More precisely, we use the notion of
heights of elements, polynomials and rational fractions over a number field. The
goal of this section is to prove part 2 of Theorem 1.1, giving height bounds on
coefficients of modular equations.

As mentioned in the introduction, the proof is inspired by existing works on
elliptic modular polynomials [31]. First, we study the heights of modular equations
evaluated at well-chosen points, using the fact that the underlying Hecke corre-
spondence describes isogenous abelian varieties. Then we apply the main result
of [18], which gives a tight relation between the height of a rational fraction and
the heights of sufficiently many of its evaluations.

5.1. Definition of heights. Let us recall the well-known definitions. We use the
following notation:

• L is a number field of degree dL over Q;
• V0

L (resp. V∞
L ) is the set of all nonarchimedean (resp. archimedean) places

of L; and
• VL = V0

L ⊔ V∞
L is the set of all places of L.

For each place v of L,

• Lv (resp. Qv) denotes the completion of L (resp. Q) at v,
• dv = [Lv : Qv] denotes the local extension degree of L/Q at v, and
• | · |v denotes the normalized absolute value associated with v.
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We normalize the nonarchimedean absolute values of L in the following way: for
each v ∈ V0

L, if p ∈ PQ is the prime below v, then |p|v = 1/p.
The (absolute logarithmic Weil) height of projective tuples, affine tuples, ele-

ments, polynomials and rational fractions over L is defined as follows.
Definition 5.1. Let n ≥ 1, and let y0, . . . , yn ∈ L.

(1) The projective height of (y0 : · · · : yn) ∈ Pn
L is

h(y0 : · · · : yn) =
∑

v∈VL

dv
dL

log
(
max
0≤i≤n

|yi|v
)
.

(2) The affine height of (y1, . . . , yn) ∈ Ln is the projective height of (1 : y1 :
· · · : yn):

h(y1, . . . , yn) =
∑

v∈VL

dv
dL

log
(
max{1, max

1≤i≤n
|yi|v}

)
.

In particular, for every y ∈ L, we have

h(y) =
∑

v∈VL

dv
dL

log
(
max{1, |y|v}

)
.

(3) Let P ∈ L[Y1, . . . , Yn] be a multivariate polynomial over L, and write

P =
∑

k=(k1,...,kn)∈Nn

ckY
k1
1 · · ·Y kn

n .

Let v ∈ VL. We write

|P |v = max
k∈Nn

|ck|v

and

h(P ) =
∑

v∈VL

dv
dL

log
(
max{1, |P |v}

)
.

In other words, h(P ) is the height of the affine tuple formed by all the
coefficients of P .

(4) Let F ∈ L(Y1, . . . , Yn) be a multivariate rational fraction over L, and choose
coprime polynomials P,Q ∈ L[Y1, . . . , Yn] such that F = P/Q. Then we de-
fine h(F) as the height of the projective tuple formed by all the coefficients
of P and Q.

Here are a few elementary properties of heights.

(1) Projective heights are well defined, by the product formula [16, Lem. B.2.1(a)].
Therefore the height of a fraction is also well defined.

(2) Heights are independent of the ambient number field [16, Lem. B.2.1(c)],
by another application of the product formula. In particular we note that

∑

v∈V∞

L

dv
dL

= 1.

(3) If L = Q, then Definition 5.1 coincides with the naive one given in the
introduction.

Informally, the height of an element y ∈ L measures the amount of information
needed to represent y.
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5.2. Heights, evaluations and roots. In this section, we state relations between

(1) The height of a univariate polynomial over L and the height of its roots;

(2) The height of a multivariate polynomial or multivariate rational fraction
over L with the heights of its values at special points.

Several of the statements are easy consequences of the formulæ from Definition 5.1,
while others are more intricate and are proved by the author in a separate paper [18].

Let us start with the evaluation of polynomials; the following proposition is a
slight generalization of [16, Prop. B.7.1].

Proposition 5.2. Let d ≥ 0, let P ∈ L[Y1, . . . , Yn] be a polynomial of total degree at
most d, let 1 ≤ m ≤ n, and let y1, . . . , ym ∈ L. Write Q = P (y1, . . . , ym, Ym+1, . . . , Yn).
Then

h(Q) ≤ h(P ) +m log(d+ 1) + d h(y1, . . . , yn).

More generally, if I1 ⊔ · · · ⊔ Ir is a partition of J1,mK, and if dk ≥ 0 denotes an
upper bound on the total degree of P in the variables Yi for i ∈ Ik, then

h(Q) ≤ h(P ) +

r∑

k=1

(#Ik) log(dk + 1) +

r∑

k=1

dk h
(
(yi)i∈Ik

)
.

Proof. It is enough to prove the second statement. If v ∈ V0
L, we have

∣∣P (y1, . . . , ym, Ym+1, . . . , Yn)
∣∣
v
≤ |P |v

r∏

k=1

(
max

{
1,max

i∈Ik

|yi|v
})dk

.

If v ∈ V∞
L , the same estimate holds after multiplying the right hand side by the

number of possible monomials in Y1, . . . , Ym, which is
r∏

k=1

(dk + 1)#Ik .

Taking logarithms and summing gives the result. �

As a consequence, we can bound the height of a monic polynomial by the height
of its roots.

Proposition 5.3. Let Q ∈ L[Y ] be monic of degree d, and let α1, . . . , αd be its
roots in the algebraic closure of L. Then

h(Q) ≤
d∑

i=1

h(αk) + d log 2.

Proof. Apply Proposition 5.2 on the multivariate polynomial

P =

d∏

k=1

(Yd+1 − Yk)

with m = d, yk = αk, and Ik = {k}. Since the coefficients of P all belong to
{−1, 0, 1}, we have h(P ) = 0. �

Conversely, the height of a univariate polynomial over L controls the height of
its roots.

Proposition 5.4. Let P ∈ L[Y ]\{0}, and let α be a root of P . Then

h(α) ≤ h(P ) + log(2).
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Proof. We reproduce the proof given in a lecture by F. Pazuki. We can assume
that P is monic. Let v ∈ VL. We want to show that |α|v ≤ |P |v if v ∈ V0

L, and
|α|v ≤ 2|P |v if v ∈ V∞

L . Since P is monic, we always have |P |v ≥ 1. Write P =

Xn +
∑n−1

k=0 ckY
k, for some n ≥ 1.

If v ∈ V0
L, we can assume that |α|v ≥ 1. Then

|α|v =

∣∣∣∣∣

n−1∑

i=0

ckα
k

∣∣∣∣∣
v

≤ |P |v|α|n−1
v ,

so |α|v ≤ |P |v.
If v ∈ V∞

L , we can assume that |α|v ≥ 2. Then, by the triangle inequality, we
obtain

|α|v ≤ |P |v|αv|n−1

(
1 +

1

|α|v
+ · · ·+ 1

|α|n−1
v

)
≤ 2|α|n−1

v |P |v,

so |α|v ≤ 2|P |v. Taking logarithms and summing over all places of L yields the
result. �

We now turn to the more difficult questions of giving upper bounds on the height
of a polynomial or rational fraction from its values at special points. Our choice is
to consider (almost) consecutive integers.

Proposition 5.5 (([18, Prop. 1.1])). Let JA,BK be an interval in Z. Write D =
B−A and M = max{|A| , |B|}. Let d ≥ 1, let P ∈ L[Y ] be a univariate polynomial
of degree at most d, let N ≥ d+1, and let y1, . . . , yN be distinct elements of JA,BK.
Let H ≥ 0, and assume that h(P (yi)) ≤ H for every 1 ≤ i ≤ N . Then we have

h(P ) ≤ N

N − dH +D log(D) + d log(2M) + log(d+ 1).

Note that the bound on h(P ) is of the order of dH when N = d + 1, as sug-
gested by the Lagrange interpolation formula. On the other hand, if we take for
instance N = 2d, then the bound on h(P ) is roughly in O(H). This remark will
be crucial in §5.6, when we consider the evaluation of multivariate polynomials in
each variable successively.

Proposition 5.6 (([18, Prop. 1.2])). Let JA,BK be an interval in Z. Write D =
B − A and M = max{|A| , |B|}. Let d ≥ 1, and let F ∈ L(Y ) be a univariate
rational fraction of degree at most d. Let S be a subset of JA,BK containing no
poles of F , let η ≥ 1, and let H ≥ max{4, log(2M)}. Assume that

(1) h(F(y)) ≤ H for every y ∈ S.

(2) S contains at least D/η elements.

(3) D ≥ max{ηd3H, 4ηddL}.
Then we have

h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

where CL is a constant depending only on L. We can take CQ = 960.

The bound on h(F) given in Proposition 5.6 is roughly in O(H) as well, but
the number of evaluation points that we have to consider is bounded from below in
terms of H .
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5.3. Heights of abelian varieties. We fix a PEL setting as in §3.2, and keep the
notation used there. We also write S = Γ\X+, where Γ is a subgroup of G(Q)+.

Different types of heights can be defined for an abelian variety A over Q. The
Faltings height hF (A) is defined in [12, §3] in terms of Arakelov degrees of metrized
line bundles on A. If A is given a principal polarization L, and r ≥ 2 is an
even integer, we can also define the Theta height of level r of (A,L), denoted
by hΘ,r(A,L), as the projective height of level r theta constants of (A,L) [30,

Def. 2.6]. Finally, if A is an abelian variety with PEL structure over Q given by a
point z ∈ S where j1, . . . , jn+1 are well defined, we can define the j-height of A as

hj(A) = h
(
j1(A), . . . , jn+1(A)

)
.

We also write hF (A) = max{1, hF (A)} and define h, hΘ,r, and hj similarly.
The goal of this section is to relate the j-heights of isogenous abelian varieties,

under mild conditions related to the geometry of the moduli space. Such a relation
is known for instance in the case of elliptic curves, taking the usual j-invariant as
coordinate [31, Thm. 1.1]. To this end, we relate the j-height with the Faltings
height, since the latter behaves well with respect to isogenies. Theta heights are
an intermediate step between concrete values of invariants and the Faltings height.
More precisely, we use the two following results.

Proposition 5.7. Let A, A′ be abelian varieties over Q, and assume that an isogeny
ϕ : A→ A′ exists. Then

∣∣hF (A) − hF (A′)
∣∣ ≤ 1

2
log(degϕ).

Proof. This is a consequence of [12, Lem. 5]. �

Theorem 5.8 (([30, Cor. 1.3])). For every g ≥ 1, and every even r ≥ 2, there
exists a constant C(g, r) such that the following holds. Let (A,L) be a principally
polarized abelian variety of dimension g defined over Q. Then

∣∣∣hΘ,r(A,L) −
1

2
hF (A)

∣∣∣ ≤ C(g, r) log
(
min{hF (A), hΘ,r(A,L)} + 2

)
.

We can take

C(g, r) = 1000r2g log5(r2g).

5.4. Relating the j-height and the Faltings height. Using Theorem 5.8, we
can prove that the j-height and the Faltings height of a generic abelian variety with
PEL structure are related.

Proposition 5.9. There exists a nonzero polynomial P ∈ L[Y1, . . . Yn+1] and a
positive constant C such that the following holds: if A is the abelian variety with
PEL structure associated with a point z ∈ S where j1, . . . , jn+1 are well defined and
P (j1, . . . , jn+1) 6= 0, and if A is defined over Q, then

1

C
hF (A) ≤ hj(A) ≤ C hF (A).

Proof. By [27, Thm. 5.17], we can write S = Γ′\X+ where Γ′ is a congruence
subgroup of Gder. Since Gder ⊂ ker(det), it embeds into GSp2g(Q), where 2g =
dimQ V . Therefore, by [27, Thm. 5.16], we can find a congruence subgroup Γ′′

ofGder and an even integer r ≥ 4 such that Γ′′\X+ embeds in the moduli spaceAΘ,r
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of principally polarized abelian varieties of dimension g with level r Theta structure.
We have a diagram

(10)

S̃ = Γ̃\X+

S = Γ′\X+ S ′′ = Γ′′\X+ AΘ,r

p′ p′′

ι

where Γ̃ = Γ′ ∩ Γ′′. The maps p′ and p′′ are finite coverings. All the varieties and
maps in this diagram are defined over Q.

The modular interpretation of diagram (10) is the following. Let (Λ, ψ) be
the standard polarized lattice associated with the connected component S, as in
Proposition 2.2. We can find a sublattice Λ′′ ⊂ Λ, and λ ∈ Q× such that (Λ′′, λψ) is
principally polarized. A point z ∈ S defines a complex structure x on Λ⊗R = V (R),

up to action of Γ. Lifting z to z̃ ∈ S̃ corresponds to considering x up to action

of Γ̃ only, and this group leaves Λ′′ and its level r Theta structure stable. Then the
image of z̃ in AΘ,r is then given by (Λ′′, x, λψ).

In particular, if z̃ ∈ S̃, and if A and A′′ are the abelian varieties corresponding
to the points p′(z̃) ∈ S and ι ◦ p′′(z̃) ∈ AΘ,r respectively, then A and A′′ are linked
by an isogeny of degree d = #(Λ/Λ′′). Hence, by Proposition 5.7 and Theorem 5.8,
we have
∣∣hF (A) − 2 hΘ,r(A

′′)
∣∣ ≤ log(d)

2
+ C(g, r) log

(
min{hF (A), hΘ,r(A

′′)}+ 2 +
log(d)

2

)

≤ CF min{hF (A), hΘ,r(A
′′)}

with CF = (2 + log(d))C(g, r). Therefore

hF (A) ≤ (2 + CF ) hΘ,r(A
′′), hΘ,r(A

′′) ≤ 1 + CF

2
hF (A).(11)

Now we relate the Theta height and the j-height using relation between modular
functions; the genericity hypothesis encoded in the polynomial P appears in this
step. Denote by θ0, . . . , θk the Theta constants of level r. They define a projective
embedding ofAΘ,r, therefore the pullbacks of θ1/θ0, . . . , θk/θ0 generate the function
field of S ′′. By definition, j1, . . . , jn+1 are coordinates on S. To ease notation, we

identify all these functions with their pullbacks to S̃.

By the primitive element theorem, there exists a function f on S̃ such that
both (j1, . . . , jn+1, f) and (θ1/θ0, . . . , θk/θ0, f) are generating families for the func-

tion field of S̃ over Q. We choose polynomials

PJ ∈ Q[Y1, . . . , Yn+1, X ] and PΘ ∈ Q[Y1, . . . , Yk, X ]

such that PJ (j1, . . . , jn+1, X) and PΘ(θ1/θ0, . . . , θk/θ0, X) are (non necessarily monic)
minimal polynomials of f over the function fields of S and S ′′ respectively. We also
choose polynomials NJ,i, DJ,i ∈ Q[Y1, . . . , Yk, X ] for each 1 ≤ i ≤ n + 1, and

NΘ,i, DΘ,i ∈ Q[Y1, . . . , Yn+1, X ] for each 1 ≤ i ≤ k, such that the following equali-

ties hold on S̃:

ji =
NJ,i

DJ,i
(θ1/θ0, . . . , θk/θ0, f) for each 1 ≤ i ≤ n+ 1, and

θi/θ0 =
NΘ,i

DΘ,i
(j1, . . . , jn+1, f) for each 1 ≤ i ≤ k.
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Let F̃ be the smallest Zariski closed subset of S̃ such that outside F̃ , the following
properties are all satisfied:

• all the functions f , ji for 1 ≤ i ≤ n + 1 and θi/θ0 for 1 ≤ i ≤ k are well
defined;

• the polynomials PJ(j1, . . . , jn+1, X) and PΘ(θ1/θ0, . . . , θk/θ0, X) do not
vanish;

• the quantitiesDJ,i(θ1/θ0, . . . , θk/θ0, f) for 1 ≤ i ≤ k andDΘ,i(j1, . . . , jn+1, f)
for 1 ≤ i ≤ k do not vanish.

Then F̃ has codimension 1 in S̃, hence U = S\p′(F̃ ) is open dense in S. Let
P ∈ L[j1, . . . , jn+1] be a polynomial such that {P 6= 0} ⊂ U .

Let z ∈ S be a point where j1, . . . , jn+1 are well defined, take values in Q, and
satisfy P (j1, . . . , jn+1) 6= 0. We look at the diagram (10), from left to right. Lift z

to a point z̃ ∈ S̃; by construction, z̃ /∈ F̃ . By Propositions 5.2 and 5.4, we have

(12) h
(
j1(z̃), . . . , jn+1(z̃), f(z̃)

)
≤ C h

(
j1(z), . . . , jn+1(z)

)

with C = h(PJ ) + (n+ 1) log(dJ + 1) + dJ + 1, where dJ denotes the total degree
of PJ in Y1 . . . , Yn+1. Writing z′′ = p′′(z̃), we also have for every 1 ≤ i ≤ k,
(13) h(θi/θ0(z̃)) ≤ C h

(
j1(z̃), . . . , jn+1(z̃), f(z̃)

)

with C = h(NΘ,i) + h(DΘ,i) + (n+ 2)
(
log(deg(NΘ,i) + 1) + log(deg(DΘ,i) + 1)

)
+

deg(NΘ,i) + deg(DΘ,i), where deg denotes the total degree. Combining equa-
tions (12) and (13), we obtain

h

(θ1
θ0

(z′′), . . . ,
θk
θ0

(z′′)
)
≤ CΘ h

(
j1(z), . . . , jn+1(z)

)

where CΘ has an explicit expression in terms of the heigts and degrees of the
polynomials PJ and NΘ,i, DΘ,i for 1 ≤ i ≤ k. Equivalently, in the notation above,
we have

hΘ,r(A
′′) ≤ CΘ hj(A),

so by (11)

hF (A) ≤ (2 + CF )CΘ hj(A).

Going through the diagram from right to left gives the reverse inequality

hj(A) ≤
(1 + CF )CJ

2
hF (A)

where CJ is defined in a similar way to CΘ in terms of the polynomials PΘ

and NJ,i, DJ,i for 1 ≤ i ≤ n+ 1. �

Assume that the integers r and d, the modular function f , as well as the poly-
nomials PJ , PΘ, NJ,i, DJ,i, NΘ,i, and DΘ,i can be explicitly determined. Then both
the polynomial P and the constant C in Proposition 5.9 can be determined explic-
itly as well. We will do this computation in a slightly different way in §5.7 in the
case of Igusa invariants on the Siegel threefold.

From now on, we define U to be the Zariski open set in S where j1, . . . , jn+1 are
well defined and P (j1, . . . , jn+1) 6= 0.

Corollary 5.10. Let C be the constant from Proposition 5.9, let z and z′ be points
of U and let A and A′ be the abelian varieties with PEL structure associated with z
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and z′ respectively. Assume that A and A′ are defined over Q, and are linked by an
isogeny of degree d. Then

hj(A
′) ≤ C2(hj(A) + log d).

Proof. Combine Propositions 5.7 and 5.9. �

Remark 5.11. We can presumably do better than Corollary 5.10. For instance,
when studying j-invariants of isogenous elliptic curves, one can prove that |h(j(E))−
h(j(E′))| is bounded by logarithmic terms [31, Thm. 1.1]. This is also the kind of
bound provided by Theorem 5.8. The rough estimate in Corollary 5.10 is sufficient
for our purposes, but has the drawback that the constants we derive from it are
very pessimistic.

5.5. Heights of evaluated modular equations. Let U (resp. U ′) be an open set
of S (resp. T ) where a relation between the j-height and the Faltings height holds, as
in Proposition 5.9. Define Uδ ⊂ S to be the Zariski open set of all points [x, g] ∈ S
such that [x, g] ∈ U , and moreover the images of [x, g] under the (symmetrized)
Hecke correspondence Hδ all lie in U ′: in other words [σ(x), σ(gkδ)] ∈ U ′ for
every (k, σ) ∈ K0/Kn+1, in the notation of §3.2. Finally, we define Vδ ⊂ Ln

to be the Zariski open set of all points (j1, . . . , jn) where the equation (5) given
by E(j1, . . . , jn, Jn+1) has e distinct roots and the following property holds: if jn+1

is a root of (5), then (j1, . . . , jn+1) are the invariants of some point z ∈ Uδ. In
particular, the modular equations Ψδ,m do not have poles on Vδ.
Lemma 5.12. There exist a positive constant C independent of δ, and a nonzero
polynomial Pδ ∈ L[J1, . . . , Jn] of total degree at most C d(δ) such that {Pδ(j1, . . . , jn) 6=
0} ⊂ Vδ.
Proof. Let E ∈ L[J1, . . . , Jn+1] be the polynomial defined in §3.2, of degree e
in Jn+1, so that the equation satisfied by jn+1 on S takes the form E(j1, . . . , jn+1) =
0.

Let R be the the resultant of E and its derivative with respect to Jn+1. If R does
not vanish at (j1, . . . , jn) ∈ Ln, then the polynomial E(j1, . . . , jn, Jn+1) ∈ L[Jn+1]
has e distinct roots.

Similarly, there is a polynomial Q ∈ L[J1, . . . , Jn+1] such that every tuple
(j1, . . . , jn+1) satisfying (5) and such that Q(j1, . . . , jn+1) 6= 0 lies in the image
of S. Let R′ be the resultant of Q and E with respect to Jn+1. If R′ does not
vanish at (j1, . . . , jn), then for every root jn+1 of E(j1, . . . , jn, Jn+1), the tuple
(j1, . . . , jn+1) lies in the image of S.

Let λ, λ′ be symmetric modular forms on S and T respectively, defined over L,
such that {λ 6= 0} ⊂ U and {λ′ 6= 0} ⊂ U ′. These modular forms can be chosen
independently of δ. As in §4.1, we construct the modular form

λδ = λ
∏

γ∈K0/K′

γ · λ′δ

where λ′δ is the modular form [x, g] 7→ λ′([x, gδ]) of level K ′. The modular form λδ

is defined over L and has weight

wt(λδ) = wt(λ) + (#Σ) d(δ)wt(λ′).

Modular forms realize a projective embedding of S by Theorem 2.5; therefore,
possibly after increasing the weight by a constant independent of δ, we can find a
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symmetric modular form ξ defined over L such that wt(λδ) = wt(ξ) and the divisors
of λδ and ξ have no common codimension 1 components. By Proposition 4.8, if we
write

λδ

ξ
=

e−1∑

k=0

Rk(j1, . . . , jn)j
k
n+1 where Rk ∈ L(J1, . . . , Jn),

then degRk ≤ GC(j1, . . . , jn+1)wt(λ
δ) for every 0 ≤ k ≤ e − 1. Taking the

resultant of
∑
RkJ

k
n+1 and E with respect to Jn+1 yields a rational fraction R′′ ∈

L(J1, . . . , Jn) of total degree at most

(e− 1)dE + e max
0≤k≤e−1

deg(Rk),

where dE denotes the total degree of E in j1, . . . , jn. If R′, R′′ are well defined and
do not vanish at (j1, . . . , jn), then for every root jn+1 of (5), the tuple (j1, . . . , jn+1)
comes from a point z ∈ Uδ.

We take Pδ to be the product of R, R′, and the numerator of R′′. The polynomi-
als R and R′ are independent of δ, and the degree of R′′ is bounded above linearly
in d(δ). �

If upper bounds on the degree of equations defining U and U ′ are explicitly
known, together with the polynomials E and Q, then the proof of Lemma 5.12
allows us to determine a valid constant C explicitly.

Proposition 5.13. There exists a constant C, independent of δ, such that the
following holds. Let (j1, . . . , jn) ∈ Vδ, and let 1 ≤ m ≤ n+ 1. Then

h
(
Ψδ,m(j1, . . . , jn)

)
≤ C d(δ)

(
h(j1, . . . , jn) + log l(δ)

)
.

Proof. Let J be the set of roots of equation (5) at (j1, . . . , jn), and let jn+1 ∈ J .
Let [x, g] be a point of S describing an abelian variety A with PEL structure
whose invariants are (j1, . . . , jn+1). For every σ ∈ Σ, denote by Aσ the abelian
variety with PEL structure associated with the point [σ(x), σ(g)]. Then for every
γ = (σ, k) ∈ K0/Km, the point [σ(x), σ(gkδ)] describes an abelian variety Aγ which
is related to Aσ by an isogeny of degree l(σ(δ)) = l(δ), by Corollary 2.8. Therefore,
by Corollary 5.10, we have

h
(
γ · j1,δ([x, g]), . . . , γ · jn+1,δ([x, g])

)
≤ C(h

(
j1, . . . , jn+1) + log l(δ)

)
.

where the constant C > 0 is independent on δ. By Definition 3.1, the polyno-
mial Ψδ,m(j1, . . . , jn, jn+1) ∈ L[Y1, . . . , Ym] is the evaluation of a certain multivari-
ate polynomial at the values γ · ji,δ([x, g]), for 1 ≤ i ≤ m and γ ∈ K0/Ki, each
appearing with degree 1. The number of such values is

d1 + d1d2 + · · ·+ d1 · · · dm ≤ m (#Σ) d(δ).

Therefore, by Proposition 5.2, we have

h
(
Ψδ,m(j1, . . . , jn+1)

)
≤ m (#Σ) d(δ) log(2) +m (#Σ) d(δ)C

(
h(j1, . . . , jn+1) + log l(δ)

)

≤ C′
d(δ)

(
h(j1, . . . , jn+1) + log l(δ)

)
.

where C and C′ denote explicit constants independent of δ. In order to obtain
Ψδ,m(j1, . . . , jn), we interpolate a polynomial of degree e − 1 in jn+1 where J is
the set of interpolation points. By Propositions 5.2 and 5.4, we have

h(jn+1) ≤ C h(j1, . . . , jn) for every jn+1 ∈ J ,
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where C is a constant independent on δ. The result follows by applying Proposi-
tion 5.5 with N = d+ 1. �

The proof of Proposition 5.13 provides an explicit value of C if the constant from
Corollary 5.10 is known.

5.6. Heights of coefficients of modular equations. We are ready to prove
upper bounds on the heights of modular equations (the second part of Theorem 1.1)
using Proposition 5.13 and the results on heights of fractions given in §5.2. From
now on, we add subscripts to constants: for instance C5.9 denotes a constant larger
than 1 such that Proposition 5.9 holds with this value of C. Moreover, we denote
by Clog a constant independent of δ such that log d(δ) ≤ Clog max{1, log l(δ)}.
By Proposition 2.9, we can take Clog = (dim V )2 + log(C2.9), where V denotes
the Q-vector space defining the PEL datum.

Definition 5.14. We call an (n,N1, N2)-evaluation tree a rooted tree of depth n,
arity N1 at depths 0, . . . , n− 2, and arity N2 at depth n− 1, such that every vertex
but the root is labeled by an element of Z and the sons of every vertex are distinct.

Let T be an (n,N1, N2)-evaluation tree, and let 1 ≤ k ≤ n. The k-th evaluation
set Ik(T ) of T is the set of points (y1, . . . , yk) ∈ Zk such that y1 is a son of the
root, and yi+1 is a son of yi for every 1 ≤ i ≤ k−1. We say that T is bounded by M
if the absolute value of every vertex is bounded above by M . We say that T has
amplitude (D1, D2) if for every vertex y of depth 0 ≤ r ≤ n− 2 (resp. depth n− 1)
in T , the sons of y lie in an integer interval of amplitude at most D1 (resp. D2); by
definition, the amplitude of JA,BK is B −A.

Let T be an (n,N1, N2)-evaluation tree, let a = (a1, . . . , an) ∈ Zn, and let M ≥ 1
be an integer. Let F be a coefficient of Ψδ,m for some 1 ≤ m ≤ n + 1, seen as
a polynomial in the variables Jn+1, Y1, . . . , Ym; hence F ∈ L(J1, . . . , Jn). Write
F = P/Q in irreducible form, and let d = deg(F); assume that d ≥ 1. We say
that T, a and M are valid evaluation data for F if the following conditions are
satisfied:

(1) T and a are bounded by M

(2) We have M ≥ 2B log2(B + 1), where

B = 4C3
4.9C5.13 d(δ)

4 max{1, log l(δ)}.
(3) N1 = 2d and N2 ≥M .

(4) T has amplitude (4d, 2M).

(5) For every (y1, . . . , yn) ∈ In(T ), the point

(j1, . . . , jn) = (y1yn + a1, . . . , yn−1yn + an−1, yn + an)

belongs to Vδ.
(6) For every (y1, . . . , yn−1) ∈ In−1(T ), the two polynomials P and Q evaluated

at the tuple (y1Y + a1, . . . , yn−1Y + an−1, Y + an) are coprime in L[Y ].

(7) Q(a1, . . . , an) 6= 0.

Lemma 5.15. There exists a constant C, independent of δ, such that the following
holds. Let F be a coefficient of Ψδ,m of degree d ≥ 1. Then there exist valid
evaluation data (T, a,M) for F such that

(14) C d(δ)4 max{1, log3(l(δ))} ≤M < C d(δ)4 max{1, log3(l(δ))} + 1
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and M ≥ 4d[L : Q]. We can take

C = max{C1, C2, C3}
where

C1 = 24C3
4.9C5.13

(
4Clog + log(24C3

4.9C5.13) + 1
)
,

C2 = 14C2
4.9 + 5C5.12, and C3 = 4C4.9[L : Q].

Proof. Let M be as in (14). Condition 1 in Definition 5.14 holds because C ≥ C1.
We start by constructing the vector a. Note that M ≥ 2d+1. Since Q is nonzero,

and has degree at most d in Y1, we can find a1 ∈ Z such that |a1| ≤ M and the
polynomial Q(a1, Y2, . . . , Yn) is nonzero. Iterating, we find a vector a = (a1, . . . , an)
bounded by M such that Q(a1, . . . , an) 6= 0.

We now build the evaluation tree T down from the root. Let Pδ be an equation
for the complement of Vδ as in Lemma 5.12, and define

Rδ = Pδ(Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an)

which is a nonzero polynomial of degree at most 2C5.12 d(δ). Let R be the resultant
with respect to Yn of the two polynomials

P (Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an)

and

Q(Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an).

The polynomial R is nonzero and has total degree at most 4d2.
We want to choose 2d values of y1, lying in an interval with amplitude at most 4d,

such that neither Rδ nor R vanishes when evaluated at Y1 = y1; this nonvanishing
condition excludes at most 4d2 + 2C5.12 d(δ) possible values of y1. At least one
of the integer intervals of the form J5kd, (5k + 4)dK for 0 ≤ k ≤ 2d+ C5.12 d(δ)/d
contains at least 2d valid choices of y1. Then |y1| is always bounded above by 5(2d2+
C5.12 d(δ)) + 4d ≤M , because C ≥ C2.

We iterate this procedure to construct T up to depth n− 1 with the right arity,
bound and amplitude, such that the evaluations of the polynomials Rδ and R are
nonzero at every point (y1, . . . , yn−1) ∈ In−1(T ).

We conclude by constructing n-th level of T . Let (y1, . . . , yn−1) ∈ In−1(T ).
Then, as before, at most 4d2 + 2C5.12 d(δ) ≤ M values for yn are forbidden as
they make either Rδ or R vanish. This leaves at least M available values for yn
in J−M,MK.

For every (y1, . . . , yn) ∈ In(T ), the nonvanishing of the polynomials Rδ and R
at (y1, . . . , yn) guarantees conditions 5 and 6 of Definition 5.14 respectively. Finally,
the inequality C ≥ C3 ensures that M ≥ 4d[L : Q]. �

Theorem 5.16. Let Hδ be an absolutely irreducible Hecke correspondence on S×T
defined by an element δ ∈ G(Af ), and let d(δ) be the degree of Hδ. Let F ∈
L(J1, . . . , Jn) be a coefficient of one of the modular equations Ψδ,m for 1 ≤ m ≤
n + 1. Then the height of F is bounded above by C d(δ), where C is a constant
independent of δ; more precisely we can take

C = 2n−1
(
2C5.13(1 + C′′) + 2C5.6C4.9

(
log(4C4.9C5.13) + 2Clog + 1 + C′′

)

+ 4C4.9(log(C4.9) + Clog) + 2C4.9(log(2) + C′′) + 2 log(2C4.9) + 2
)
,

where C′′ = 3 + log(2C5.15) + 4Clog.
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Proof. By Lemma 5.15, there exist valid evaluation data (T, a,M) for F such that

the inequality M ≤ C5.15 d(δ)4 max{1, log3 l(δ)}+ 1 holds. After scaling P and Q
by an element of L×, we can assume that Q(a1, . . . , an) = 1.

Let (y1, . . . , yn−1) ∈ In−1(T ), and write

F̃(Y ) = F(y1Y + a1, . . . yn−1Y + an−1, Y + an).

For every son yn of yn−1 in T , we have

h
(
y1yn + a1, . . . , yn−1yn + an

)
≤ log

(
(M + 1)M

)
≤ 2 log(M + 1).

Therefore, by Proposition 5.13,

h(F̃(yn)) ≤ C5.13 d(δ)
(
2 log(M + 1) + log l(δ)

)

≤ 2C5.13 d(δ)
(
log(M + 1) + max{1, log l(δ)}

)
.

Denote this last quantity by H . We have H ≥ 4 and H ≥ log(2M). Moreover, in

the notation of Definition 5.14, the inequality M ≥ 2B log2(B + 1) ensures that

M

log(M + 1)
≥ B ≥ d3

(
4C5.13 d(δ)max{1, log l(δ)}

)
.

Therefore M ≥ d3H .
We are in position to apply Proposition 5.6 for the univariate rational fraction F̃

on the interval J−M,MK, with η = 2, using the sons of (y1, . . . , yn−1) in T as
evaluation points. We obtain

h(F̃) ≤ H + 2C5.6d log(2dH) + d log(2M) + log(d+ 1)

≤ C′
d(δ)max{1, log l(δ)},

where C′ is a constant independent of δ. In order to obtain an explicit expression
for C′, we note that

log(M + 1) ≤ C′′ max{1, log l(δ)}

where C′′ is defined as in the statement of the theorem. We check that we can take

C′ = 2C5.13(1 + C′′) + 2C5.6C4.9
(
log(4C4.9C5.13) + 2Clog + 1 + C′′

)

+ C4.9(log(2) + C′′) + log(2C4.9) + 1.

In the second part of the proof, we relate the height of F̃ with the height of F .
The quotient

P (y1Y + a1, . . . , yn−1Y + an−1, Y + an)

Q(y1Y + a1, . . . , yn−1Y + an−1, Y + an)

is a way to write F̃ in irreducible form in L(Y ), and has a coefficient equal to 1.

Therefore h(F̃) is the affine height of the coefficients appearing in the quotient.
Hence

h
(
P (y1Yn + a1, . . . , yn−1Yn + an−1, Yn + an)

)
≤ C′

d(δ)max{1, log l(δ)}

for every (y1, . . . , yn−1) ∈ In−1(P ), and the same inequality holds forQ. SinceN1 =
2d, we can interpolate successively the variables yn−1, . . . , y1, using Proposition 5.5



DEGREE AND HEIGHT ESTIMATES FOR MODULAR EQUATIONS 39

with 2d evaluation points at each vertex of the tree T . Finally we obtain

h(F) ≤ 2n−1
(
C′

d(δ)max{1, log l(δ)}+ 4d log(4d) + d log(2M) + log(d+ 1)
)

≤ 2n−1
(
C′ + 4C4.9(log(C4.9) + Clog) + C4.9(log(2) + C′′)

+ log(2C4.9) + 1
)
d(δ)max{1, log l(δ)}.

�

5.7. Explicit height bounds in dimension 2. In this final section, we derive
explicit height bounds for modular equations of Siegel type for abelian surfaces.
Our first aim is to provide an explicit value for the constant in Corollary 5.10,
using Theta constants of level 4 as an intermediate step. To relate Theta heights
and j-heights in this setting, we use Mestre’s algorithm and Thomae’s formulæ
instead of writing out polynomials NJ,i, DJ,i, NΘ,i, and DΘ,i as in the proof of
Proposition 5.9.

Proposition 5.17. Let A be a principally polarized abelian surface defined over Q

where j1, j2, j3 are well defined, and assume that j3(A) 6= 0. Then we have

hj(A) ≤ 40 hΘ,4(A) + 12 and hΘ,4(A) ≤ 200 hj(A) + 1000.

Proof. Recall the expression of Igusa invariants in terms of the Siegel modular forms
I4, I

′
6, I10, and I12:

(15) j1 =
I4I

′
6

I10
, j2 =

I24I12
I210

, and j3 =
I54
I210

.

These modular forms have a polynomial expression in terms of theta constants
of level 4: see for instance [33, §II.7.1]. The total degrees of the polynomials
giving I4, I

′
6, I10 and I12 are 8, 12, 20 and 24 respectively; they contain respec-

tively 10, 60, 1 and 15 monomials, and their height is zero. Up to scaling, we may
assume that the first theta constant θ0 takes the value 1. Then, by Proposition 5.2,
we have

h(I54 , I4I
′
6I10, I

2
4I12, I

2
10) ≤ 5 log(10) + 40 hΘ,4(A),

hence the first inequality

hj(A) ≤ 40 hΘ,4(A) + 12.

For the second inequality, we follow Mestre’s algorithm [22]. Starting from
j1(A), j2(A) and j3(A), Mestre’s algorithm constructs a hyperelliptic curve y2 =
f(x) whose Jacobian is isomorphic to A over Q. Choosing I10 = 1 in equation (15),
we see that j1(A), j2(A) and j3(A) are realized by values of I2, I4, I

′
6, and I10 in Q

such that

h(I2, I4, I
′
6, I10) ≤ hj(A).

The roots of f are the intersection points of a conic and a cubic in P2 whose
equations are given explicitly in terms of I2, I4, I6, and I10. In order to obtain

the equation
∑3

i,j=1 cijzizj = 0 of the conic, we start from Mestre’s equation
∑3

i,j=1 Aijxixj = 0 and substitute the expressions of A,B,C, and D in terms

of I2, I4, I
′
6, and I10. Then we multiply by 211313514 and make the substitutions

z1 = 202500x1, z2 = 225x2, z3 = x3.
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Then, each coefficient cij has an expression as a multivariate polynomial in I2, I4,
and I ′6 (recall that I10 = 1) of total degree at most 7; its coefficients are integers
whose absolute values are bounded by 324 · 106. By Proposition 5.2, we have

h
(
(cij)1≤i,j≤3

)
≤ 7(hj(A) + log(3)) + 19.6 + 3 log(8) ≤ 7hj(A) + 33.6.

If we restrict to c11, c12, and c22, then we obtain a smaller upper bound, since
the total degree and the height of coefficients are at most 5 and 18.3 respectively.
Similarly, the cubic equation, denoted by

∑
1≤i≤j≤k≤3 cijkzizjzk = 0, has total

degree at most 11 in I2, I4, and I ′6, and has integer coefficients whose heights are
at most 33.5.

In order to find the hyperelliptic curve equation f , we parametrize the conic. Let
us show that it contains a point P0 defined over Q such that h(P0) ≤ 5hj(A)+29.9.
We can assume that c11 6= 0; otherwise we take P0 = (1 : 0 : 0). Let α be a root of
the monic polynomial

α2 +
c12
c11

α+
c22
c11

= 0.

The point P0 = (α : 1 : 0) belongs to the conic, and by Proposition 5.4,

h(P0) = h(α) ≤ h(c11, c12, c22) + log(2)

≤ 5(hj(A) + log(3)) + 18.3 + 3 log(6) + log(2)

≤ 5hj(A) + 29.9.

We parametrize the conic using P0 as a base point; for simplicity, we continue
to assume that c11 6= 0. For (u : v) ∈ P1(Q), the point (z1 : z2 : z3) defined by

z1 = α(c11u
2 + c13uv + c33v

2)− u((2c11α+ c12)u + (c13α+ c23)v),

z2 = c11u
2 + c13uv + c33v

2, and

z3 = −v((2c11α+ c12)u+ (c13α+ c23)v)

runs through the conic. Substituting these expressions in the cubic equation gives
the curve equation f . The polynomials we obtain have total degrees at most 29 in
I2, I4, and I ′6; they have degree at most 3 in α; and their coefficients are integers
whose heights are bounded above by 86.9. Therefore, by Proposition 5.2 (separating
I2, I4, I

′
6 from α), we have

h(f) ≤ 29(hj(A) + log(3)) + 86.9 + 3(5hj(A) + 29.9) + 3 log(30) + log(4)

≤ 44hj(A) + 220.1.

Making f monic does not change its height.
Thomae’s formulæ [28, IIIa.8.1] give an expression of the Theta constants of

level 4 of A in terms of roots of f : if θ is one of these Theta constants, then θ4 is
a product of 18 differences of roots of f (up to a common multiplicative factor).
Therefore, by Proposition 5.4, we obtain

hΘ,4(A,L) ≤ 1
4 · 18(h(f) + log(4)) ≤ 198hj(A) + 997.

�

As a consequence, we obtain an explicit analogue of Corollary 5.10 in the case
of isogenies between principally polarized abelian surfaces.
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Proposition 5.18. Let A and A′ be principally polarized abelian surfaces over Q

where j1, j2, j3 are well defined, and assume that j3(A)j3(A
′) 6= 0. Let d ≥ 1 be an

integer. If A and A′ are linked by an isogeny of degree d, then we have

hj(A
′) ≤ 8000 hj(A) + 1.08 · 1011 log(hj(A)) + 1.67 · 1012 + 20 log d.

Proof. By Theorem 5.8 and Proposition 5.7 and 5.17 (noting that C(2, 4) ≤ 1.35 ·
109), we have

hΘ,4(A) ≤ 200 hj(A) + 1000,

1
2 hF (A) ≤ hΘ,4(A) + C(2, 4) log(hΘ,4(A) + 2)

≤ 200 hj(A) + C(2, 4) log(1202) + C(2, 4) log(hj(A)),

1
2 hF (A

′) ≤ 1
2 hF (A) +

1
4 log ℓ,

hΘ,4(A
′) ≤ 1

2 hF (A
′) + C(2, 4) log(hF (A

′) + 2)

≤ 200 hj(A) + C(2, 4) log(1202) + 2C(2, 4) log(hj(A)) +
1
4 log ℓ

+ C(2, 4) log
(
402 + 2C(2, 4) log(1202) + C(2, 4) + 1

2 log ℓ
)
,

≤ 200 hj(A) + 2C(2, 4) log(hj(A)) + 4.17 · 1010 + 1
2 log ℓ, and

hj(A
′) ≤ 40 hΘ,4(A) + 12

≤ 8000 hj(A) + 80C(2, 4) log hj(A) + 1.67 · 1012 + 20 log ℓ.

�

In Lemma 5.12, we take λ = I4 and λ′ = I4I10. We have

wt(λδ) = 14 d(δ) + 4,

which is greater than 16, the minimum weight for which Siegel modular forms
define a projective embedding of S. Hence ξ can be chosen to be a modular form
of weight wt(λδ). The fraction R′′ has degree at most 7

3 (d(δ) + 1) by Lemma 4.10;
this is also an upper bound on deg(Pδ).

We also mimic the proof of Proposition 5.13 in the Siegel case. Let [x, g] be
a point of S with Igusa invariants (j1, j2, j3) ∈ Vδ. For each 1 ≤ m ≤ 3, by
Remark 3.5, the polynomial Ψδ,m(j1, j2, j3) is the evaluation of a multivariate poly-
nomial in 2 d(δ) variables. Moreover, the Hecke correspondence describes isogenies
of degree ℓ2. By Proposition 5.18, we have
(16)

h
(
Ψδ,m(j1, j2, j3)

)
≤ 2 d(δ)

(
8000 h(j1, j2, j3)+1.08·1011 log(hj(A))+1.67·1012+40 log ℓ

)
.

Therefore, we can take
C5.13 = 3.35 · 1012.

Moreover, we have d(δ) = ℓ3 + ℓ2 + ℓ+ 1 and l(δ) = ℓ2. Hence we can take

Clog =
3

2
+ log(2) ≤ 2.2.

We also take

C5.6 = 960 because L = Q,

C4.9 =
10

3
by Proposition 4.11, and

C5.12 = 15 since d(δ) ≥ 15.
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In Lemma 5.15, we can take

C5.15 = 1.36 · 1017

and in Theorem 5.16, we can take

C5.16 = 1.42 · 1015.
Since d(δ) ≤ 2ℓ3 and max{1, log ℓ(δ)} ≤ 2 log(ℓ), we obtain the following result.

Theorem 5.19. Let ℓ ≥ 1 be a prime number, and let F ∈ Q(J1, J2, J3) be a
coefficient of one of the Siegel modular equations of level ℓ in Igusa invariants.
Then we have

h(F) ≤ 5.68 · 1015ℓ3 log(ℓ).
In order to obtain tighter height bounds on Siegel modular equations, we could

repeat the computations of §5.6 using an expression of the form (16) for the height
of evaluated modular equations, instead of the simpler formula used in Proposi-
tion 5.13. However we cannot hope to obtain a constant in Theorem 5.19 that
is much smaller than C(2, 4) ≃ 1.35 · 109 using our methods. Experimentally, we
observe that the tighter inequalities h(F) ≤ 48.7 ℓ3 log(ℓ) and h(F) ≤ 43.6 ℓ3 log(ℓ)
hold for ℓ = 2 and ℓ = 3 respectively.

We could also give an analogue of Theorem 5.19 in the case of modular equations
of Hilbert type for Q(

√
5) in Gundlach invariants. To replace Proposition 5.17, we

would use the relations between Gundlach and Igusa invariants (see for instance [25,
§2.3]) and the explicit curve equation given by [19, Prop. A.4]. We leave the precise
calculations for future work.
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