
HAL Id: hal-02435979
https://hal.science/hal-02435979

Submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Numerical Modeling of The Quorum Sensing In a
Bacterial Biofilm

A. Blouza, Linda El Alaoui

To cite this version:
A. Blouza, Linda El Alaoui. Numerical Modeling of The Quorum Sensing In a Bacterial Biofilm.
ESAIM: Proceedings and Surveys, 2018, 62, pp.17-29. �10.1051/proc/201862017�. �hal-02435979�

https://hal.science/hal-02435979
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ESAIM: PROCEEDINGS AND SURVEYS, September 2018, Vol. 62, p. 17-29

Muhammad DAUHOO, Laurent DUMAS, Pierre GABRIEL and Pauline LAFITTE

NUMERICAL MODELING OF THE QUORUM SENSING IN A BACTERIAL

BIOFILM

A. Blouza1 and L. El Alaoui2

Abstract. In the present paper we propose a bi-dimensional non-linear reaction-diffusion model de-
scribing the action of antibiotics as well as quorum sensing inhibitors agents on the virulence of bacteria
biofilms. We thus approximate the system by a standard finite element scheme in space and an implicit
Euler method in time. We prove the existence and uniqueness of a solution to this system and prove its
convergence to a weak solution of the model we introduce. We present numerical results for simulating
the quorum sensing of the very human pathogenic bacteria Pseudomenas aeruginosa.

Résumé. Nous proposons dans le présent travail à un modèle bi-dimensionnel non linéaire de type
réaction-diffusion décrivant l’action du traitement antibiotique conventionnel couplé à des agents in-
hibiteurs du système de communication intercellulaire, système qui contrôle la virulence de biofilms
bactériens. Nous proposons une approximation en espace par éléments finis standard et en temps par
un schéma d’Euler implicite. Nous montrons l’existence et l’unicité de cette approximation et montrons
qu’elle converge vers une solution faible du modèle proposé. Nous illustrons notre approche par l’étude
de la bactérie Pseudomenas aeruginosa connue pour être très pathogène chez l’homme.

1. Introduction

A biofilm is a structured community of microorganisms such as bacteria, algae and protozoa that live adherent
to a surface or interface and which are surrounded in a self-produced extracellular polymers matrix.

Beneficial biofilms exist. Biobarriers to protect soil from contamination, bioremediation of waste sites or
water-cleaning systems are examples of positive biofilms. But a lot of them have detrimental impacts on
industrial environments (biofouling and biocorrosion) and particularly on public health. The cystic fibrosis
and protheses infections and wide variety of nosocomial infections are caused by Pseudomonas aeruginosa or
Staphylococcus aureus which are very human pathogenic bacteria.

In medical setting, growth and thus virulence of bacteria depend on nutrients and intercellular communication
using biochemical signaling molecules. This cell-to-cell signaling mechanism is known as Quorum Sensing (QS)
and provides a way of ensuring that certain genes mutate only when certain signal concentration has been
reached.

We focus in the present work on the Pseudomonas aeruginosa complex QS system where the signal molecules
are N-Acylated Homoserine Lactones (AHLs; e.g., N-(3-oxodo- decanoyl)-homoserine lactone denoted by 3-oxo-
C12-HSL) which bind to transcriptional regulator proteins (LasR) to activate the expression of target genes
(See [1] for details).
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As described in [1], QS behavior in an infection setting is as follows: in the early stages of infection, at low cell
density, the pathogen remains relatively unnoticed by the immune system, but as numbers increase the bacteria
can use their density sensing mechanism to switch on virulence genes rapidly and in unison, resulting in the
production of a combination of virulence factors which may overwhelm host defenses. QS works by diffusion of
one or more self-generated signal molecules, often produced auto-inductively. The chemical class of the signal
molecule depends on the bacterial species.

Bacterial species such as Pseudomonas aeruginosa or Staphylococcus aureus increase their resistance to
antibiotics. For blocking this intercellular communication, Williams in [10] had already the idea to target the
quorum sensing for antibacterial chemotherapy. In [1], the authors have modeled the effect of an AHL-degrading
enzyme as well as the effect of LasR-degrading drug on the QS together with antibiotic treatment to attenuate
the virulence of those pathogenic bacteria.

In the present study, we consider a system of PDEs, in bi-dimensional setting, for the action on QS of
Pseudomonas aeruginosa combined with an antibiotic and taking the reaction kinetics of bacterial cells to be
those of ([1], [2]) and the diffusion terms as introduced in [7]. However, in contrast to these authors, we allow the
bacterial cells to grow according to Monod’s law and take into account the diffusion of LasR and antibiotic as
well. Several papers deal with the mathematical modelling of the quorum sensing, one cite for instance [4–7,10].

In section 2 of this paper, we introduce our reaction-diffusion equations modeling the effect antibiotic together
with LasR-degrading drug on the QS system of P. aeruginosa.

In section 3, We write the corresponding discret weak formulation of equations introduced in the previous
section using implicit Euler scheme in time and finite element method in space and prove its well-posedness. We
also provide a qualitative analysis to study the effect of agent capable to reduce the LasR signal transduction
protein of the QS system of Pseudomonas aeruginosa. A simplified schematic of the gene network involved in
the primary QS system is given in Fig.1 below.

3-oxo-C12-HSL	(A)	

LasR/3-oxo-C12-HSL	(RA)	

LasR	(R)	

LasR-Killer	(Q)	

Diffusion	

Bacterial	cell	wall	

kQ	 Diffusion	

kP	

kRA	

kP	

Figure 1. Schematic representation of the network involved in the QS system of Pseudomonas aeruginosa.

2. The mathematical model

In this section we propose a bi-dimensional mathematical modeling of the quorum sensing in a bacterial
biofilm. The model is derived from mass balance principles that describe the nutrient concentration, biomass
concentration, LasR and AHL concentrations as well as the QS inhibitor and the antibiotic concentrations
within the biofilm.

The concentration variables of the model are listed in the Table 1 below, most of the values are from [1,4,5]
and some are assumed. The model we introduce consists in a coupled system of nonlinear diffusion-reaction
equations in Ω × (0, T ), T > 0 where Ω ⊂ R2 is a bounded domain and ∂Ω = ΓN ∪ ΓD, with ΓN ∩ ΓD = ∅,
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denotes its boundary.

Concentration Variable

down-regulated cell X
up-regulated cell Y
LasR R
3-oxo-C12-HSL cell A
Antibiotic V
Nutrient S
LasR-degrading drug Q

Table 1. Notation used for concentration variables.

All the parameters involved in the following equations are defined in Table 2 and are positive. We introduce

the Monod’s function that is: g̃(u, v) = µ
u

k + u
v = µg(u, v), where k is the half-saturation constant. It is the

value for which u = k implies a v-growth at half the maximum growth rate µ. Monod kinetics used here implies
a saturation effect. In other words, even if the substrate u is available in abundance the specified maximum
growth cannot be exceeded.

- The substrate S is injected in Ω through a part of its boundary ΓD. The nutrient allows to diffuse into and
out the bacteria cells at the same rate and is consumed by the total biomass X + Y owing to the Monod’s
kinetics. Hence, the evolution of the nutrient is described as:

∂tS = dS∆S − k1
S

k2 + S
(X + Y ), (1)

- From the mass balance principle, the evolution of the total biomass M is modeled by

∂tM = ∇
(
D(M)∇M

)
+G(S,M),

where G(S,M) expresses the growth of the biomass and D(M) ≈ P ′(M) with P the unknown biofilm pressure.
In this work we assume that D(M) does not depend on M . This assumption is not too restrictive since we
are not concerned by the biofilm shape.

- The biomass (down-regulated and up-regulated cells) is produced by the consumption of nutrients according
to the Monod’s law. Cells die naturally, the down-regulated cells are killed by the antibiotic, and the down-
regulated cells are converted to up-regulated cells due to the increasing of the AHL concentration. The
up-regulated cells are converted to down-regulated cells at a constant rate. Hence, it holds that

∂tX = d∆X + k3
S

k2 + S
X − k5A

mX + k5Y − k4X − kVXV (2)

∂tY = d∆Y + k3
S

k2 + S
Y + k5A

mX − k5Y − k4Y , (3)

Thus, the biofilm is defined by the domain {x ∈ Ω ; X(x, t) + Y (x, t) > 0}.
- The AHL molecules diffuse through the domain, the AHL molecules decay abiotically at rate γ. Down-

regulated cells produce the signaling molecule at rate α, whereas up-regulated cells produce it at the increased
rate α + β, where is one order of magnitude larger than α. The signaling molecule production rate of the
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Symbol Parameter Value
k1 maximum specific consumption rate 794
k2 Monod half saturation 0.2
k3 maximum specific growth rate 1
k4 lysis rate 0.0667
k5 quorum sensing regulation rate 52.7
kR LasR degradation rate 0.1
kL AHL degradation rate 0.01
kV Antibiotic reaction rate 0.1
kQ QSB reaction rate 0.05
lV antibiotic degradation rate 0.1
d biomass motility 1e-7
dS nutrient diffusion 1.67
dR LasR diffusion 0.1
dV antibiotic diffusion 0.025
dQ QSB diffusion 1
d2 Diffusion coefficient of autoinductor 12.9
α AHL production rate of down-regulated cells 92
β Increased AHL production activity by up-regulated cells 920
γ Abiotic AHL decay rate 0.022
m polymerisation degree 2.5

Table 2. Dimensionless model parameters used in the system (1)-(8), adapted from [6].

up-regulated cells is higher than the abiotic decay rate, i.e., α+ β > γ. See Table 2.

∂tA = d2∆A− γA+ α
RA

kL +RA
X + (α+ β)

RA

kL +RA
Y. (4)

- The LasR protein is involved in the production of the LasR/3-oxo-C12-HSL (whose concentration is propor-
tional to RA, [1]), degrades naturally at a constant rate kR, and is blocked by the QSB agent. Hence, we
get

∂tR = dR∆R− kRR+ k3
RA

kR +RA
− k3

X + Y

k2 +X + Y
R+kQRQ. (5)

- The antibiotic diffuses in the culture at rate dV , degrades with rate lV , and reacts with the down-regulated
cell at rate kV . Thus, we obtain

∂tV = dV ∆V − lV V − kVXV. (6)

- Finally, we assume that the QSB agent diffuses in the culture at rate dQ, degrades with rate lQ, and reacts
with the down-regulated cell at rate kQ.

∂tQ = dQ∆Q− lQQ− kQRQ. (7)
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We complete the system by the boundary and initial conditions below.

∇X(x, t)·ν = ∇Y (x, t)·ν = ∇R(x, t)·ν = ∇A(x, t)·ν = 0, (x, t) ∈ ∂Ω× (0, T ), (8)

∇S(x, t)·ν = ∇V (x, t)·ν = ∇Q(x, t)·ν = 0, (x, t) ∈ ΓN × (0, T ), (9)

S(x, t) = SD, V (x, t) = VD, Q(x, t) = QD, (x, t) ∈ ΓD × (0, T ), (10)

X(x, 0) = X0, Y (x, 0) = 0, R(x, 0) = R0, A(x, 0) = A0 x ∈ Ω, (11)

S(x, 0) = V (x, 0) = Q(x, 0) = 0, x ∈ Ω. (12)

with X0, R0, A0, S0, V0, Q0 are positive constants.

3. Numerical approximation

In this section we propose a numerical approximation of the nonlinear system of partial differential equations
described in the previous section. We discretize the system in space by finite elements and in time by an implicit
Euler scheme.
For a sake of simplicity we present the discretization of the nonlinear system describing the tempo-spatial
evolution of the biomass, the AHL, the LasR and the substrate concentrations.

Le 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning of [0, T ] into variable time steps τn = tn− tn−1, n =
1, . . . , N . We set τ = max1≤n≤N τn. We introduce (Th)h a shape-regular family of triangulations of Ω. For a
triangle κ ∈ Th, let hκ be its diameter and set h = maxκ∈Th hκ. For any subdomain ω of Ω we define by P1(ω)
the space of polynomials on ω with degree ≤ 1. We denote by (·, ·)ω the usual L2 product on ω and by ‖ · ‖ω
the associated norm. Furthermore, we denote by | · |1,ω the semi-norm on H1(ω). For ease of notation, when
ω = Ω we drop the subscript.
We introduce the P 1-finite element spaces

P1(Th) = {vh ∈ C0(Ω) ; ∀κ ∈ Th, vh|κ ∈ P 1(κ)}, P1
β(Th) = {vh ∈ P1(Th), vh|ΓD

= β},

and we set
Wh =

{
vh ∈ P1(Th) ; vh ≥ 0

}
, and Wβ

h =
{
vh ∈ P1

β(Th) ; vh ≥ 0
}
.

We consider the problem (Ph): For (Snh , A
n
h, X

n
h , Y

n
h , R

n
h) given in P1(Th)×P1

SD
(Th)×P1(Th)×P1(Th)×P1(Th),

we seek
(Sn+1
h , An+1

h , Xn+1
h , Y n+1

h , Rn+1
h ) ∈ P1

SD
(Th)× P1(Th)× P1(Th)× P1(Th)× P1(Th)

such that∫
Ω

(
Sn+1
h − Snh

)
τn

vSh dx+

∫
Ω

[
dS∇Sn+1

h · ∇vSh + k1g(Sn+1
h , Xn

h + Y nh )vSh

]
dx = 0

∫
Ω

(
An+1
h −Anh

)
τn

vAh dx+

∫
Ω

[
d2∇An+1

h · ∇vAh + γAn+1
h vAh

]
dx =

∫
Ω

α
RnhA

n+1
h

KL +RnhA
n+1
h

Xn
h v

A
h dx+

∫
Ω

(α+ β)
RnhA

n+1
h

KL +RnhA
n+1
h

Y nh v
A
h dx

∫
Ω

(
Xn+1
h −Xn

h

)
τn

vXh +

∫
Ω

[
d∇Xn+1

h · ∇vXh + (k4X
n+1
h + k5|An+1

h |mXn+1
h )vXh

]
dx =

∫
Ω

(k3g(Sn+1
h , Xn

h ) + k5Y
n
h )vXh dx

∫
Ω

(
Y n+1
h − Y nh

)
τn

vYh dx+

∫
Ω

[
d∇Y n+1

h · ∇vYh + (k4 + k5)Y n+1
h vYh

]
dx =

∫
Ω

(k3g(Sn+1
h , Y n+1

h ) + k5|An+1
h |mXn+1

h )vYh dx

∫
Ω

(
Rn+1
h −Rnh

)
τn

vRh dx+

∫
Ω

[
dR∇Rn+1

h · ∇vRh + kRR
n+1
h vRh + k3g(Xn+1

h + Y n+1
h , Rn+1

h )vRh

]
dx =

∫
Ω

k3
Rn+1
h An+1

h

KR +Rn+1
h An+1

h

vRh dx
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for all (vSh , v
A
h , v

X
h , v

Y
h , v

R
h ) ∈ P1

0(Th)× P1(Th)× P1(Th)× P1(Th)× P1(Th).
Remark.– Let us note that the numerical scheme (Ph) allows to solve successively nonlinear equations instead
of solving a fully nonlinear system.

Theorem 3.1. Let (Snh , A
n
h, X

n
h , Y

n
h , R

n
h) given in WSD

h ×Wh ×Wh ×Wh ×Wh. Then for all h, τn > 0, there

exists a unique solution (Sn+1
h , An+1

h , Xn+1
h , Y n+1

h , Rn+1
h ) ∈ WSD

h ×Wh ×Wh ×Wh ×Wh of (Ph).

Proof. We denote by {φi}1≤i≤N the usual basis functions of P1
0(Th) (dim(P1

0(Th) = N). For any W =∑N
j=1Wjφj ∈ P1

0(Th) we define W = (W1, . . . ,WN )T ∈ RN . We then set FnS : RN × RN → RN defined
by :

[FnS (W,Z)]j = (W,φj) + τnd(∇W,∇φj) + τn(f(W )Z, φj), j = 1, · · ·N.

For Sn and Xn given in WSD

h and W0
h, respectively, we write the first equation of (Ph), where d = dS , as:

FnS (Sn+1, Xn + Y n) = GnS ∈ RN
≥0,

with [GnS ]j := (Sn, φj). One can prove that, for every fixed Z ∈ RN , we have that FnS (., Z) : RN → RN is an
isotone homeomorphism. We refer to [3] for more details, and from FnS (0, Xn) = 0 we deduce the existence and

uniqueness solution Snh in WSD

h solving the first equation of (Ph).
In the same way we prove the existence and uniqueness of (Anh, X

n
h , Y

n
h , R

n
h) in [Wh]4.

�

For any Zn+1
h ∈ W, we set

F(Zn+1) =

N∑
n=1

τn

∣∣∣∣Zn+1 − Zn

τn

∣∣∣∣2 + max
n
|Zn+1|21 +

N∑
n=1

τn
∣∣Zn+1 − Zn

∣∣2
1
.

Lemma 3.2. For all h > 0 and for all time partitions {τn}n, the solution (Snh , A
n
h, X

n
h , Y

n
h , R

n
h) of (Ph) satisfies

F(Rn+1
h ) + F(Sn+1

h ) + F(Xn+1
h ) + F(Y n+1

h ) + F(An+1
h ) ≤ C

(
|R0
h|21 + |S0

h|21 + |X0
h|21 + |Y 0

h |21 + |A0
h|21 + T

)
.

The above bound is obtained by using Zn+1
h − Znh as test function in each equation of (Ph). Here Znh denotes

arbitrarily Snh , A
n
h, X

n
h , Y

n
h , or Rn.

Let us now state that the solution of the numerical scheme converges to a weak solution of (P).
We set ΩT = Ω× (0, T ) and we introduce the following notation

Z(t) =
t− tn

τn
Zn+1 +

tn+1 − t
τn

Zn, t ∈ [tn, tn+1], n ≥ 1,

and

Z+(t) = Zn+1, Z−(t) = Zn, t ∈ [tn, tn+1], n ≥ 1.
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Using this notation the problem (Ph) reads as: Seek (Sh, Ah, Xh, Yh, Rh) ∈ [C0([0, T ]×Wh)]5 such that

∫
ΩT

∂Sh
∂t

vh +

∫
ΩT

dS∇Sh · ∇vh =

∫
ΩT

k1g(Sh, Xh + Yh)vh,

∫
ΩT

∂Ah
∂t

vh +

∫
ΩT

d2∇Ah · ∇vh + γ

∫
ΩT

Ahvh =

∫
ΩT

α
RhAh

KL +RhAh
Xhvh +

∫
ΩT

(α+ β)
RhAh

KL +RhAh
Yhvh,

∫
ΩT

∂Xh

∂t
vh +

∫
ΩT

d∇Xh · ∇vh +

∫
ΩT

(k4Xh + k5|Ah|mXh)vh =

∫
ΩT

(k3g(Sh, Xh) + k5Yh)vh,

∫
ΩT

∂Yh
∂t

vh +

∫
ΩT

d∇Yh · ∇vh +

∫
ΩT

(k4 + k5)Yhvh =

∫
ΩT

(k3g(Sh, Yh) + k5|Ah|mXh)vh,

∫
ΩT

∂Rh
∂t

vh +

∫
ΩT

dR∇Rh · ∇vh +

∫
ΩT

kRRhvh +

∫
ΩT

k3g(Xh + Yh, Rh)vh =

∫
ΩT

k3
RhAh

K +RhAh
vh.

On introducing

G(Z) = ‖Z±‖2L∞(ΩT ) + ‖Z±‖2L∞(0,T ;H1(Ω)) + ‖∂Z
∂t
‖2L2(ΩT ) + τ−1‖Z+ − Z−‖2L2(0,T ;H1(Ω)),

where Z± is an abbreviation for “with” and “without” the superscripts “ + ” and “− ”, the lemma (3.2) yields
that

G(Rh) + G(Sh) + G(Xh) + G(Yh) + G(Ah) ≤ C(T ). (13)

In the following Zh = Sh, Ah, Xh, Yh, or Rh and Z = S,A,X, Y or R.
From the inequality (13) we infer the convergence result stated in the lemma below:

Lemma 3.3. Let us assume that there is a constant C > 0 such that τ h < C. Then, there exists a subsequence
{Z}h and a function z ∈ L∞(ΩT ) ∩H1(0, T ;L2(Ω)) such that as h→ 0

Z,Z± −→ z weak- ? inL∞(ΩT ) (14)
∂Z
∂t −→

∂z
∂t weakly L2(ΩT ) (15)

Z,Z± −→ z weak- ? in L∞(0, T ;H1(Ω)) (16)

Z,Z± −→ z strongly in L2(ΩT ) and a.e. in ΩT . (17)
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Theorem 3.4. Under the assumption of Lemma 3.3, and Z0 ∈ H2(Ω), the solution of (Ph) converges to the
solution of the following weak form of (1)-(5).

Seek (S,A,X, Y,R) ∈ L∞(0, T ;H2(Ω) ∩H1
SD

(Ω) ∩ C(Ω̄)× [L∞(0, T ;H2(Ω) ∩ C(Ω̄)]4 such that :∫
ΩT

∂S

∂t
vS +

∫
ΩT

dS∇S · ∇vS =

∫
ΩT

k1g(S,X + Y )vS

∫
ΩT

∂A

∂t
vA +

∫
ΩT

d2∇A · ∇vA + γ

∫
ΩT

AvA =

∫
ΩT

α
RA

KL +RA
XvA +

∫
ΩT

(α+ β)
RA

KL +RA
Y vA

∫
ΩT

∂X

∂t
vX +

∫
ΩT

d∇X · ∇vX +

∫
ΩT

(k4X + k5|A|mX)vX =

∫
ΩT

(k3g(S,X) + k5Y )vX

∫
ΩT

∂Y

∂t
vY +

∫
ΩT

d∇Y · ∇vY +

∫
ΩT

(k4 + k5)Y vY =

∫
ΩT

(k3g(S, Y ) + k5|A|mX)vY

∫
ΩT

∂R

∂t
vR +

∫
ΩT

dR∇R · ∇vR +

∫
ΩT

kRRv
R +

∫
ΩT

k3g(X + Y,R)vR =

∫
ΩT

k3
RA

K +RA
vR.

for all (vS , vA, vX , vY , vR) ∈ L2(0, T ;H1
0 (Ω)× [L2(0, T ;H1(Ω)]4.

4. Numerical results

The computational domain we consider is ΩT = [0, 1] × [0, 0.5] × [0, 20]. The boundary ΓD on which
the substrate, the antibiotic and the QSB agent are applied corresponds here to the top boundary of the
computational domain. At t = 0 the biofilm domain is defined by Ωb(0) = {(x1, x2),∈ Ω ; x2 ≥ 0, x2

1+x2
2 = 0.01}

and contained down-regulated biomass only.
In Figure 2 we show the spatial representation of down-regulated (column 1 and 3) and up-regulated cells

(column 2 and 4) at time t = 10 and t = 15. At the first line we show the representation when no antibiotic
nor QSB agent are applied, the second line corresponds to the case where only antibiotic is applied and third
line corresponds to the case where antibiotic and QSB agent act. One observe how antibiotic and QSB agent
allow to reduce the quantity of bacteria and also to modify the spatial expansion of bacteria.
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Figure 2. Spatial representation of down- and up-regulated cells at time t = 10 and t = 15.

The numerical results we present below concern the evolution of the total amount of each variable with respect
to time. We set

XTotal(t) =
1

|Ω|

∫
Ω

X(x, t) dx, YTotal(t) =
1

|Ω|

∫
Ω

Y (x, t) dx,

ATotal(t) =
1

|Ω|

∫
Ω

A(x, t) dx, RTotal(t) =
1

|Ω|

∫
Ω

R(x, t) dx.

The quantity of antibiotic applied at the top of the domain is VD = 10 and the quantity of QSB agent applied
at the top of the domain, ΓD, is QD = 10.
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Figure 3. Total amounts of X and Y with respect to time. Top left: without antibiotic and
QSB, Top right: with antibiotic, bottom left: with QSB and bottom right: with antibiotic and
QSB.

In Figure 3 we plot the evolution of the total amount of the down-regulated and up-regulated biomass in
different situations: without antibiotic and QSB, in presence of antibiotic, in presence of QSB and in presence
of antibiotic and QSB. From the system without antibotic and QSB we can deduce that the switch from down-
regulated to up-regulated biomass occurs at t ≈ 4. At this time, the down-regulated biomass starts to decrease
whereas the up-regulated cells are produced. The production of up-regulated cells at this time is in agreement
with the amount of AHL which increases more rapidly from t = 4, see Figure 4 (right).
The presence of antibiotic reduces the total amount of biomass but the switch form down-regulated to up-
regulated cells occurs at t ≈ 4 as well. The presence of QSB reduces the total amount of biomass and delays
the switch form down-regulated to up-regulated cells that occurs at t ≈ 6. This implies a bigger amount of
down-regulated cells and then a bigger amount of up-regulated cells. In presence of antibiotic and QSB, the
total amount of down-regulated cells is close to 0 for t ≥ 6 and the total amount of up-regulated cells is about
10−5 for 4 ≤ t ≤ 6 and is close to 0 for t < 4 and t > 6.

Figure 4 shows the evolution of the AHL molecule and the LasR protein with respect to time in the four
cases: without antibiotic and QSB, with antibiotic, with QSB, with antibiotic and QSB. The increase of AHL
is more important from t ≈ 4 in the situation in which there is no antibiotic nor QSB, which is in accordance
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to the switch of down-regulated cells to up-regulated cells at this time. The total amount of AHL is lower in
the presence of antibiotic whereas it is greater in the presence of QSB. This is due to the fact that the QSB
increase the total biomass. When antibiotic and QSB act simultaneously ATotal decreases significantly. The
total amount of LasR protein is not modified by the antibiotic, but it reduces to 10−3 when the QSB is applied.
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Figure 4. Comparison of the total amounts ATotal and RTotal in respect of time in the
different four cases.

Figure 5 shows a comparison between different combination of dosing of the antibiotic and the QSB agent.
The plot in Figures 3 and 4 underline the interest of using simultaneously an antibiotic and a QSB agent. In
Figure 5 we plot XTotal(t), YTotal(t), ATotal(t) and RTotal(t) when VD = QD = 10, VD = 10, QD = 5, and
VD = 5, QD = 10.
One can observe that the total amount of up-regulated cells is more reduced when QD > VD than the case
VD > QD despite the fact that down-regulated cells are less produced in the presence of a higher dose of
antibiotic. This could be explained by the plot of the total amount of AHL which shows that AHL is significantly
less produced when VD < QD. The case VD < QD leads to a higher production of LasR protein than the cases
where VD = 10. These results show that balancing between antibiotic and QSB dosing is not obvious. The
study of different combination of the dosing will be the object of a forthcoming paper.
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Figure 5. Comparison of the total amounts ATotal and RTotal with respect to time when
VD = 10, QD = 5 and VD = 5, QD = 10. Top left: down-regulated cells, Top right: up-regulated
cells, Bottom left: AHL and Bottom right: LasR.

5. Conclusion

We have considered a reaction-diffusion model describing the behavior of Pseudomenas aeruginosa bacteria
and its signal molecules AHL. We have investigated the effects of anti-lasR and antibiotics on this system. Our
qualitative study shows that an antibiotic treatment, alone, reduces the concentration of bacteria. And the
LasR-blocking can delay the beginning virulence and thus leads to the increase of down-regulated bacteria and
next the up-regulated one.

We also show that a combined treatment using an anti-LasR together with an antibiotic always reduce the
LasR as well as the AHL concentrations to low levels. However, the qualitative response to treatment is very
sensitive to parameter values. In forthcoming work we will perform a steady-state analysis of the governing
equations to clarify the evolution of species and in particularly to how can we ensure non-trivial small stable
steady state values for R and A for a given LasR-degradation rate.
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