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Abstract 

Production planning and inventory control in supply chain are of prime importance for companies which aim to 

produce high quality Finished products at lowest costs and right on time. For this reason, planners must reduce 

average stock levels and determine optimal safety lead times. This study deals with a multi-period production 

planning problem with a known dynamic demand. The lead times of demands are independent, discrete random 

variables with known and bounded probability distributions. A general probabilistic model, including a recursive 

procedure to calculate the expected total cost, is derived. A Genetic Algorithm is developed for this model to 

determine planned lead times and safety stock level which minimize the total expected cost. The latter is equal to 

the sum of the backlogging and inventory holding costs. This approach is compared to three other ones to illustrate 

its performance. The results prove that, under certain assumptions, it could be advantageous to optimizing planned 

lead times rather than implementing safety stocks. To understand the effect of dispersion on the robustness of the 

solution, different levels of variance and different shapes of lead time distributions are studied. Different analysis 

proves that the variability of the lead time affects slightly the expected total cost when the unit inventory holding 

cost is close to the unit backlogging cost.  

 

Keywords: Production planning, Multi-period, Dynamic demand, Stochastic lead times, Genetic Algorithm. 

 

1. Introduction and related publications 

Managing uncertainty is becoming one of the most important challenges in supply chain 

optimization. In fact, uncertainty causes several difficulties in production planning and 

inventory control. The sources of uncertainty are various and can take place at several levels of 

the supply chain: demand variability, machines breakdowns, transport delays, quality issues, 

etc. In this paper, we investigate the case of single stage production planning with a lot for lot 

policy where demands are known and should be delivered at given due dates. Once a demand 

is released, the delivery takes place after a random lead time. This randomness causes 

backlogging and inventory holding costs. The objective is to minimize the total expected cost 

by optimizing the planned lead times and the safety stock.  

 

Without attempting exhaustive review of the literature, we will point out and discuss some 

important studies relevant to the present research. To better anticipate uncertainty of lead times, 

planners use several techniques such as safety lead times and safety stocks. Jansen and de Kok 

(2013) highlighted the importance of anticipating lead times while Chopra et al (2004), He 

(2005) and Van Kampen et al. (2010) explained in which cases it could be advantageous to 

consider safety lead times and/or safety stocks. 

 

Among the first models considering one-stage production system deterministic demand and 

stochastic processing time, Weeks (1981) has proven that the problem is equivalent to the 

standard Newsboy problem when lead times are independent and identically distributed. Using 

the latter assumption, several other approaches have been proposed to determine optimal 

ordering policies (Porteus, 2002, Muthuraman et al. 2014). For other models considering 

stochastic lead times, but in the case of multiple suppliers, readers can refer to the review of 

Minner (2003). In the case of assembly systems, the literature review can be split into two 

different cases: (i) single period planning (Yano 1987, Chu et al. 1993, Tang and Grubbström, 

2003, Axsäter 2005, and Ben-Ammar et al. 2017); and (ii) multi-period planning (see for 
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example the paper Ould Louly and Dolgui 2013 and references included) where the demand is 

usually considered as constant. Readers can refer to Dolgui et al. (2013) for more exhaustive 

review. 

Close to our model, Deng et al. (2010) investigated a single stage inventory model with both 

stochastic demand and lead times. The goal is to determine an optimized sequence of orders, 

while minimizing the expected total cost over a discrete finite horizon. By assuming that the 

distribution of lead times degenerates to zero, a simulated annealing algorithm is introduced to 

solve the problem. Similarly, Rossi et al. (2012) addressed the same problem and developed 

fast heuristic approaches. 

 

In this paper, we study the case where lead times are independent discrete random variables 

with known and bounded probability distributions, but not necessarily identically distributed. 

Demands are supposed deterministic but not constant. To the best of our knowledge, no such 

study has been reported in the literature.  

The rest of the paper is organized as follows. Section 2 gives the problem formulation and 

considered assumptions. The proposed resolving approaches are detailed in Section 3. Some 

results are presented and discussed in Section 4. Finally, Section 5 is devoted to the conclusions 

and the perspectives. 

 

2. Problem formulation 

The details of the stochastic multi-period production planning are as follows. A sequence of 

dynamic demands, denoted by 𝐷𝑡, for a single product is placed over a finite planning horizon 

of 𝑇 discrete periods and can be non-null between periods 𝑝𝑚  and 𝑝𝑀  (see Figure 1). Each 

demand 𝐷𝑡 is launched at period 𝑡 − 𝑋𝑡 where 𝑋𝑡 is its planned lead time, whereas 𝐿𝑡, its real 

lead time, is a discrete random variable varying between 𝐿𝑡
− and 𝐿𝑡

+. The lead times of demands 

are independent but not necessarily identically distributed. At the beginning of each period 𝑡 
we may receive the quantity 𝐴𝑡 which is the sum of demands 𝐷𝑗  ordered at periods 𝑗 − 𝑋𝑗 such 

as 𝑗 − 𝑋𝑗 + 𝐿𝑗 = 𝑡. The set of indexes of demands verifying the last condition is denoted by 𝒜𝑡. 

Note that we may receive a non-null quantity between 𝑝ℎ, the first period with a possible non-

null inventory level, and 𝑝𝐵 + 1, where 𝑝𝐵 the index of the last period with a possible non-null 

backlog quantity (see Figure 1).  

Each demand can be supplied only from on-hand inventory if it is positive. If the inventory is 

null, the unsatisfied demands will increase the backlog level of the period and will stay in the 

system until they are satisfied. Note that backlogging may occur on periods 𝑝𝑏 , … , 𝑝𝐵 where 

𝑝𝑏 = 𝑝𝑚 because we cannot have backlogging until the first period with non-null demand (see 

Figure 1). To calculate the backlog quantity at each period 𝑡 ∈ {𝑝𝑏, … , 𝑝𝐵}, we use the set ℳ𝑡 

which contains the indexes of demands 𝐷𝑗  that are involved.  

One of the following costs may be non-null at the end of each period 𝑡: (i) if the inventory level 

is positive, the incurred cost is evaluated using unit inventory holding cost denoted by 𝑐ℎ, (ii) 

if there is a shortage, the incurred cost is proportional to the unit backlogging cost 𝑐𝑏. To tackle 

the effects of uncertainty in inventory and production planning, a safety stock, denoted by 𝑆0 is 

introduced as a decision variable. 

 
Figure 1. Ranges of periods of demands, no null inventory and no null backlogging. 

 

2.1 Notations 

The full list of notations is given below:  

𝑝ℎ 𝑝𝐻 

𝑝𝑚 

𝑝𝑏 𝑝𝐵 

𝑝𝑀 𝑝𝑀 − 1 
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Parameters and Variables 

𝑡 Index of the period 

𝐷𝑡 Demand at period 𝑡 
𝑝𝑚 Index of the first period with a non-null demand 

𝑝𝑀 Index of the last period with a non-null demand 

𝑋𝑡 Planned lead time of period 𝑡, it is a decision variable 

𝐿𝑡 Real lead time of the demand at period 𝑡 which is launched at period 𝑡 − 𝑋𝑡, it is a 

discrete random variable varying between 𝐿𝑡
− and 𝐿𝑡

+ 

𝐴𝑡 Release order quantity at period 𝑡 
𝒜𝑡 Set of indexes of demands 𝐷𝑗  ordered at periods 𝑗 − 𝑋𝑗 that may be received at period 𝑡. 

A period 𝑗 ∈ 𝒜𝑡 implies that  𝑗 ∈ {𝑝𝑚, … , 𝑝𝑀} and 𝐿𝑗
− ≤ 𝑡 − 𝑗 + 𝑋𝑗 ≤ 𝐿𝑗

+ 

ℳ𝑡 Set of indexes of periods involved in the calculation of the expected value of the backlog 

quantity at period 𝑡. A period 𝑗 ∈ ℳ𝑡  implies that 𝑗 ∈ {𝑝𝑚, … , 𝑝𝑀} and 𝐿𝑗
− ≤ 𝑡 − 𝑗 +

𝑋𝑗 ≤ 𝐿𝑗
+ − 1 

𝑚𝑡 First element in the set ℳ𝑡 

𝑀𝑡 Last element in the set ℳ𝑡 

𝑅𝑡 Backlogging value at period 𝑡 
𝑆𝑡 Inventory holding value at period 𝑡 
ℛ𝑡
𝛼 Subset of sample space of 𝑅𝑡 where only 𝛼 demands arrive before or at period 𝑡 

𝑟𝑡
𝛼 Realization of random variable 𝑅𝑡  where 𝛼  is the number of demands 𝐷𝑗 , 𝑗 ∈ ℳ𝑡 

arriving before or at period 𝑡  
𝑛𝑡 Number of elements of the set ℳ𝑡, i.e. 𝑛𝑡 = 𝑐𝑎𝑟𝑑(ℳ𝑡) 
𝑝𝑏 Index of the first period with a possible non-null backlog quantity, 𝑝𝑏 = 𝑝𝑚 

𝑝𝐵 Index of the last period with a possible non-null backlog quantity: 

𝑝𝐵 = 𝑚𝑎𝑥
𝑡=𝑝𝑚,..,𝑝𝑀

 (𝑡 − 𝑋𝑡 + 𝐿𝑡
+ − 1) 

𝑝ℎ Index of the first period with a possible non-null inventory level: 

𝑝ℎ = 𝑚𝑖𝑛
𝑡=𝑝𝑚,..,𝑝𝑀

 (𝑡 − 𝑋𝑡 + 𝐿𝑡
− ) 

𝑝𝐻 Index of the last period with a possible non-null inventory level, 𝑝𝐻 = 𝑝𝑀 − 1 

𝑐ℎ Unit inventory holding cost per period 

𝑐𝑏 Unit backlogging cost per period 

𝑆0 Safety stock, it is a decision variable and is held when there is a possible shortage 

Functions 

𝐸⟦. ⟧ Expected value 

𝐹𝑡(. ) Cumulative distribution function of  𝐿𝑡 
𝑞(. ) Recursive function 

𝑄(. ) Recursive function 

𝑥+ Maximum value of 𝑥 and 0, i.e. 𝑥+ = 𝑚𝑎𝑥(𝑥, 0) 
𝑥− Minimum value of 𝑥 and 0, i.e. 𝑥− = 𝑚𝑖𝑛(𝑥, 0) 
𝟙{𝐴} Indicator function, equals 1 if event 𝐴 is true; 0 otherwise 

 

2.1 Mathematical model 

The objective is to determine a sequence of planned lead times �⃗� and safety stock level 𝑆0, 

while satisfying all demands and minimizing the total expected cost over the given planning 

horizon. 

We assume that each real lead time  𝐿𝑡 is a discrete random variable varying between 𝐿𝑡
− and 

𝐿𝑡
+ and each planned lead time 𝑋𝑡 ∈ {𝐿𝑡

−, … , 𝐿𝑡
+}. Thus, the total cost is a random variable and 

its expression is given in Eq. (1): 
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𝑇𝐶(𝑆0, �⃗�, �⃗⃗�) = 𝑐ℎ × ∑ 𝑆𝑡

𝑝𝐻

𝑡=𝑝ℎ

+ 𝑐𝑏 ∑ 𝑅𝑡

𝑝𝐵

𝑡=𝑝𝑏

 (1) 

 

To evaluate the expected value of the total cost (𝐸⟦𝑇𝐶⟧), it is important to determine the 

expressions of 𝑅𝑡, 𝑆𝑡 and then their respective expected values. 

Property 1. 

An explicit form for the backlogging value at period 𝑡 is the following: 

 

𝑅𝑡 =

(

 ∑ 𝐷𝑖
𝑖∈ℳ𝑡

𝑖≤𝑡

− 𝑆0 − ∑ 𝐷𝑖
𝑖∈ℳ𝑡

𝟙{𝑖−𝑋𝑖+𝐿𝑖≤𝑡}

)

 

+

 (2) 

Proof. 

The backlogging value at period 𝑡 is the following: 

 

𝑅𝑡 = (∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

− 𝑆0 − ∑ 𝐴𝑖

𝑡

𝑖=𝑝ℎ

)

+

 (3) 

 

On one hand, the sum of release order quantities at period 𝑡 contains the set of demands ordered 

that can arrive before or at period  (𝟙{𝑖−𝑋𝑖+𝐿𝑖≤𝑡}): 

∑ 𝐴𝑖

𝑡

𝑖=𝑝ℎ

= ∑ 𝐷𝑖𝟙{𝑖−𝑋𝑖+𝐿𝑖≤𝑡}

𝑝𝑀

𝑖=𝑝𝑚

 

Knowing that for each demand 𝐷𝑖, 𝐿𝑖
− ≤ 𝐿𝑖. Thus, the sum can be split into two sub-sums as 

follows: 

∑ 𝐴𝑖

𝑡

𝑖=𝑝ℎ

= ∑ 𝐷𝑖𝟙
{
𝑖−𝑋𝑖+𝐿𝑖

+≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑃𝑀

𝑖=𝑝𝑚

+ ∑ 𝐷𝑖𝟙
{
𝑖−𝑋𝑖+𝐿𝑖

+>𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

 

The first part contains the demands that arrive at least at period 𝑡 (𝑖 − 𝑋𝑖 + 𝐿𝑖
+ ≤ 𝑡) and the 

second one contains those that can arrive after 𝑡 (𝑖 − 𝑋𝑖 + 𝐿𝑖 ≤ 𝑡 and 𝑖 − 𝑋𝑖 + 𝐿𝑖
+ > 𝑡). 

Knowing that ℳ𝑡 contains all indexes of periods such that 𝐿𝑗
− ≤ 𝑡 − 𝑗 + 𝑋𝑗 ≤ 𝐿𝑗

+ − 1, then: 

 

∑ 𝐴𝑖

𝑡

𝑖=𝑝ℎ

=∑𝐷𝑖𝟙
{
𝑖−𝑋𝑖+𝐿𝑖

+≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑃𝑀

𝑖=0

+ ∑ 𝐷𝑖
𝑖∈ℳ𝑡

𝟙{𝑖−𝑋𝑖+𝐿𝑖≤𝑡} (4) 

 

On the other hand, the sum of demands until period 𝑡 is the following: 

∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

= ∑ 𝐷𝑖𝟙{𝑖≤𝑡}

𝑝𝑀

𝑖=𝑝𝑚

 

Some demands can arrive at least at period 𝑡 (𝑖 − 𝑋𝑖 + 𝐿𝑖
+ ≤ 𝑡) and other ones can be delivered 

after period  (𝑖 − 𝑋𝑖 + 𝐿𝑖
+ > 𝑡), then: 
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∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

= ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+≤𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

+ ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+>𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

 

= ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

+ ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
−>𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

+ ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+>𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

+ ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+>𝑡

𝑖−𝑋𝑖+𝐿𝑖
−>𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

 

since 𝑋𝑖 ∈ {𝐿𝑖
−, … , 𝐿𝑖

+}, then: 

∑ 𝐷𝑖

𝑘

𝑖=𝑝𝑚

= ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

+ ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+>𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

 

Knowing that ℳ𝑡 contains all indexes of periods such that 𝐿𝑗
− ≤ 𝑡 − 𝑗 + 𝑋𝑗 ≤ 𝐿𝑗

+ − 1, then: 

 

∑ 𝐷𝑖

𝑘

𝑖=𝑝𝑚

= ∑ 𝐷𝑖𝟙
{

𝑖≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
+≤𝑡

𝑖−𝑋𝑖+𝐿𝑖
−≤𝑡

}

𝑝𝑀

𝑖=𝑝𝑚

+ ∑ 𝐷𝑖
𝑖∈ℳ𝑡

𝑖≤𝑡

 (5) 

 

Using Eq. (4) and Eq. (5), Eq. (2) can be easily deduced. ■ 

The backlogging quantity 𝑅𝑡  at period 𝑡  is a discrete random variable (because of the 

randomness of lead times) with a finite number of finite outcomes. The following property gives 

its expected value. 

Property 2. 

An explicit form for the backlogging expected value at period 𝑡 is the following: 

 

𝐸⟦𝑅𝑡⟧ = 𝑊(𝑡) × (∑ 𝑄(𝛼, 𝛼, 𝑡,𝑀𝑡)

𝑛𝑘−1

𝛼=0

) (6) 

 

Where the recursive function 𝑄(. , . , . , . ) is defined by:  

𝑄(𝛼, 𝑖, 𝑡, 𝑧𝑖+1) =

{
 
 
 
 

 
 
 
 

𝑈(𝑡) 𝑖 = 0, 𝛼 = 0

∑ 𝑄(𝛼, 𝑖 − 1, 𝑡, 𝑧𝑖)

𝑧𝑖+1

𝑧𝑖=𝑚𝑘+𝑖−1
𝑧𝑖∈ℳ𝑡

∀𝑖 ∈ [2, 𝛼], ∀𝛼

∑ (𝑈(𝑘) −∑𝐷𝑧𝑘

𝛼

𝑘=1

)

+

× 𝑉(𝛼, 𝑡)

𝑧𝑖+1

𝑧1=𝑚𝑡
𝑧1∈ℳ𝑡

𝑖 = 1, ∀𝛼

 

Where 

𝑈(𝑡) = ∑ 𝐷𝑖
𝑖∈ℳ𝑡

𝑖≤𝑡

− 𝑆0 
(7) 

𝑉(𝛼, 𝑡) =∏(
1

1 − 𝐹𝑧𝑘(𝑡 + 𝑋𝑧𝑘 − 𝑧𝑘)
− 1)

𝛼

𝑘=1

 

𝑊(𝑡) = ∏(1 − 𝐹𝑖(𝑡 + 𝑋𝑖 − 𝑖))

𝑖∈ℳ𝑡

 

𝐹𝑖(𝑡 + 𝑋𝑖 − 𝑖) = 𝑃⟦𝐿𝑖 ≤ 𝑡 + 𝑋𝑖 − 𝑖⟧ 
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Proof. 

Let 𝑟𝑡
𝛼 be an element of the subset ℛ𝑡

𝛼 of the sample space of the random variable 𝑅𝑡, where 

𝛼 ∈ {0,… , 𝑛𝑡 − 1} is the number of order release quantities arriving before or at period 𝑡. By 

definition, the expected value of 𝑅𝑡 is defined as follows: 

𝐸⟦𝑅𝑡⟧ = ∑ ∑ 𝑟𝑡
𝛼 × 𝑃⟦𝑅𝑡 = 𝑟𝑡

𝛼⟧

𝑟𝑡
𝛼∈ℛ𝑡

𝛼

𝑛𝑡−1

𝛼=0

 

where  

ℛ𝑡
𝛼 = {𝑈(𝑡) −∑𝐷𝑧𝑘

𝛼

𝑘=1

}
𝑧𝛼+1=𝑀𝑡

𝑧𝑘=𝑚𝑡+𝑡−1,…,𝑧𝑘+1

 

If no release order quantity arrives before period 𝑡 (𝛼 = 0), i.e. all demands indexed by 𝑖 ∈ ℳ𝑡 

are received after period 𝑡 (𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1} = 1), the backlogging value is calculated using Eq. 

(2) and Eq. (7): 

𝑅𝑡 = ∏ 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1}
𝑖∈ℳ𝑡

× (𝑈(𝑡))
+

 

In this case, ℛ𝑡
0 contains only one element 𝑟𝑡

0 = (𝑈(𝑡))
+

 with 𝑃⟦𝑅𝑡 = 𝑟𝑡
0⟧ =  𝑊(𝑡), then 

 

𝑃⟦𝑅𝑡 = 𝑟𝑡
0⟧ × 𝑟𝑡

0 = 𝑊(𝑡) × (𝑈(𝑡))
+

 (8) 

 

If one release order quantity arrives before period 𝑡 (𝛼 = 1), i.e. all demands indexed by 𝑖 ∈

ℳ𝑡 ,  except 𝑧1  (𝟙{𝐿𝑧1≤𝑡+𝑋𝑧1−𝑧1}
= 1) , are received after period 𝑡  (𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1} = 1), the 

backlogging value is calculated using Eq. (2) and Eq. (7): 

𝑅𝑡 =

(

 
 
𝑈(𝑡) − 𝐷𝑧1𝟙{𝐿𝑧1≤𝑡+𝑋𝑧1−𝑧1}

− ∑ 𝐷𝑖
𝑖∈ℳ𝑡

𝑖≠𝑧1

(1 − 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1})

)

 
 

+

 

Using the fact that ∀𝑖 = 𝑝𝑚, … , 𝑝𝑀, the random variables 𝐿𝑖 are independent, so: 

 

𝑅𝑡 = 𝟙{𝐿𝑧1≤𝑡+𝑋𝑧1−𝑧1}
× (𝑈(𝑡) − 𝐷𝑧1)

+
× ∏ 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1}
𝑖∈ℳ𝑡

𝑖≠𝑧1

= ∏ 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1}
𝑖∈ℳ𝑡

× (𝑈(𝑡) − 𝐷𝑧1)
+
×

𝟙{𝐿𝑧1≤𝑡+𝑋𝑧1−𝑧1}

𝟙{𝐿𝑧1≥𝑡+𝑋𝑧1−𝑧1+1}
 

 

Note that there is 𝑛𝑡 = 𝑐𝑎𝑟𝑑(ℳ𝑡) possibilities for 𝑧1 (𝑧1 = 𝑚𝑡, … ,𝑀𝑡 such as 𝑧1 ∈ ℳ𝑡), then:  

 

∑ 𝑟𝑡
1 × 𝑃⟦𝑅𝑡 = 𝑟𝑡

1⟧

𝑟𝑡
1∈ℛ𝑡

1

= 𝑊(𝑡) × ∑ ((𝑈(𝑡) − 𝐷𝑧1)
+
× 𝑉(1, 𝑡))

𝑀𝑡

𝑧1=𝑚𝑡
𝑧1∈ℳ𝑡

 (9) 

 

If two release order quantities arrive before period 𝑡 (𝛼 = 2), i.e. all demands indexed by 𝑖 ∈
ℳ𝑡 , except two of them ( 𝑧1, 𝑧2 ∈ ℳ𝑡 ), are received after period 𝑡  ( 𝟙{𝐿𝑧1≤𝑡+𝑋𝑧1−𝑧1}

×

𝟙{𝐿𝑧2≤𝑡+𝑋𝑧2−𝑧2}
= 1  and 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1} = 1), the backlogging value is calculated using Eq. (2) 

and Eq. (7): 
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𝑅𝑡 =

(

 
 
𝑈(𝑡) −∑𝐷𝑧𝑘𝟙{𝐿𝑧𝑘≤𝑡+𝑋𝑧𝑘−𝑧𝑘}

2

𝑘=1

− ∑ 𝐷𝑖
𝑖∈ℳ𝑡

𝑖≠{𝑧1,𝑧2}

(1 − 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1})

)

 
 

+

 

Using the fact that ∀𝑖 = 𝑝𝑚, … , 𝑝𝑀, the random variables 𝐿𝑖 are independent, so: 

𝑅𝑡 =∏(𝟙
{𝐿𝑧𝑘≤𝑡+𝑋𝑧𝑘−𝑧𝑘}

)

2

𝑘=1

× (𝑈(𝑡) −∑𝐷𝑧𝑘

2

𝑘=1

)

+

× ∏ 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1}
𝑖∈ℳ𝑡

𝑖≠{𝑧1,𝑧2}

= ∏ 𝟙{𝐿𝑖≥𝑡+𝑋𝑖−𝑖+1}
𝑖∈ℳ𝑡

× (𝑈(𝑡) −∑𝐷𝑧𝑘

2

𝑘=1

)

+

×∏(
𝟙
{𝐿𝑧𝑘≤𝑡+𝑋𝑧𝑘−𝑧𝑘}

𝟙
{𝐿𝑧𝑘≥𝑡+𝑋𝑧𝑘−𝑧𝑘+1}

)

2

𝑘=1

 

 

Note that there is (
𝑛𝑡
2
) possibilities for (𝑧1, 𝑧2) such as 𝑧2 = 𝑚𝑡 + 1,… ,𝑀𝑡 , 𝑧1 = 𝑚𝑡, … , 𝑧2 

and 𝑧1, 𝑧2 ∈ ℳ𝑡, then:  

 

∑ 𝑟𝑡
2 × 𝑃⟦𝑅𝑡 = 𝑟𝑡

2⟧

𝑟𝑡
2∈ℛ𝑡

2

= 𝑊(𝑡) × ∑ ∑ ((𝑈(𝑡) −∑𝐷𝑧𝑘

2

𝑘=1

)

+

× 𝑉(2, 𝑡))

𝑧2

𝑧1=𝑚𝑡
𝑧1∈ℳ𝑡

𝑀𝑡

𝑧2=𝑚𝑡+1
𝑧2∈ℳ𝑡

 (10) 

 

The general formulation of 𝐸⟦𝑅𝑡⟧ can easily be expressed recursively by using Eq. (8), Eq. (9) 

and Eq. (10).■ 

The inventory level 𝑆𝑡 at period 𝑡 is also a discrete random variable with a finite number of 

finite outcomes. The following property gives its expected value. 

Property 3. 

An explicit form for expected value of the inventory level 𝑆𝑡  at period 𝑡  is given by the 

following equation: 

 

𝐸⟦𝑆𝑡⟧ = 𝑆0 + ∑ 𝐸⟦𝐴𝑖⟧

𝑡

𝑖=𝑝ℎ

− ∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

+ 𝐸⟦𝑅𝑡⟧ (11) 

where  

𝐸⟦𝐴𝑖⟧ = ∑ 𝐷𝑗 ×  𝑃⟦𝐿𝑗 = 𝑖 − 𝑗 + 𝑋𝑗⟧

𝑗∈𝒜𝑖

 

Proof. 

The inventory level 𝑆𝑡 at period 𝑡 is the following: 

𝑆𝑡 = (𝑆0 + ∑ 𝐴𝑖

𝑡

𝑖=𝑝ℎ

− ∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

)

+

 

Using the property 𝑥 = 𝑥+ + 𝑥− and Eq. (3), we obtain: 

 

𝑆𝑡 = 𝑅𝑡 + 𝑆0 + ∑ 𝐴𝑖

𝑡

𝑖=𝑝ℎ

− ∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

 (12) 

 



 8 

and then 𝐸⟦𝑆𝑡⟧ can be deduced. ■ 

The demand being deterministic and dynamic between periods 𝑝𝑚 and 𝑝𝑀, the backlogging 

quantity 𝑅𝑡 can be positive only for periods between 𝑝𝑏 = 𝑝𝑚 and 𝑝𝐵 = 𝑚𝑎𝑥
𝑡=𝑝𝑚,..,𝑝𝑀

 (𝑡 − 𝑋𝑡 +

𝐿𝑡
+ − 1) and the inventory level 𝑆𝑡 can be positive only for periods between 𝑝ℎ and 𝑝𝐻. The 

expected value of the total cost can be expressed at the following property. 

Property 4. 

𝐸⟦𝑇𝐶⟧ = 𝑐ℎ(𝑝𝐻 − 𝑝ℎ + 1)𝑆0 + (𝑐
ℎ + 𝑐𝑏) ∑ 𝐸⟦𝑅𝑡⟧

𝑝𝐻

𝑡=𝑝𝑏

+ 𝑐𝑏 ∑×𝐸⟦𝑅𝑡⟧

𝑝𝐵

𝑡=𝑝𝑀

 

+𝑐ℎ ( ∑ (𝑝𝐻 − 𝑝ℎ + 1 − 𝑡) × 𝐸⟦𝐴𝑝ℎ+𝑡⟧

𝑝𝐻−𝑝ℎ

𝑡=0

− ∑ (𝑝𝐻 − 𝑝𝑚 + 1 − 𝑡) × 𝐷𝑝𝑚+𝑡

𝑝𝐻−𝑝𝑚

𝑡=0

) 

Proof. 

Using Eq. (1), the explicit form of the expected value of the total cost can be deduced as follows: 

𝐸⟦𝑇𝐶⟧ = ∑ 𝑐ℎ × 𝐸⟦𝑆𝑡⟧

𝑝𝐻

𝑡=𝑝ℎ

+ ∑ 𝑐𝑏 × 𝐸⟦𝑅𝑡⟧

𝑝𝐵

𝑡=𝑝𝑏

 

Using Eq. (11), we obtain: 

 

𝐸⟦𝑇𝐶⟧ = 𝑐ℎ𝑆0 ∑ 1

𝑝𝐻

𝑡=𝑝ℎ

+ 𝑐ℎ ∑ (∑ 𝐸⟦𝐴𝑖⟧

𝑡

𝑖=𝑝ℎ

− ∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

)

𝑝𝐻

𝑡=𝑝ℎ

+ 𝑐ℎ ∑ 𝐸⟦𝑅𝑡⟧

𝑝𝐻

𝑡=𝑝ℎ

+ 𝑐𝑏 ∑ 𝐸⟦𝑅𝑡⟧

𝑝𝐵

𝑡=𝑝𝑏

 

 

Knowing that 

∑ 𝐸⟦𝑅𝑡⟧

𝑝𝐵

𝑡=𝑝𝑏

= ∑ 𝐸⟦𝑅𝑡⟧

𝑝𝐻

𝑡=𝑝𝑏

+ ∑ ×𝐸⟦𝑅𝑡⟧

𝑝𝐵

𝑡=𝑝𝑀

 

∑ 𝐸⟦𝑅𝑡⟧

𝑝𝐻

𝑡=𝑝ℎ

= ∑ 𝐸⟦𝑅𝑡⟧

𝑝𝐻

𝑡=𝑝𝑏

 

∑ ∑ 𝐸⟦𝐴𝑖⟧

𝑡

𝑖=𝑝ℎ

=

𝑝𝐻

𝑡=𝑝ℎ

∑ (𝑝𝐻 − 𝑝ℎ + 1 − 𝑡) × 𝐸⟦𝐴𝑝ℎ+𝑡⟧

𝑝𝐻−𝑝ℎ

𝑡=0

 

∑ ∑ 𝐷𝑖

𝑡

𝑖=𝑝𝑚

=

𝑝𝐻

𝑡=𝑝ℎ

∑ (𝑝𝐻 − 𝑝𝑚 + 1 − 𝑡) × 𝐷𝑝𝑚+𝑡

𝑝𝐻−𝑝𝑚

𝑡=0

 

 

Then, the explicit form of the expected value of the total cost can be deduced. ■ 

 

3. Resolving approaches 

To determine planned lead times and safety stock level which minimize the total expected cost, 

four approaches are applied: 

- NB&SS: it is based on Newsboy formula presented in (Ben Ammar et al. 2017) and an 

iterative method.  The sequence of optimal planned lead times is given by the Newsboy 

formula and then the optimal safety stock is determined iteratively.  
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- Xmin&SS: it consists of ordering all quantities as late as possible, the sequence of 

planned lead times is composed of minimal values of real times (𝑋𝑡 = 𝐿𝑡 
−  ∀𝑡 ). Then, 

the optimal safety stock level is also determined iteratively. 

- Xmax: it consists of ordering all quantities as soon as possible, i.e. the sequence of 

planned lead times is composed of maximal values of real times (𝑋𝑡 = 𝐿𝑡
+ ∀𝑡).  

- Xopt&SS: it employs a classical GA to determine the sequence of optimal planned lead 

times for a given safety stock level. The GA is run for several values of safety stock and 

then the best solution is selected. 

 

Note that for the GA, an “Elitist Strategy” is employed. The initial population is randomly 

generated. Each individual is a sequence of planned lead times of the demands. Each gene 

contains a planned lead time 𝑋𝑡 which may take any value between 𝐿− and 𝐿+.  The expected 

value of the total cost 𝐸⟦𝑇𝐶⟧ is the fitness function used to evaluate each solution. 

 

4. Experiments and discussions 

The resolving approaches, mentioned above, have been tested on 12 data set combinations. The 

characteristics of data sets and the different combinations are given in Table 1 and Table 2. 

Each combination has been tested through the resolution of 100 instances where the vector of 

demand is generated randomly. For all instances, the demand is generated for periods between 

𝑝𝑚 = 11 and 𝑝𝑀 = 25. Table 3 gives the probability distributions of demands’ lead times. 

 

Inventory 

cost 

Backlogging cost Demand variability 

Low Med. High Zero Low Med. High 

6 7 15 25 D=100 𝐷~𝑈(90,110) 𝐷~𝑈(70, 130) 𝐷~𝑈(0, 200) 
Table 1. Characteristics of data sets. 

 

Data set combination 1 2 3 4 5 6 7 8 9 10 11 12 

Demand variability Z Z Z L L L M M M H H H 

Backlogging cost (𝑐𝑏) L M H L M H L M H L M H 

Table 2. Data set combinations. Z=Zero, M=Medium, L=Low, H=High. 

 

𝒍 1 2 3 4 5 6 7 

𝑷𝒓⟦𝑳𝟏𝟏 = 𝒍⟧ 0.27 0.51 0.2 0.01 0.01 0 0 

𝑷𝒓⟦𝑳𝟏𝟐 = 𝒍⟧ 0 0.2 0.3 0.25 0.25 0 0 

𝑷𝒓⟦𝑳𝟏𝟑 = 𝒍⟧ 0 0 0.2 0.2 0.2 0.2 0.2 

𝑷𝒓⟦𝑳𝟏𝟒 = 𝒍⟧ 0 0.25 0.3 0.25 0.2 0 0 

𝑷𝒓⟦𝑳𝟏𝟓 = 𝒍⟧ 0 0 0.5 0.5 0 0 0 

𝑷𝒓⟦𝑳𝟏𝟔 = 𝒍⟧ 0 0.3 0.3 0.4 0 0 0 

𝑷𝒓⟦𝑳𝟏𝟕 = 𝒍⟧ 0 0 0.5 0.5 0 0 0 

𝑷𝒓⟦𝑳𝟏𝟖 = 𝒍⟧ 0 0.2 0.8 0 0 0 0 

𝑷𝒓⟦𝑳𝟏𝟗 = 𝒍⟧ 0 0.6 0.4 0 0 0 0 

𝑷𝒓⟦𝑳𝟐𝟎 = 𝒍⟧ 0.2 0.2 0.2 0.2 0.2 0 0 

𝑷𝒓⟦𝑳𝟐𝟏 = 𝒍⟧ 0 0.25 0.25 0.25 0.25 0 0 

𝑷𝒓⟦𝑳𝟐𝟐 = 𝒍⟧ 0 0 0.3 0.2 0.2 0.2 0.1 

𝑷𝒓⟦𝑳𝟐𝟑 = 𝒍⟧ 0 0.25 0.25 0.25 0.25 0 0 

𝑷𝒓⟦𝑳𝟐𝟒 = 𝒍⟧ 0 0 0.5 0.5 0 0 0 

𝑃𝑟⟦𝑳𝟐𝟓 = 𝒍⟧ 0 0.3 0.3 0.4 0 0 0 

Table 3. Probability distributions of lead times 
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Figure 2 shows the variation of the expected total cost for data combination 8 as function of 

safety stock level. The best known solution is the one found by Xopt&SS. It is equal to 6284.5. 

The best solution found by NB&SS corresponds to an expected total cost of 7164.9 and the best 

one found by Xmax is equal to 11867.1. For these three approaches, introducing the safety stock 

seems to be useless regarding costs. For Xmin&SS, the optimal solution (10601) corresponds to 

a non-null average safety stock (𝑆0 = 124.6). 
 

 
Figure 2. Variation of the expected total cost as function of safety stock level. 

 

Table 4 shows the average results of the 4 approaches for the 12 data set combinations. It can 

be seen that, whatever are the demand variability and backlogging cost, the Xopt&SS approach 

dominates all other approaches. For Xmin&SS approach, safety stock level it is much more 

influenced by the increase of backlogging cost. For a high backlogging cost, the increase of 

demand variability decreases slightly the level of safety stock. 

The relative performances of the different approaches for all data set combinations are 

summarized in Figure 3, where the Xopt&SS approach is taken as reference. Globally, both 

NB&SS and Xopt&SS approaches dominate the two others (Xmax and Xmin&SS). The average 

gap between the first two ones decreases as function of demand variability. Nevertheless, it is 

small only if the backlogging cost is low and still relatively great otherwise. Concerning Xmax 

approach, even if it seems to be greatly inefficient, especially for the case of low backlogging 

cost, it becomes more efficient than Xmin&SS when the backlogging cost is high or when this 

cost is medium and the demand variability is high. 

 

Data set 

combination 

Xopt&SS NB&SS Xmax Xmin&SS 

𝑆0 ETC 𝑆0 ETC 𝑆0 ETC 𝑆0 ETC 

1 0 4287.6 0 4820.3 0 11742.0 100 6266.6 

2 0 5861.6 0 6916.1 0 11742.0 100 10208.8 

3 0 6995.3 0 10026.9 0 11742.0 200 11679.7 

4 0 4389.6 0 4852.5 0 11638.6 100.6 6441.4 

5 0 5987.8 0 6935.0 0 11658.7 107.8 10204.7 

6 0 7094.5 0 9976.7 0 11673.3 195.1 11899.0 

7 0 4599.2 0 5023.4 0 11810.1 104.5 6924.9 

8 0 6284.5 0 7164.9 0 11867.1 124.6 10601.0 

9 0 7359.3 0 10005.0 0 11651.4 187.3 12512.4 

10 0 5136.5 0 5467.2 0 11823.3 104.2 8548.2 

11 0 6805.3 0 7657.6 0 11164.1 157.7 12364.8 

12 0 8002.1 0 9989.3 0 11612.7 184.5 15063.2 

Table 4. Average results for all data set combinations 
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Figure 3. Relative performances of the different approaches 

 

To analyze the effect of lead times variability on the robustness of the Xopt&SS approach, the 

effect of variance is studied. To do so, we proceed by variating the variance of demands’ lead 

times. For all periods, we assume the same probability distributions: 𝑃𝑟⟦𝐿𝑡 = 1⟧ = 0.245,
𝑃𝑟⟦𝐿𝑡 = 2⟧ = 0.48, 𝑃𝑟⟦𝐿𝑡 = 3⟧ = 0.255, 𝑃𝑟⟦𝐿𝑡 = 4⟧ = 0.01 and 𝑃𝑟⟦𝐿𝑡 = 5⟧ = 0.01. 
 

 
Figure 4. Effect of lead time variance 

 

In Figure 4, we analyse the effect of variance. It varies between -75% and 75% compared to the 

reference case. We notice that the variation of the expected total cost increases when the ratio 

𝑐𝑏/𝑐ℎ is close to 1 whatever the variability of the variance of the lead time is. However, the 

variance of expected total cost depends on the estimation of the probability distribution of the 

lead times. When the variance of lead times increases the variance of the expected total cost is 

higher. It means that, it should be better to overestimate the variability of the lead times.  

It is worthwhile to mention that in the case of backlogging cost close to the holding cost, it 

seems to be important to obtain reliable statistical data to get a good estimate of the probability 

distributions of lead times and/or push the suppliers to be more responsive able to cope with 

the sources of the uncertainty regarding their lead times. 

 

5. Conclusions 

 

This paper deals with a multi-period production planning with a known dynamic demand and 

stochastic lead times. A general probabilistic model, including a recursive procedure to 

calculate the expected total cost as function of planned lead times and safety stock level, is 

proposed and solved using a classical genetic algorithm. This approach is compared to three 
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other ones to illustrate its performance. The results prove that, under certain assumptions, it 

could be advantageous to optimizing planned lead times rather than implementing safety stocks. 

A sensitivity analysis is also used to understand the effect of lead time dispersion on the quality 

of the solution.  

Future work will focus on improving the genetic algorithm performances and testing this 

approach on industrial cases. The used modelling mechanism will enable us to extend the model 

to multi-level assembly systems. 
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