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A note on representations of welded braid groups

Paolo Bellingeri∗, Arthur Soulié†

Abstract

In this note, we adapt the procedure of the Long-Moody procedure to construct linear

representations of welded braid groups. We exhibit the natural setting in this context and

compute the first examples of representations we obtain thanks to this method. We take

this way also the opportunity to review the few known linear representations of welded braid

groups.

Introduction

The theory of linear representations of the braid group Bn is a very large topic. One of the most
famous representations is the Burau representation [10], which is non faithful for n ≥ 5. For a long
period, it was an open problem whether Bn was linear until the independent works of Bigelow [6],
Krammer [16] and Lawrence [17] showing a faithful representation. Since the braid group Bn is
an ubiquitous object in mathematics it is natural to ask whether other generalizations are linear
too, but except some cases (for instance Artin groups of type B and D, braid groups of the sphere
and of the projective plane) this question remains widely open.

In this work note we focus on welded braid groups, which, as braid groups, admit several different
definitions, for instance in terms of configuration spaces of (euclidean) circles, as automorphisms
of free groups, or as tubes in R

4.

The representation theory for these groups is just at the beginning: Burau representation extends,
in terms of Fox derivatives and Magnus expansion, to welded braid groups [3] and few other
results are known on representations arising from braided vector spaces [14] and on extensions of
representations of Bn to particular subgroups of welded braid groups [9].

The main idea of this work is to extend Long-Moody procedure [7, 20, 18, 19, 24, 23] to wBn: in
§1 we recall briefly the interpretation of welded braid groups in terms of fundamental groups of
configuration spaces of circles and as automorphisms of free groups through Artin homomophism;
this latter interpretation will be extended to other possible representations, extending Wada rep-
resentations of the classical braid group Bn. In §1.3 we recall and compare different Burau rep-
resentations for wBn, the reducible one (Proposition 1.1), the reduced one (Proposition 1.2), and
the dual version (Proposition 1.4). Then we introduce Tong-Yang-Ma representations of wBn

(Proposition 1.5) and extending the heuristic approach proposed in [25] we show that Burau and
Tong-Yang-Ma representations are the only representations allowing a certain diagram to commute
(Proposition 1.6). The main results are given in §2, where we adapt to welded braid groups the
Long-Moody procedure for obtaining iterated linear representations. At the first step we obtain the
Burau representation (Theorem 2.4) as in the case of Bn. Surprisingly at the second iteration we
do not obtain any new information, since we get the tensor product of two Burau representations
(Theorem 2.6), while in the case of Bn we recover this way Lawrence-Krammer representation (see
[24, Section 2.3.1]). This result can be also compared with the fact that the "trivial" extension of
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Bigelow representation to wBn (associating to "braid" generators corresponding Bigelow matrices
and to "permutation" generators the corresponding permutations matrices) is not well defined (see
[3, 14]). Finally, once more contrarily to the case of Bn, we show in Theorem 2.7 that it is not pos-
sible to recover the Tong-Yang-Ma representation for wBn by a Long-Moody construction and we
conclude with some further possible directions on the study of linear representations for wBn. In a
further paper, we intend to study the Long-Moody iteration on the Tong-Yang-Ma representation,
but here we focus on the two above interesting facts.
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Notations and conventions. Throughout this work, for a group defined by a (finite) presen-
tation, we take the convention to read from the right to the left for the group operation.

1 State of the art of welded braid groups representations

1.1 Recollections on welded braid groups

We refer the reader to [11] for a complete and unified presentation of the various definitions
of welded braid groups, which correspond to (unextended) loop braid groups in this reference.
In the following we will use essentially the interpretation of welded braid groups in terms of
automorphisms of free groups and fundamental groups of configuration spaces of circles.

In this work, we focus on a 3-dimensional analogue of Bn: it is the fundamental group of all
configurations of n unlinked Euclidean circles lying on planes that are parallel to a fixed one
(called untwisted rings in [8]). According to [8] we will denote by URn the space of configurations
of n unlinked Euclidean circles being all parallel to a fixed plane and by URn its fundamental
group (called group of rings in [8]). The group URn is generated by 2 types of moves (see Figure
1.1).

i i+ 1 i i+ 1

Figure 1.1 The moves τi and σi.

The move τi is the path permuting the i-th and the i + 1-th circles by passing over (or around)
while σi permutes them by passing the i-th circle through the i + 1-th (let us remark that our
notation is different from the one of [8], where τi was denoted by σi and σi by ρi; here we change
the notation because σi’s generate a subgroup isomorphic to Bn).

The fundamental group URn is here denoted by wBn, and it is called welded braid group. Note
that the convention of reading from the right to the left for the group operation is coherent with
the interpretation of wBn as the fundamental group of the space of configurations of n unlinked
Euclidean circles being all parallel to a fixed plane: this convention corresponds to the composition
of morphisms. We abuse the notation throughout this work, identifying λ◦λ′ = λλ′ for all elements
λ and λ′ of wBn.

In [8] was proven that the welded braid group on n generators wBn admits a presentation with
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generators {σi, τi | i ∈ {1, . . . , n− 1}} together with relations:







σiσk = σkσi if | i− k |> 2,

σiσi+1σi = σi+1σiσi+1 if i ∈ {1, . . . , n− 2},

τiτk = τkτi if | i− k |> 2,

τiτi+1τi = τi+1τiτi+1 if i ∈ {1, . . . , n− 2},

τ2
i = 1 if i ∈ {1, . . . , n− 1},

σiτk = τkσi if | i− k |> 2,

τiσi+1σi = σi+1σiτi+1 if i ∈ {1, . . . , n− 2},

σiτi+1τi = τi+1τiσi+1 if i ∈ {1, . . . , n− 2}.

(1.1)

The map URn → URn+1 which adds a circle on the left induces an (injective) homomorphism
from wBn to wBn+1.

Let PURn be the space of configurations of n ordered unlinked Euclidean circles being all parallel
to a fixed plane; the fundamental group of PURn is usually denoted by wPn and called welded
pure braid group.

The map PURn+1 → PURn which forgets the first circle is a fibration and the long exact sequence
in homotopy provides the following (splitting) sequence:

1 // Dn
// wPn+1

// wPn
// 1,

where Dn consists of configurations with n−1 circles in a fixed position and the first circle varying
[8].

Let now UR1,n be the orbit space PURn+1/Sn where the symmetric group Sn acts by permutation
on last n circles. We will denote by wB1,n its fundamental group. As in previous case we have a
splitting sequence:

1 // Dn
// wB1,n

// wBn
// 1.

1.2 Artin homomorphism

In the following we will use another interpretation of wBn, this time in terms of automorphisms of
free groups. Let Fn be the free group on n generators 〈x1, . . . , xn〉. We call Artin homomorphism
the map an : wBn → Aut (Fn) defined as follows:

σi 7−→







xi 7−→ xi+1

xi+1 7−→ x−1
i+1xixi+1

xj 7−→ xj j /∈ {i, i+ 1}

τi 7−→







xi 7−→ xi+1

xi+1 7−→ xi

xj 7−→ xj j /∈ {i, i+ 1}

This map is well defined: the relations involving only generators {σi | i ∈ {1, . . . , n− 1}} are ver-
ified since it is the usual Artin representation of Bn in Aut (Fn). The same remark holds for
relations involving only generators {τi | i ∈ {1, . . . , n− 1}} (permutation automorphisms), there-
fore the only relations that we have to verify are relations involving generators of both type σi

and τi. We check here relations τiσi+1σi = σi+1σiτi+1 and τi+1τiσi+1 = σiτi+1τi; commutation
relations are evidently verified (see also [13]).
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an (σi+1σiτi+1) =







xi 7−→ xi+2

xi+1 7−→ x−1
i+2xi+1xi+2

xi+2 7−→ x−1
i+1xixi+1

xj 7−→ xj j /∈ {i, i+ 1, i+ 2}

= an (τiσi+1σi)

an (σiτi+1τi) =







xi 7−→ xi+2

xi+1 7−→ xi+1

xi+2 7−→ x−1
i+1xixi+1

xj 7−→ xj j /∈ {i, i+ 1, i+ 2}

= an (τi+1τiσi+1)

Geometrically, we are associating to any generator of wBn the corresponding action on the funda-
mental group of the ball B3 less n trivial circles, which is a free group on n generators. We refer to
[11] for a rigorous proof of this construction and of the fact that Artin homomorphism is injective.
Moreover, the image of the group wBn in Aut (Fn) is the subgroup of those automorphisms of Fn

that send each generator of Fn to a conjugate of some generator [13].

Notice also that the homomorphism from wBn to wBn+1 previously defined ("add a circle on the
left") becomes here the restriction of the map id1 ∗ − : Aut (Fn) →֒ Aut (Fn+1). In other words,
id1 ∗ σi = σi+1 and id1 ∗ τi = τi+1.

The group Dn previously defined is isomorphic to the group generated by automorphisms

{ǫi,1, ǫ1,i | i ∈ {2, . . . , n}} [1], where

ǫ1,i 7−→

{

xi 7−→ x−1
1 xix1

xj 7−→ xj j 6= i

ǫi,1 7−→

{

x1 7−→ x−1
i x1xi

xj 7−→ xj j 6= 1

Note that {ǫi,1} generate a free group of order n− 1 and {ǫ1,i} a free abelian group of rank n− 1
[1], but Dn is not finitely presented when n ≥ 3 [22].

Alternative to Artin homomorphism. Wada [27] found several local representations of Bn

in Aut (Fn) of the following form: any generator (and therefore its inverse) of Bn acts trivially on
generators of Fn except a pair of generators:

σi · xi = u(xi, xi+1) ,

σi · xi+1 = v(xi, xi+1) ,

σi · xj = xj j 6= i, i+ 1 ,

where u and v are now words in the generators xi, xi+1, with 〈xi, xi+1〉 ≃ F2. Wada found seven
families of representations of local type (see Section 4 of [5] for a short survey on these representa-
tions), up to the dual equivalence (corresponding to the involution of Fn given by simultaneously
replacing all xi with x−1

i ) and inverse equivalence (derived from the involution of Bn defined by
sending σi to σ−1

i ):1

• Type 1, ψ1: u(xi, xi+1) = xi and v(xi, xi+1) = xi+1;

• Type 2, ψ2: u(xi, xi+1) = x−1
i+1 and v(xi, xi+1) = xi;

1 In [5] and [27], the action described here is the one for σ
−1

i
. However, we choose to write the inverse symmetry

equivalent here to be consistent with respect to the above Artin representation an and with the fact that we compose
elements from the right to the left.
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• Type 3, ψ3: u(xi, xi+1) = x−1
i+1 and v(xi, xi+1) = x−1

i ;

• Type 4, ψ4,h: u(xi, xi+1) = xi+1 and v(xi, xi+1) = x−h
i+1xix

h
i+1;

• Type 5, ψ5: u(xi, xi+1) = xi+1 and v(xi, xi+1) = xi+1x
−1
i xi+1;

• Type 6, ψ6: u(xi, xi+1) = x−1
i+1 and v(xi, xi+1) = xi+1xixi+1;

• Type 7, ψ7: u(xi, xi+1) = xix
−1
i+1x

−1
i and v(xi, xi+1) = xix

2
i+1.

We can try to extend Wada representations to welded braid groups associating to any generator
σi the Wada representation of type k and to any generator τi the corresponding permutation
automorphism. We will say that a Wada representation extends to wBn if the map defined
as above on generators of wBn is actually a homomorphism. Type 1 does not extend, while
Type 2 and Type 3 extend to wBn but these extensions are not interesting since the image of
the group generated by σi’s in Aut (Fn) is trivial or isomorphic to Sn. Between the other four
representations it is easy to check (see [4]) that only Type 4 and Type 5 representations extend
this way to a representation; let denote these two representations respectively by χ1 and χ2. These
two representations are not equivalent meaning that there are no automorphisms φ ∈ Aut (Fn)
and µ : wBn → wBn such that

φ−1 χ1(β)φ = χ2(µ(β)),

for any β ∈ wBn (see [4]).

1.3 Known linear representations for welded braid groups

We present in this section the linear representations of welded braid groups which can be straight-
forwardly derived from those of braid groups. In particular, we extend heuristic procedure on
matrices. For the remainder of §1.3, fix a natural number n > 2.

Beforehand we indicate that we study here in the "specific" representations of welded braid groups,
not those which factor through symmetric groups. Namely, recall that sending both σi and τi in
the transposition (i, i+ 1) for i ∈ {1, . . . , n− 1} we obtain the short exact sequence:

1 // wPn
// wBn

// Sn
// 1.

Therefore, all representations of the symmetric group Sn lift to wBn, but we will not consider
them since we loose too many informations on welded braid groups.

1.3.1 The Burau representations

The family of Burau representations for braid groups were first introduced in [10] and has been
intensively studied. We refer the reader to [15] for a complete presentation.

These representations can be extended to welded braid groups in the following way.

Proposition 1.1 The following assignment defines a representation Bur : wBn → GLn

(
Z[t±1]

)

called the Burau representation of the welded braid group wBn:

σi 7→ Idi−1 ⊕

[
0 t
1 1 − t

]

⊕ Idn−i−1 and τi 7→ Idi−1 ⊕

[
0 1
1 0

]

⊕ Idn−i−1

for all natural numbers i ∈ {1, . . . , n− 1}.

Proof. The matrices for σi and τi define representations of braid groups and symmetric groups
respectively. It follows from the relations of wBn of (1.1) that we just have to check the mixed
relations between the braid and symmetric generators: this is done by straightforward computa-
tions.
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Reduced version. As for the case of braid groups, the Burau representation is reducible and
we can define an irreducible version.

Proposition 1.2 The following assignment defines a representation Bur : wBn → GLn−1

(
Z[t±1]

)

called the reduced Burau representation of the welded braid group wBn:

σ1 7→

[
−t t
0 1

]

⊕ Idn−3 and τ1 7→

[
−1 1
0 1

]

⊕ Idn−3;

σn−1 7→ Idn−3 ⊕

[
1 0
1 −t

]

and τn−1 7→ Idn−3 ⊕

[
1 0
1 −1

]

;

σi 7→ Idi−2 ⊕





1 0 0
t −t 1
0 0 1



 ⊕ Idn−i−2 and τi 7→ Idi−2 ⊕





1 0 0
1 −1 1
0 0 1



 ⊕ Idn−i−2

for all natural numbers i ∈ {2, . . . , n− 2}. Moreover we have a short exact sequence of wBn-
representations

0 // Bur // Bur // Z
[
t±1

]
// 0 (1.2)

where wBn acts trivially on the kernel Z
[
t±1

]
.

Proof. The matrices for σi define the reduced Burau representations of braid groups (see [15,
Section 3.3]) and those for τi define the standard representation of symmetric groups. Again
the compatibility with respect to the mixed relations of wBn are checked by straightforward
computations.

Let rn be the n× n-matrix with coefficients ri,j = 1 if j 6 i and ri,j = 0 otherwise. Then

rn ◦Bur (σi) ◦ r−1
n =

[
Bur (σi) Ci

0 1

]

where Ci =
[

0 · · · 0 δi,n−1 1
]T

(where the label T means the transpose matrix) and δi,n−1

denotes the Kronecker delta: this defines the short exact sequence (1.2).

Remark 1.3 Since Burau representation for Bn is not faithful when n ≥ 5, it follows that also its
extension is not faithful; indeed, the Burau representation for wBn has non trivial kernel even for
n = 2 (see Lemma 6 of [2]).

Dual versions. Actually, there are two non-equivalent versions of the Burau representation for
braid groups: the one which matrices are given in Proposition 1.1, and its dual which matrices
are the transpose of the inverse of these matrices. This dual version also lifts to the welded braid
group:

Proposition 1.4 Assigning Bur∗ (σi) = BurT
(
σ−1

i

)
and Bur∗ (τi) = BurT

(
τ−1

i

)
for all natural

numbers i ∈ {1, . . . , n− 1} defines a representation Bur∗ : wBn → GLn

(
Z[t±1]

)
called the dual

Burau representation.

It induces a dual reduced Burau representation Bur
∗

: wBn → GLn−1

(
Z[t±1]

)
which is defined by

Bur
∗

(σi) = Bur
T (
σ−1

i

)
and Bur

∗
(τi) = Bur

T (
τ−1

i

)
for all natural numbers i ∈ {1, . . . , n− 1},

and defines the short exact sequence of wBn-representations

0 // Z
[
t±1

]
// Bur∗ // Bur

∗ // 0 (1.3)

where wBn acts trivially on the cokernel Z
[
t±1

]
.

Proof. Taking the transpose of the inverse of a multiplication of matrices keeps the order of the
multiplication. Therefore all the relations of (1.1) are therefore straightforwardly satisfied and
proves that Bur∗ is a representation. The reduced version Bur

∗
is induced by taking the transpose
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of the inverse of the short exact sequence (1.2): taking the inverse keeps the direction of the arrows,
whereas the transpose reverses this direction (since it exchanges lines and columns of matrices)
and we obtain (1.3).

The dual Burau representation was already introduced in [26, Section 4].

1.3.2 The Tong-Yang-Ma procedure and associated representations.

In 1996, Tong, Yang and Ma [25] investigated the representations of Bn where the i-th generator
is sent to a non-singular matrix of the form

Idi−1 ⊕

[
a b
c d

]

⊕ Idn−i−1.

In particular, they proved that there exist (up to equivalence and dual) only two non trivial repre-
sentations of this type: the unreduced Burau representations and a new irreducible representation,
called the Tong-Yang-Ma representation. This last family lifts to define two families of linear
representations of the welded braid group wBn.

Proposition 1.5 The following assignment defines a representation TYM : wBn → GLn

(
Z[t±1]

)

called the Tong-Yang-Ma representation of the welded braid group wBn:

σi 7→ Idi−1 ⊕

[
0 1
t 0

]

⊕ Idn−i−1 and τi 7→ Idi−1 ⊕

[
0 1
1 0

]

⊕ Idn−i−1

for all natural numbers i ∈ {1, . . . , n− 1}. Taking the transpose of the inverse of the above matrices
defines the dual Tong-Yang-Ma representation TYM∗ : wBn → GLn

(
Z[t±1]

)
(which is obviously

not equivalent to TYM).

Proof. As above for the Burau representations, we just have to check the compatibility with respect
to the mixed relations (1.1) between the braid and symmetric generators of wBn: this is done by
straightforward computations.

In addition, we can carry out the analogous heuristic approach to [25] for the welded braid groups.
For all i ∈ {1, . . . , n− 1}, we denote by inclni : wB2

∼= Z × Z/2Z →֒ wBn the inclusion morphism
induced by inclni (σ1) = σi and inclni (τ1) = τi.

Proposition 1.6 Let ηn : wBn −→ GLn be a representation. Assume that for all i ∈ {1, . . . , n− 1}
the following diagram is commutative:

wBn

ηn // GLn

(
Z

[
t±1

])

wB2 η2

//

incl
n

i

OO

GL2

(
Z

[
t±1

])
.

idi−1⊕−⊕idn−i−1

OO

Then ηn is equivalent or dual to the trivial representation, or to the (unreduced) Burau represen-
tation Bur, or to the Tong-Yang-Ma representation TYM , or else to the specialisation at t = 1 of
the Burau representation.

Proof. Restricting along the natural inclusion Bn →֒ wBn, it follows from [25, Part II] that three
only possible matrices (up to equivalence and dual) on which the braid generators {σi}i∈{1,...,n−1}

can be sent to are the trivial, Burau and Tong-Yang-Ma matrices. Note that the only non-trivial
representation Z/2Z → GL2

(
Z

[
t±1

])
is the permutation sending the non-trivial element of Z/2Z

to the permutation matrix.

There are thus two choices for the symmetric generators {τi}i∈{1,...,n−1}. First the relation
τiτi+1τi = τi+1τiτi+1 of (1.1) implies that all these generators are sent to either a non-trivial
matrix or the trivial matrix. Then it follows from the relation τiσi+1σi = σi+1σiτi+1 of (1.1) that
the symmetric generators are sent to the identity matrix if the braid generators are, and to the
permutation matrices otherwise.
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2 The Long-Moody construction for welded braid groups

In 1994, Long and Moody [20] gave a method to construct a new linear representation of Bn

from a representation of Bn+1, complexifying in a sense the initial representation. For instance,
it reconstructs the unreduced Burau representation from a one dimensional representation. It was
studied from a functorial point of view and extended in [24] and then generalised to other families
of groups [23]. In particular, the underlying framework of this method, called the Long-Moody
construction, naturally arises considering representations of welded braid groups: the aim of this
section is the study of this construction the this case.

We fix a natural number n > 3 all along §2.

2.1 The theoretical setting of the Long-Moody construction

We detail here the required tool and present the abstract definition of the Long-Moody construc-
tion.

Tool. Recall that Fn = 〈x1, . . . , xn〉 is the free group on n generators and that αn : wBn →
Aut (Fn) a group homomorphism. The key ingredient to define the Long-Moody construction for
welded braid groups is to find a group morphism ξn such that the following diagram is commutative:

Fn
� � //

ξn $$■
■■

■■
■■

■■
■

Fn ⋊
αn

wBn

��

wBn
? _oo

id1∗−
yyttt

tt
tt
tt
tt

wBn+1.

(2.1)

In other words, we require that for all elements λ ∈ wBn and x ∈ Fn the morphism ξn satisfies
the following equality in wBn+1:

(id1 ∗ λ) ◦ ξn (x) = ξn (αn (λ) (x)) ◦ (id1 ∗ λ) . (2.2)

Definition. The Long-Moody construction is defined as follows. We fix a commutative ring R
and a R-module V . We denote by IFn

the augmentation ideal of the group ring Z [Fn]. Note that
the action αn canonically induces an action of wBn on IFn

(that we denote in the same way for
convenience).

Let ρ : wBn → GL (V ) be a linear representation. Precomposing by the morphism ξn, ρ gives the
module V a Fn-module structure. Then the Long-Moody construction

LM (ρ) : wBn → GL

(

IFn
�
Fn

Z
[
t±1

]
)

is the map defined by:

LM (ρ) (λ)

(

i �
Fn

v

)

=

(

αn (λ) (i) �
Fn

ρ (id1 ∗ λ) (v)

)

for all λ ∈ wBn, i ∈ IFn
and v ∈ V . For sake of completeness, we detail that:

Lemma 2.1 [23, Section 2.2.4] The representation LM (ρ) is well-defined.

Proof. We consider elements λ ∈ wBn, x ∈ Fn, v ∈ V and i ∈ IFn
. First, since ρ is a morphism,

we deduce from (2.2) that

LM (ρ) (λ)

(

i �
Fn

ρ (ξn (x)) (v)

)

= LM (ρ) (λ)

(

i · x �
Fn

v

)

,

which gives the compatibility of the assignment LM (ρ) with respect to the tensor product over
Z [Fn]. Then this assignment LM (ρ) defines a morphism on wBn follows from the fact that αn

and ρ are themselves morphisms.

8



The natural candidate for the morphism αn is the Artin homomorphism an recalled in §1.2 and
we fix the assignment αn = an from now on. We could use another Wada representation for an

(recalled in §1.2), but we prove in §2.7 that this is actually not relevant for welded braid groups.

There is always the choice of the trivial morphism Fn → 0 → wBn+1 as ξn so that relation
(2.2) is satisfied. However the construction is much more interesting using a non-trivial morphism
for this parameter. Indeed applying the Long-Moody construction with the trivial ξn to a one-
dimensional representation provides the permutation representation of wBn (sending both the
symmetric and braid generators on the permutation matrix). Moreover, the iteration of this Long-
Moody construction gives the tensor powers of that permutation representation. We refer the
reader to [23, Section 2.2.5] for further details on that point. For that reason, the main point
consists in finding non-trivial ξn such that the diagram (2.1) is commutative, which is the aim the
following section.

2.2 The natural example for welded braids

We give in this section a first example of a (non-trivial) Long-Moody construction for welded braid
groups. It relies on the following natural candidate for the choice of the required morphism ξn.

Let ξn,1 : Fn →֒ wBn be the injective morphism defined by

xi 7−→ (τi−1 · · · τ2τ1)−1 (σiτi) (τi−1 · · · τ2τ1) .

It is natural is the sense that it identifies the free group Fn with the free subgroup of order n
of Dn (see §1.2) generated by the elements {εi,1}16j6n

. They are also similar to the analogous
parameter for the original construction for braid groups (see [24, Example 2.7]). Moreover they
satisfy the key condition to define a Long-Moody construction:

Lemma 2.2 The morphism ξn,1 satisfies the equality (2.2).

Proof. Since
σi+1σiτiσ

−1
i+1 = τiσi+1σiτi+1τiσ

−1
i+1 = τiσi+1τi+1τi

then
ξn,1 (an (σi) (xi)) = σi+1ξn,1 (xi)σ

−1
i+1.

Also, note that

τiσi+1τi+1τiσi+1τiσi+1τi+1τi = σi+1σiσi+1τi+1τi = σiσi+1τi+1τiσi+1

then
τiτi+1σ

−1
i+1τiσiσi+1τi+1τi = σi+1τiσi+1τi+1τiσ

−1
i+1

hence
ξn,1 (an (σi) (xi+1)) = σi+1ξn,1 (xi+1)σ−1

i+1.

We thus define a Long-Moody construction associated with this parameter ξn,1 and denote it by
LM1. The condition (2.2) is however quite restrictive and the current example follows the spirit
of the original Long-Moody construction [20]: we therefore restrict to the study of LM1 in this
paper.

2.3 Applications

In addition to recovering the unreduced Burau representation, the second iteration of the original
Long-Moody construction recovers the Lawrence-Krammer representation [6, 16, 17] as a subrepre-
sentation (see [20, Corollary 2.10] or [24, Section 2.3.1]). The linearity of the welded braid groups
being an open problem, there was a hope to construct an analogue of the Lawrence-Krammer
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representation for these groups. Unfortunately, if we can reconstruct the unreduced Burau rep-
resentation (see §2.3.1), the construction LM1 does not produce something new at the second
iteration (see §2.3.2).

On another note, the variants of the Long-Moody construction introduced in [24] allow to recover
the Tong-Yang-Ma representation for braid groups (see [24, Section 2.3.2]). However, we prove
in §2.3.2 that it is impossible to reconstruct the Tong-Yang-Ma representation for welded braid
groups using any Long-Moody construction.

Notation 2.3 Let R be a ring and r an invertible element of R. We denote by r : wBn → R×

denote the one-dimensional representation defined by r (σi) is the multiplication by r and r (τi) is
the identity for all i ∈ {1, . . . , n− 1}. Also for ρ : wBn → GLR (V ) a representation, we denote
by rρ : wBn → GL (V ) the tensor representation r ⊗

R
ρ.

2.3.1 Recovering the Burau representation

We start from the one-dimensional representation t : wBn → GL
(
Z

[
t±1

])
. We obtain that:

Theorem 2.4 The representation t−1LM1 (t) is equivalent to Bur.

Proof. The key point to determine the form of the matrices of t−1LM1 (t) is to understand the
Artin homomorphism on the augmentation ideal. We compute that for all i ∈ {1, . . . , n− 1} and
j ∈ {1, . . . , n}, an (σi) sends xj − 1 to







xi+1 − 1 if j = i

(xi − 1)xi+1 + (xi+1 − 1)
(
1 − x−1

i+1xixi+1

)
if j = i+ 1

xj − 1 if j /∈ {i, i+ 1}

and an (τi) sends xj − 1 to






xi+1 − 1 if j = i

xi − 1 if j = i+ 1

xj − 1 if j /∈ {i, i+ 1} .

Moreover, for all k ∈ {1, . . . , n}, we denote Z
[
t±1

]

k = Z [(xk − 1)] �
Z[Fn]

Z
[
t±1

]
associated to

the generator xk of Fn. Since the augmentation ideal IFn
is a free Fn-module on the set

{xk − 1, k ∈ {1, . . . , n}}, we thus define an isomorphism

Λ : IFn
�
Fn

Z
[
t±1

]
−→

⊕n

k=1 Z
[
t±1

]

k

(xk − 1) �
Fn

v 7−→



0, . . . , 0,

k-th

︷︸︸︷

v , 0, . . . , 0



 .

Note that t (ξn,1 (xi)) = t for all i ∈ {1, . . . , n}. Then result then directly follows from writing the
obtained matrix through Λ.

2.3.2 Iteration on the Burau representations

We follow here the iteration procedure of [20]. In particular, an attempt to define an analogue of the
Lawrence-Krammer requires to consider one more variable compared to the Burau representation,
i.e. to work on the ring of Laurent polynomials in two variables Z

[
t±1, q±1

]
. For that purpose,

we iterate LM1 on the tensor product of the Burau representation with a one-dimensional repre-
sentation in the new variable. Also, from now on, we specify by an index in the notation which
parameter we consider (i.e. t or q) and which welded braid group we consider for the Burau
representation.

Finally, for convenience of computations reasons, we prefer to use the dual version of Burau repre-
sentation Bur∗

n+1,t as input representation and consider q−1LM1

(
qBur∗

n+1,t

)
. We explain below
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why this choice does not impact the results presented here. We denote by {ei}i∈{1,...,n+1} the basis
for the matrices of the representation Bur∗

n+1,t.

First we prove that this iterate of the Long-Moody construction automatically admits the Burau
representation as subrepresentation.

Proposition 2.5 The submodule of IFn
�
Fn

Z
[
t±1, q±1

]⊕n
generated by the elements {(xk − 1) ⊗ e1}k∈{1,...,n}

is closed under the action of wBn. The induced subrepresentation is isomorphic to Burn,qt.

Proof. First of all, note that qBur∗
n+1,t (σi+1) (e1) = qBur∗

n+1,t (τi+1) (e1) = e1 for all i ∈ {1, . . . , n}.
Therefore the action of Artin homomorphism gives that q−1LM1

(
qBur∗

n+1,t

)
(σi) ((xk − 1) ⊗ e1)

is equal to






(xi+1 − 1) ⊗ e1 if j = i

(xi − 1) ⊗ qBur∗
n+1,t (ξn (xi+1)) e1

+ (xi+1 − 1) ⊗ qBur∗
n+1,t

(
ξn

(
1 − x−1

i+1xixi+1

))
e1 if j = i+ 1

(xj − 1) ⊗ e1 otherwise

and

q−1LM1

(
qBur∗

n+1,t

)
(τi) ((xk − 1) ⊗ e1) =







(xi+1 − 1) ⊗ e1 if j = i

(xi − 1) ⊗ e1 if j = i+ 1

(xj − 1) ⊗ e1 if j /∈ {i, i+ 1} .

The result thus follows from the fact that qBur∗
n+1,t (ξn (xj)) = qt for all j ∈ {1, . . . , n} and the

use of the canonical isomorphism Λ (see the proof of Theorem 2.4).

It remains to identify the quotient of q−1LM1

(
qBur∗

n+1,t

)
by the subrepresentation Burn,qt. For

that purpose, let us first study the case of n = 3. The matrix of the morphism q−1LM1

(
qBur∗

4,t

)
(σ1)

is






















0 0 0 0 qt q (1 − t) 0 0 0 0 0 0
0 0 0 0 0 q (1 − t) qt 0 0 0 0 0
0 0 0 0 0 q 0 0 0 0 0 0
0 0 0 0 0 0 0 q 0 0 0 0
1 0 0 0 1 − qt qt−1

(
1 − t− t2 + t3

)
qt (1 − t) 0 0 0 0 0

0 1 − t t 0 0 (1 − q) (1 − t) t (1 − q) 0 0 0 0 0
0 1 0 0 0 1 − q 0 0 0 0 0 0
0 0 0 1 0 0 0 1 − q 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 − t t 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1























and the one of q−1LM1

(
qBur∗

4,t

)
(σ2) is























1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 − t t 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 qt 0 q (1 − t) 0
0 0 0 0 0 0 0 0 0 q 0 0
0 0 0 0 0 0 0 0 0 0 q (1 − t) qt
0 0 0 0 0 0 0 0 0 0 q 0
0 0 0 0 1 0 0 0 1 − qt 0 qt−1

(
1 − t− t2 + t3

)
qt (1 − t)

0 0 0 0 0 1 0 0 0 1 − q 0 0
0 0 0 0 0 0 1 − t t 0 0 (1 − q) (1 − t) t (1 − q)
0 0 0 0 0 0 1 0 0 0 1 − q 0























.
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Those for τ1 and τ2 are the analogues with t = q = 1. Then the quotient by the subspace {e1, e5, e9}
gives the matrices

















0 0 0 q (1 − t) qt 0 0 0 0
0 0 0 q 0 0 0 0 0
0 0 0 0 0 q 0 0 0

1 − t t 0 (1 − q) (1 − t) t (1 − q) 0 0 0 0
1 0 0 1 − q 0 0 0 0 0
0 0 1 0 0 1 − q 0 0 0
0 0 0 0 0 0 1 − t t 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

































1 0 0 0 0 0 0 0 0
0 1 − t t 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 q 0 0
0 0 0 0 0 0 0 q (1 − t) qt
0 0 0 0 0 0 0 q 0
0 0 0 1 0 0 1 − q 0 0
0 0 0 0 1 − t t 0 (1 − q) (1 − t) t (1 − q)
0 0 0 0 1 0 0 1 − q 0

















and we easily recognise them as the tensor product of two Burau representations Bur3,t ⊗
Z[t±1,q±1]

Bur∗
3,q.

The situation for any n > 3 works in the same way: indeed consecutive generators (σi, τi) and
(σi+1, τi+1) in wBn can be identified to wB3. Then the matrices for the quotient of q−1LM1

(
qBur∗

n+1,t

)

are similar to the above ones, except that there are more diagonal matrix blocks given by Bur3,t.
Hence we proved that the iteration of the Long-Moody construction does not construct any new
representation of wBn; more precisely we have that:

Theorem 2.6 Applying the Long-Moody construction LM1 to the representation Bur∗
n+1,t gives

the short exact sequence of wBn-representations:

0 // Burn,qt
// q−1LM1

(
qBur∗

n+1,t

)
// Bur3,t ⊗

Z[t±1,q±1]
Bur∗

3,q
// 0 . (2.3)

Cases of the dual and reduced versions. The main conclusion on the iteration of the Long-
Moody construction of Theorem 2.6 remains true if we apply LM1 to the other versions Burn+1,t

and Burn+1,t of the Burau representation.

For the dual Burau representation Burn+1,t, it is defined at the level of the matrices by the
transpose of the inverse of Bur∗

n+1,t. Therefore the (n+ 1)×(n+ 1)-blocks of q−1LM1 (qBurn+1,t)
are the transpose of those of q−1LM1

(
qBur∗

n+1,t

)
. Recall that {ei}i∈{1,...,n+1} denotes the basis for

the matrices of the representation Bur∗
n+1,t. Then the analogue of Proposition 2.5 shows that the

submodule of IFn
�
Fn

Z
[
t±1, q±1

]⊕n
generated by the elements {(xk − 1) ⊗ ej}(k,j)∈{1,...,n}×{2,...,n}

is closed under the action of wBn by q−1LM1 (qBurn+1,t). Moreover repeating mutatis mutandis
the proof of Theorem 2.6, we prove that there is a short exact sequence of wBn-representations:

0 // Bur∗
3,t ⊗

Z[t±1,q±1]
Bur3,q

// q−1LM1 (qBurn+1,t) // Bur∗
n,qt

// 0 .

For the reduced Burau representation Burn+1,t, note that we have for all i ∈ {1, . . . , n− 1}

rn+1 ◦Bur∗
n+1,t (σi) ◦ r−1

n+1 =

[

Bur
∗

n+1,t (σi) 0
Li 1

]
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where Li =
[

0 · · · 0 δi,n 1
]

and rn+1 is the n× n-matrix with coefficients ri,j = 1 if j 6 i
and ri,j = 0. Therefore, along the injection id1∗− : wBn →֒ wBn+1, the short exact sequence (1.3)
splits as a short exact sequence of wBn-representations. Then it follows from the freeness (and a
fortiori flatness) of the augmentation ideal IFn

as a Z [Fn]-module that we have an isomorphism
of wBn-representations:

q−1LM1

(
qBur∗

n+1,t

)
∼= q−1LM1

(

qBur
∗

n+1,t

)

⊕ q−1LM1

(
qZ

[
t±1

])
.

The representation q−1LM1

(

qBur
∗

n+1,t

)

is thus determined by the short exact sequence (2.3).

2.3.3 On the impossibility to recover the Tong-Yang-Ma representation

We detail in §2.1 that a Long-Moody construction is equivalent to the setting of two parameters
an : wBn → Aut (Fn) and ξn : Fn → wBn+1 satisfying the compatibility condition (2.1). So far,
we have used the Artin homomorphism for the action an and this parameter determines the shape
of the obtained matrices (see §2.3.1 and §2.3.2).

In [24, Section 2.3.2], the Tong-Yang-Ma representation for braid groups is recovered by playing
on the choice of this morphism. However, we prove that it is not the case for welded braid groups
in the following result. In particular, we call the representation which space is Z

[
t±1

]⊕n
and on

which wBn acts trivially the trivial n-dimensional representation of wBn.

Theorem 2.7 Let LM be the Long-Moody construction associated with a Wada representation for
a welded braid groups and an abstract compatible ξ. Then t−1LM1 (t) is equivalent either to the
Burau representation Bur (or its dual Bur∗), or to the permutation representation extended to
wBn, or to the trivial n-dimensional representation of wBn.

In particular, the Tong-Yang-Ma representation (or its dual) cannot be recovered by any Long-
Moody construction for welded braid groups.

Proof. We recall from §1.2 that we can only consider four Wada representations (Types 2, 3, 4 and
5). First of all, restricting to Bn, [24, Section 2.3.2] automatically implies that:

• with the Type 3 Wada representation, t−1LM1 (t) is equivalent to the permutation repre-
sentation extended to wBn;

• with the Type 4 or 5 Wada representation, t−1LM1 (t) is equivalent the Burau representation.

[24, Section 2.3.2] uses the Type 2 Wada representation to obtain the representation TYM for
braid groups. Nevertheless, with the extension to wBn, it follows from the compatibility condition
(2.2) that τ2ξn (x1) τ2 = ξn (x2) = σ−1

2 ξn (x1)σ2 and that ξn

(
x−1

2

)
= σ2ξn (x1)σ−1

2 . We deduce

that ξn

(
x−1

2

)
= σ−2

2 ξn (x1)σ2
2 and that ξn (x1) = (τ2σ2)−1

ξn (x1) τ2σ2. Hence we obtain that:

ξn (x1) = σ−1
2 τ2

2σ
−1
2 ξn (x1)σ2τ

2
2σ2 = ξn

(
x−1

1

)
.

Then (t ◦ ξn)2 = 1 since t and ξn are morphisms. The only order 2 elements of Z
[
t±1

]
are 1 and

−1 and it follows from the definition of t that −1 is not in its image. A fortiori the composite t◦ ξn

is the trivial morphism Fn → wBn+1. Then it follows from a straightforward computation of the
matrices that t−1LM1 (t) is equivalent to the permutation representation extended to wBn.

Note that a Long-Moody construction multiplies by n the dimension of an input representation.
Therefore the only way to construct the Tong-Yang-Ma representation would be to start from
a one-dimensional representation: the above study of t−1LM1 (t) proves that no Long-Moody
construction can recover the Tong-Yang-Ma representation.

Therefore, Artin and, more generally, Wada representations do not seem to be a useful tool to
obtain interesting linear representations for welded braid groups, at least in the framework of
Long-Moody procedure; a possible lead should be to consider other free groups embedded in wBn
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or other actions. For instance, recently in [12] was constructed a lift of Artin representation to
an action at the π2-level (remind that B3 less n trivial circles is not aspherical) and it seems
interesting to adapt Long-Moody procedure in this framework. It seems also clear that a deeper
understanding of wBn and of its subgroup Dn in terms of motion groups of circles [11] could provide
new perspectives. On another hand, an homological approaches to construct linear representations
of welded braid groups is set in [21]: the connection with the representations of the present paper
would deserve to be explored.
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