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We introduce a new methodology that enables detection of the onset of convergence 

towards Nash equilibria in simple repeated games with infinitely large strategy spaces, 

thereby revealing the heuristics used in decision-making. The method works by 

constraining on a special finite subset of strategies, called decoupled strategies. We show 

how the technique can be applied to understand price formation in financial market 

experiments by introducing a predictive measure Δ𝐷: the different between positive 

decoupled strategies (recommending to buy) and negative decoupled strategies 

(recommending to sell). Using Δ𝐷 we illustrate how the method can predict (at certain 

special times) participants' actions with a high success rate in a series of experiments.  

Keywords: complexity theory, bounded rationality; multi-period games; infinite strategy space; 

decoupling;; agent-based modeling  

 

1 Introduction 

It is often difficult to obtain a proper behavioral prediction of people’s actions in simple one-

shot games, since they are obscured by non-equilibrium behavior which can persist even when 

the games are played repeatedly (Chong et al. 2016; Muller and Tan 2013). One question then 

is: how can we get a better understanding of the decision-making in repeated games, and if 

possible the dynamics thereof, before a proper equilibrium has set in? In Chong et al. (2016), a 

generalized cognitive hierarchy was introduced to capture the fact that subjects frequently do 

not play a Nash equilibrium in simple one-shot games, a behavioral trait which could arise 

because players are heterogeneous and have different thinking abilities. As will be explained 

below, the fact that there are different levels of thinking ability, and the impact this could have 

on convergence to equilibrium, is an important issue in both the experiments and the modeling 



described in this article. At the same time, it illustrates a method to understand the heuristics 

people use in experiments where the decision-making becomes increasingly complicated. 

The situation we describe here is complex since we are considering the case when the available 

strategy space becomes infinitely large. In situations like this it is unrealistic to think that people 

analyze an infinite range of strategies. Rather, it becomes more likely that people use heuristics 

(Crawford 2013), limiting the analyses to a few simple and understandable cases. Then the 

question is how can we try to model such an analysis in a game theoretical framework?  

Here we suggest one solution, which is to focus on a certain subset of strategies. The solution 

is reminiscent of the study by Ioannou and Romeo (2014), who introduced a methodology to 

facilitate the operability of belief-learning models with repeated-game strategies. Since the set 

of possible strategies in repeated games is infinite (uncountable), expecting a player to fully 

explore such an infinite set is unrealistic. As noted in Ioannu and Romeo (2014), and in 

McKelvey and Palfrey (2001), there is also an inference problem, even for games with only two 

players. In  repeated games there is no unique way to identify an opponent's strategy just on the 

basis of the history, since several different strategies can lead to the same history. This point 

becomes even more relevant for the type of games we present in this study, where the history 

is created by several (N>2) players, making it impossible for a given player to know exactly 

what strategies other players have adopted.  Therefore, even though the history of play is 

publicly observable, a player will never be able to deduce an opponent’s strategy in any detail. 

The solution proposed by Ioannu and Romeo (2014) was to introduce repeated-game strategies 

implemented via a type of finite automaton, called a Moore machine, thereby limiting the 

infinite repeated-game strategy space to a finite subset. In our study we will focus on another 

special subset of repeated-game strategies, called decoupled strategies, which have the special 

property that their actions are independent of the action history, conditioned on observing 

certain histories. As will be seen, this property allows us to identify heuristic strategies 

automatically, since at special moments the decoupled repeated–game strategies then 

effectively correspond to simple one-shot strategies.  We would also like to point out the 

similarity with collective action games; see for example Anauati et al. (2016), who introduced 

a method using stability sets. They were able to capture the case where increases in the payoff 

of a successful collective action led to an update in prior beliefs about the expected share of 

cooperators. As will be seen, we encounter similar situations where increases in the payoff of a 



successful aggregate trading action, leads to an increase in the probability of the use of certain 

trading strategies.  

As will be explained below, in the following we will use the repeated minority game (or more 

precisely:  a slightly modified version called the $-game) as a case study for this paper. The 

definition of the minority game is presented in the section below, it was introduced by Challet 

and Zhang (1997) as a simple model to describe price formation in financial markets. Some of 

the first analytical results on the model was made by Challet et al  (2000b), see also Challet 

and Zhang (1998). Lamper et al.  (2001) were the first to point out that the minority game had 

the particular property of showing predictability of large future price changes. The mechanism 

leading to such large price changes were however not identified in Lamper et al.  (2001). 

Andersen and Sornette (2005) introduced a mechanism that could describe such “pockets of 

predictability”, by considering a certain class of strategies, called decoupled strategies. In the 

following we will use such decoupled strategies to identify the heuristics used by the 

participants in experiments on financial markets. For some of the few experimental efforts 

that has been done to understand the minority game, a nice and general multi-round strategy 

experiment on the minority game can be found in Linde et al. (2014). 

 

2 Simple multi-period market games: theoretical framework 

When the economist Brian Arthur introduced his famous El Farol bar game (Arthur 1994), 

it set off a flurry of research on simple binary choice decision-making models, with decisions 

like “go/stay”, “yes/no”, “buy/sell”, “right/left”, etc. In Arthur’s model, a population of N=100 

people want to go to the El Farol bar (a bar that really exists in Sante Fe) to listen to folk music. 

However, the El Farol is quite small, and people are only satisfied if they can actually sit on 

one of the 60 available seats. People have to make their decision at the same time, so if 

everybody uses the same pure strategy, it will fail: suggesting “go” (assuming an empty bar), 

everybody will go and the bar will be crowded, but suggesting “stay” (assuming a crowded bar) 

will instead lead to an empty bar.  Challet and Zhang (1997) extended the El Farol model to 

describe financial market behavior, where the binary choice was now a simple “buy/sell” 

decision. More precisely, in the minority game, there is an odd number N of players who use 

different strategies to try to remain on the minority side. If a strategy 𝑆  predicts that the majority 

will buy, then that strategy will recommend to sell, 𝑆 = −1. Otherwise, if it predicts that the 

majority will sell, the recommendation will be to buy, 𝑆 = 1. The payoff of strategy i is  



𝜋 (𝑠 )  =  −𝑠 𝐴,   𝐴 =  𝑠  

where A is the order imbalance (i.e., the difference in buy and sell orders). As mentioned in 

Linde et al. (2014), the one-shot minority game already has quite a large number of Nash 

equilibria. This happens since any case where exactly (N-1)/2 players choose one side (and 

(N+1)/2 players the other side) constitutes a Nash equilibrium. The number  
!

!   !
  of 

Nash equilibria is already quite large even for moderate values of N.  

 

In the multi-round minority game, players then use strategies that consider the outcome of 

not only the last, but the past M market price directions (for a positive order imbalance A, the 

market goes up; when A is negative, the market goes down). Each player holds the same number 

of strategies S, assigned randomly at the beginning of the game. A strategy in the multi-round 

game issues a prediction of the next market move (buy/sell) for each of the possible 2  past 

price histories. A strategy in the multi-round minority game is therefore a vector of size  2  

instructing whether to buy (1), or sell (-1) for each possible price history. An example of a 

multi-round strategy could for example be (1,0,1)  1, (M=3), which means that in a market 

where the last price movement was up, the one before down, and the price movement three time 

steps ago up, it would recommend to buy. The total number of different strategies is therefore 

2 . In the multi-round minority game, the players record the cumulative payoff for each of 

their S strategies, and at any given time, use the one which has the highest cumulative payoff. 

For an extensive review of the multi-round minority game, see for example (Cavagna et al. 

1999; Challet et al. 2000a; Challet, et al. 2000b; Challet et al. 2001, Challet and Zhang, Y.C., 

1998, Johnson et al. 1999; Lamper et al. 2001). 

  

As mentioned in Andersen and Sornette (2003), one problem with the multi-round minority 

game describing simple market price dynamics is that it does not account for speculative 

behavior, in which investors invest to gain a return. It should be noted that the minority 

dynamics prevents any trend to develop, giving rise to mean-reverting price dynamics. In order 

to capture speculative behavior as seen in bubble/crash phases of financial markets, a 

modification of the payoff function was suggested in Andersen and Sornette (2003). Denoting 

the game, the $-game (to describe players that speculate), the modified payoff reads:                   

𝜋$ (𝑠 (𝑡))  =  𝑠 (𝑡 − 1)𝑅(𝑡) 



The payoff favors strategies which are able to predict the price movement over the following 

time step. Predicting at time t-1 a price increment over the following time step, the strategy i 

proposes to enter a buy position at time t-1, so 𝑠 (𝑡 − 1) = 1. If the prediction was successful 

(a failure), the payoff gained (lost) is the return of the market over that time step. 

 

Theorem 2.1 The Nash equilibria in the multi-period $-game consist of the two strategies 

(1,1,….,1), (-1,-1,…,-1). 

Proof  We will prove theorem 2.1 for the simple case where each agent has only s=2 strategies. 

The dynamics  of the  $-game is driven by a nonlinear feedback mechanism, because each agent 

uses his/her best  strategy (fundamental/technical analysis) at each time step. In its turn, the sign 

of the order imbalance, ∑ 𝑎∗ ℎ⃗(𝑡) , determines the value of the last bit 𝑏(𝑡) at time 𝑡 for  

the price movement history ℎ⃗(𝑡 + 1) = (𝑏(𝑡 − 𝑚 + 1), 𝑏(𝑡 − 𝑚), … , 𝑏(𝑡)). The * in  𝑎∗ 

denotes the best strategy (out of s possible) for agent i. The dynamics of the $-game can then 

be expressed in terms of an equation that describes the dynamics of 𝑏(𝑡) as 

 𝑏(𝑡 + 1) =  ∑ 𝑎∗ ℎ(𝑡)  (1) 

where  is a Heaviside function taking the value 1 whenever its argument is greater than 0 and 

the value 0 otherwise, and ℎ(𝑡) = ∑ 𝑏(𝑡 − 𝑗 + 1)2  is now expressed as a scalar instead 

of a vector. The nonlinearity of the game can be seen formally from 

 𝑎∗ ℎ(𝑡) = 𝑎
| ,…, ∑ ( ) ∑ ∗ ( )

ℎ(𝑡)  (2) 

Equation (2) expresses the idea that the optimal strategy * of agent i is the strategy j which 

maximizes the $G payoff between times k=1 and k=t.  Inserting (2) in (1), we obtain an 

expression that describes the $-game in terms of just a single equation for 𝑏(𝑡) depending on 

the values of the 5 base parameters (𝑚;  𝑠;  𝑁;  ;  𝐷(𝑡)) and the random variables 𝑎  (i.e., their 

initial random assignments). 

We would like first to point out an important difference compared to traditional game theory, 

since in our game the agents have no direct information concerning the action of the other 

players. The only (indirect) information a given agent can have of another agent’s action comes 

through the aggregate actions of the past, i.e., the past price behavior.  



In the following we will consider the simple case where each agent has only s=2 strategies. 

Then considering only the relative payoff between strategy 𝑎  and 𝑎 , the equations simplify 

considerably. Let the action of the optimal strategy 𝑎∗ be expressed in terms of the relative 

payoff, 𝑞 ,  so as to formulate ∑ 𝑎∗ ℎ(𝑡)  as follows:   

 ∑ 𝑎∗ ℎ(𝑡) = ∑  𝑞 ℎ(𝑡) 𝑎 ℎ(𝑡) + 1 −  𝑞 ℎ(𝑡) 𝑎 ℎ(𝑡)  (3) 

Inserting (3) into (1) and taking the derivative of 𝑏 at 𝑡 + 1, 

 = 𝛿 ∑ 𝑎∗ ℎ(𝑡) ∑ 𝛿 𝑞 ℎ(𝑡)
( )

𝑎 ℎ(𝑡) − 𝑎 ℎ(𝑡)  

 + 𝑞 ℎ(𝑡)
( )

+ 1 −  𝑞 ℎ(𝑡)
( )

 (4) 

Looking at the terms inside the curly bracket in (4), it follows that a change in ∑ 𝑎∗ ℎ(𝑡)  

can occur in two different ways: (i) because the optimal strategy changes and the two strategies 

for a given ℎ(𝑡), 𝑎 ℎ(𝑡)  and 𝑎 ℎ(𝑡) , differ from each other (first term in the bracket); (ii) 

because the optimal strategy changes its prediction for the given ℎ(𝑡) (second and third terms 

in the bracket). 

The rate of change of the relative payoff 𝑞  is computed from 

 = 𝑎 ℎ(𝑡 − 2) ∑ 𝑎∗ ℎ(𝑡 − 1) − 𝑎 ℎ(𝑡 − 2) ∑ 𝑎∗ ℎ(𝑡 − 1)  (5) 

Using ℎ(𝑡) = ∑ 𝑏(𝑡 − 𝑗 + 1)2  and inserting  (5) in (4), we obtain 

= 𝛿 ∑ 𝑎∗ ℎ(𝑡) ∑ 𝛿 𝑞 ℎ(𝑡) ∑ 𝑎∗ ℎ(𝑡 − 1)   

a b(t − j − 1)2 − a ∑ b(t − j − 1)2  

𝑎 ∑ 𝑏(𝑡 − 𝑗 + 1)2 − 𝑎 ∑ 𝑏(𝑡 − 𝑗 + 1)2  

  𝑞 ℎ(𝑡)
∑ ( )

+ 1 −  𝑞 ℎ(𝑡)
∑ ( )

 (6) 

If  ∑ 𝑎∗ ℎ(𝑡 − 1) , ∑ 𝑎∗ ℎ(𝑡 − 2) , … , ∑ 𝑎∗ ℎ(𝑡 − 𝑚)   all have the same sign, the 

right-hand-side of (6) becomes 0, thus proving that a constant bit 𝑏(𝑡), corresponding to either 

an exponential increase or decrease in price, is a Nash equilibrium. 



 

 

 

 

3 Introducing decoupled strategies to determine the onset of convergence towards Nash-

equilibria in multi-period market games: theoretical framework 

As mentioned, the mere size of the strategy space for one-shot games is 2 , which 

considerably complicates a proper understanding of simple market models like the minority 

game and the $-game, despite the simplicity of their payoff functions.  It is therefore out of the 

question to explore the full strategy space in order to gain insights into the way people would 

react, even in simple market games like this. We propose instead to concentrate on a certain 

subclass of strategies.  

 

Let us call 𝑠 (𝑡 | ℎ⃗ (𝑡)) the action of strategy 𝑠  at time t, conditioned on observing a given 

price history,  ℎ⃗ (𝑡), at time t over the last M time steps. ℎ⃗ (𝑡) is a binary string of -1’s and 

+1’s describing the last M directions of price movements observed at time t. We now note that 

some strategies will be independent of  ℎ⃗ (𝑡) over the next L time steps. That is, whatever the 

price history, over the next t + Q time steps, the strategy 𝑠 (𝑡 + 𝑄) will always issue the same 

prediction independently of the price history between t and t+Q. We call such strategies Q-time-

steps decoupled (Andersen and Sornette, 2005). The simplest example of a strategy that is 

decoupled is the strategy that always issues a buy (sell) action, independently of the past price 

history ℎ⃗ (𝑡). Such a strategy is trivially an infinite-number-of-time-steps decoupled. 

However, the probability that any player will hold this specific strategy is very small indeed, 

with a  probability that goes as   . 

As will be shown in the following, it is advantageous to split the order balance in two, so 

that it can be written in terms of decoupled and coupled strategies: 

𝐴(𝑡)
⃗

= 𝐴(𝑡)
⃗

+ 𝐴(𝑡)
⃗

 

We have included the superscript ℎ⃗  to emphasize that the order imbalance is conditioned 

on observing the price history ℎ⃗  at time t.  



The size of 𝐴(𝑡)
⃗

/𝑁 then gives the percentage of decoupled strategies at time t, 

and will be used as a predictor for the actions of the participants. In the extreme case where the 

condition  

|𝐴(𝑡)
⃗

| > 𝑁/2 

is fulfilled, the prediction becomes certain, since the action at time t+2 of more than half the 

population takes the same sign (buy/sell) independently of what happens at time t+1. The 

greater the value of 𝐴(𝑡)
⃗

/𝑁, the better we should be able to predict the action at time 

t+2. This fact will be used in experiments where we try to predict the actions of the participants. 

For a discussion of the effect of group size N, see also (Nosenzo et al., D. 2015). 

 

4 Laboratory experiments 

We performed a series of 10 experiments at the Laboratory of Experimental Economics in 

Paris (LEEP). The experiments ran over 60 periods. In each period, the students received 

general economic news and could decide whether to buy or sell an asset, or simply do nothing. 

At the end of the 60 periods, the students were paid pro rata according to their performance (for 

more details about the way the experiments were set up, see Appendix B).    

At the beginning of the experiment, the students were told that the asset was, at this initial 

stage, properly priced according to rational expectations (Fama 1970; Muth 1961). This meant 

that only information regarding changes in the dividends on the asset or interest rates should 

have a direct influence on the price of the asset (for an interesting study with varying 

fundamental values, see, e.g., Stockl et al. 2015). The information flow consisted of general 

news from real past records of Bloomberg news items. News was selected in such a way that 

the general trend over the 60 consecutive periods was neutral. Then, according to rational 

expectations, there should be no overall price movement of the asset at the end of the 60 time 

periods. The price was thus expected to oscillate around the fundamental value throughout the 

experiment. 

 

5 Results 

Figures 1-5 show the price history versus time for the ten experiments (E1-E10), as well as 

the decoupling parameter versus time obtained via Monte Carlo (MC) simulations. Each figure 

represents the data and simulation from two experiments.  The MC simulations “slaved” the 

price history from the experiments as input to the agents in the $G simulations. That is, instead 



of having the agents reacting to their own repeated-game actions, the agents in the simulations 

would instead use the actions (price history) of the participants.  Each $G MC simulation was 

done with a fixed number of agents N=10 (number of participants in the experiments), but 

randomly generated initial strategies. The number of strategies, S, used by the agents and the 

memory, M, were also randomly generated S ϵ [1,Smax], M ϵ [1, Mmax] , with Mmax=6 and 

Smax=10 reflecting the maximum values of memory and number of strategies thought to be used 

by the participants in the experiments (we checked this assumption by interviewing the 

participants after the experiments). Simulations with larger values of Smax and Mmax were 

performed, showing similar trends, as presented in the following. In total L=1000 MC 

simulations were performed for each experiment. 

The topmost plot of Fig. 1 shows the price evolution as a function of time for experiment 

E1. The second plot from the top shows the percentage of decoupled strategies used by the 

agents (d+ for decoupled strategies recommending buy, represented by a solid line, and d- for 

decoupled strategies recommending sell, represented by a dashed line) as a function of time. 

The percentage for each time period t is obtained by averaging over all MC samples.  

 

Insert figure 1 around here 

 

Fig. 1. Experiments E1 and E2. First and third plot: price evolution in experiments E1 and E2, 

respectively. Second (E1) and fourth (E2) plots: percentage of decoupled strategies used by 

the agents. Solid line: d+ for decoupled strategies recommending buy as a function of time. 

Dashed line: d- for decoupled strategies recommending sell as a function of time. 

 

 

 

 

We now use the difference Δ𝐷(𝑡)  ≡ |𝑑 (𝑡)−𝑑 (t)|  as a predictor of the action of the 

participants in the next time step t+1. Table 1 shows ΔD for values greater than 0.2, the success 

rate in predicting the next price direction, and the number of periods used in the calculation of 

the success rate. The experiment E1 corresponds to the simplest case of all the 10 experiments, 

since in this case the price dynamics created by the participants shows the formation of a clear 

financial bubble. This is captured by the split in decoupled strategies measured by 𝛥D leading 

to a 100% success rate. However, this is less trivial than it appears since, as noted by 

Roszczynska et al. (2012), decoupling of strategies is sufficient but not necessary for financial 



bubble formation. In other words, the onset of speculation is possible without a split developing 

between 𝑑 (𝑡)  and 𝑑 (t). For a more complete discussion of this point, see Roszczynska et al. 

(2012). 

 

Insert table 1 around here 

 

 

The lower two plots of Fig. 1 show the price evolution and corresponding percentage of 

decoupled strategies for experiment E2. Once again, we see a tendency for speculative action 

to develop, creating a financial bubble in prices, but a factor of 10 less than in E1. Using 𝛥D as 

predictor, we are again able to predict the actions of the participants with a high success rate 

(see Table 2). 

 

 

Insert table 2 around here 

 

 

 

Figure 2 shows the price evolution and corresponding percentage of decoupled strategies for 

experiments E3 and E4. In E3, a very weak overall trend develops, whereas the first part of E4 

is trendless, followed by a weak upward trend, and ending with a small downward trend.  Using 

𝛥D as predictor, we are again able to predict the actions of the participants with a rather high 

success rate (see Tables 3 and 4). It should be noted that the first half of E4 is trendless, but 𝛥D 

is still large, as can be seen from Figure 2, and, a reliable predictor even in this trendless case, 

as can be seen from Table 4.  

 

 

Insert figure 2 around here 

 

Fig. 2. Experiments E3 and E4. First and third plot: price evolution of experiments E3 and E4, 

respectively. Second (E3) and fourth (E4) plots: percentage of decoupled strategies used by 

the agents. Solid line: d+ for decoupled strategies recommending buy as a function of time. 

Dashed line: d- for decoupled strategies recommending sell as a function of time. 



 

Insert table 3 around here 

 

Insert table 4 around here 

 

Insert table 5 around here 

 

 

Figure 3 shows the price evolution and corresponding percentage of decoupled strategies for 

experiments E5 and E6. Both experiments are more or less without trends, with the price 

fluctuating around the fundamental value. A small split in 𝑑 (𝑡)  and 𝑑 (t) is only seen for 

initial times in E5, whereas a split exists throughout E6. For E5, 𝛥D never exceeds 0.2 and no 

prediction can be made. For E6, 𝛥D only exceeds the threshold value 0.2 in a few time periods, 

but the few predictions made appear to be slightly better than random or random (see Table 6). 

 

 

 

 Insert figure 3 around here 

 

Fig. 3. Experiments E5 and E6. First and third plot: price evolution of experiments E5 and E6, 

respectively. Second (E5) and fourth (E6) plots: percentage of decoupled strategies used by 

the agents. Solid line: d+ for decoupled strategies recommending buy as a function of time. 

Dashed line: d- for decoupled strategies recommending sell as a function of time. 

 

 

Insert table 6 around here 

 

 

 

 

Figure 4 shows the price evolution and corresponding percentage of decoupled strategies for 

experiments E7 and E8. Weak trends develop in the price formation, but not in the split of 𝑑 (𝑡)  

and 𝑑 (t). For these two experiments, the days on which we can issue a prediction are too few 

to have any meaningful statistical significance.   

 



 

Insert figure 4 around here 

 

Fig. 4. Experiments E7 and E8. First and third plot: price evolution of experiments E7 and E8 

respectively. Second (E7) and fourth (E8) plots: percentage of decoupled strategies used by 

the agents. Solid line: d+ for decoupled strategies recommending buy as a function of time. 

Dashed line: d- for decoupled strategies recommending sell as a function of time. 

 

 

 

Insert table 7 around here 

 

Insert table 8 around here 

 

 

 

Figure 5 shows the price evolution and corresponding percentage of decoupled strategies for 

experiments E9 and E10. There is no trend present in E9, whereas a very weak trend develops 

in E10. A small number of splits 𝛥D develop in E9, more in E10, but in neither case can 

predictions be made. 

 

 

 

 

Insert figure 5 around here 

 

 

Fig. 5. Experiments E9 and E10. First and third plot: price evolution of experiments E9 and 

E10, respectively. Second (E9) and fourth (E10) plots: percentage of decoupled strategies 

used by the agents. Solid line: d+ for decoupled strategies recommending buy as a function of 

time. Dashed line: d- for decoupled strategies recommending sell as a function of time. 

 

 

Insert table 9 around here 

 

Insert table 10 around here 



 

 

 

In order to test the stability of the Monte Carlo simulations, we performed a series of 

bootstrap simulations. Figure 6 shows the bootstrap simulations performed on the data for 

the experiments E1, E2, and E3. Similar bootstrap simulations were performed for E4 and 

E5, with the same conclusions as noted in the following for E1, E2, and E3. The figures 

were obtained by doing 100 Monte Carlo simulations for each experiment and calculating 

d+ and d- . For each of the 100 Monte Carlo simulations, 100 more replica Monte Carlo 

simulations were then performed in order to be able to assign 90% and 10% confidence 

levels. The results are presented in Fig. 6, where the solid lines represent a MC realisation 

of d+ and d-, while the dashed lines give the 90% and 10% confidence levels calculated 

using the 100 replica MC simulations, i.e., in only 10% of the cases would the replica MC 

simulations find a value of d+ (or d-) below what was found by the MC simulation, and in 

90% of the cases the replica MC simulations would find a value of d+ (or d-)  not exceeding  

what was found by the MC simulation. As can be seen, the levels of d+ and d- in the MC 

simulations are very stable, confirming the stability of our predictions obtained via the split 

in d+ and d- . 

 

To summarize: We have made a series of 10 experiments, each ran over 60 time periods, in 

which students received general economic news, and could at each time period decide 

whether to buy or sell an asset. Some of the experiments showed the tendency to price 

bubble formation, whereas others fluctuated around the (constant) fundamental value of the 

asset. After the performance of the experiments, the price time series generated were used 

as input to agent based MC simulations. By studying the difference of decoupled strategies 

of the MC agents,  Δ𝐷(𝑡)  ≡ |𝑑 (𝑡)−𝑑 (t)|, we were able to issue  a prediction of the 

action of the participants in the next time step t+1. In 5 out of the 10 experiments we were 

not able to use our method to issue predictions. However in 5 out of the 10 experiments we 

were able over several time periods to issue predictions out-of-sample of the behavior of 

the participants. In 5 of these 4 experiments, we obtained very high success rates, most of 

the events predicted with 65% succes or more. In one experiment our predictions were 

mostly random. Finally we used a bootstrap simulation to verify that our predictions were 

stable, and independent of the parameters used in the MC simulations. Overall our technique 



of using decoupled strategies appears to be a promissing way to probe the heuristics in 

participants in financial market games.  

 

 

 

 

 

 

 

 

 

Insert figure 6 around here 

 

Fig. 6. Bootstrap simulations performed on the data for the experiments E1, E2, and E3. The 

figures were obtained by doing 100 Monte Carlo simulations for each experiment and 

calculating d+ and d- . For each of the 100 Monte Carlo simulations, 100 more replica Monte 

Carlo simulations were then performed in order to be able to assign 90% and 10% confidence 

levels. Solid lines represent the result for a MC realization of d+ and d-, while dashed lines 

give the 90% and 10% confidence levels calculated using the 100 replica MC simulations, 

i.e., in only 10% of the cases would the replica MC simulations find a value of d+ (or d- ) 

below what was found by the MC simulation, and in 90% of the cases the replica MC 

simulations would find a value of d+ (or d- ) not exceeding  what was found by the MC 

simulation.   

 

 

 

 

 

 

6 Conclusion 

We have introduced a new methodology to describe the onset of convergence towards 

Nash equilibria in simple repeated-games with infinitely large strategy spaces. This was 

shown to enable a better understanding of  the heuristics used in decision-making. The 

method works by restricting to a special finite subset of strategies which we called decoupled 

strategies. We performed 10 multi-period simple financial market experiments, and applied 

our methodology within the framework of a simple financial market game called the $-game.  



We have illustrated how the method was able to predict (at certain special times) participants' 

actions with a high success rate.  We note that the decoupled strategy methodology is not 

limited to the $-game presented in this article, but can be applied in the context of any multi-

period game. 

 



 

Appendix A: Implementation of the experiments 

The number of participants in each experiment was fixed at 10. There was only one asset in our 

financial market that participants could either buy or sell, and short selling was allowed. The 

initial price of the asset was fixed at 5 euros with an expectation of a 10 cent dividend payout 

at the end of 60 time periods. Each of the 60 time periods lasted 15 seconds. In each time period, 

participants were presented with brief statements of economic news and they could either buy 

or sell ONE asset or do nothing. The participants were told that the asset was correctly priced 

according to rational expectations (Muth, 1961), that is, the price of the asset was supposed to 

correctly reflect all future discounted cash flow accrued to the asset. The participants could, at 

zero interest rate, borrow money to buy shares, and short selling was allowed.  The general 

financial information was taken from real financial news items obtained on Bloomberg over a 

two-week time period. Students were told the asset represented a portfolio of assets like an ETF 

or an index. They were all simultaneously presented with the same information, meant to reflect 

general financial news, e.g., good or bad US employment figures, commodity price changes, 

etc. The news items were the same in all experiments and were chosen without positive or 

negative bias.  

At the end of each time period, the participants’ orders were gathered and a new market price 

calculated, based on the order imbalance (with sign and magnitude determining the direction 

and size of the price movement) (Holthausen et al. 1987). That is, the price at time t was given 

by 𝑃(𝑡) = 𝑃(𝑡 − 1)𝑒 ( )/ , where A(t) is the order imbalance at time t and b the liquidity of 

the market (in the experiments chosen as b≡ 10 ∗ 𝑁, representing a market crash/bubble of 10 

percent when all N participants chose the same action). This was then shown to the participants 

graphically on their computer screen. Throughout the experiment, participants had a continuous 

update of the number of shares held and their gains/losses. 

At the end of each experiment, a pool of 200 euro was distributed  pro rata among the 

participants who had made a gain. 
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Table 1 

    ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E1. 

ΔD Success rate Number of events 

   

0.2      1.0 46 

0.22 1.0 45 

0.24   1.0 44 

0.26 1.0 44 

0.28 1.0 43 

0.3 1.0 41 

0.32 - 0 

   

 



 
 

 

Table 2 

   ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E2. 

ΔD Success rate Number of events 

   

0.2      0.70 27 

0.22 0.68 25 

0.24   0.73 22 

0.26 0.69 16 

0.28 0.62 13 

0.3 0.64 11 

0.32 0.67 6 

0.34 0.75 4 

0.36 - 0 

   

 

 

 

Table 3 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E3 

 

ΔD Success rate Number of events 

   

0.2      0.57 23 

0.22 0.67 15 

0.24   0.67 3 

0.26 - 0 

   

 

 

 

 



 
 

 

Table 4 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E4 

 

ΔD Success rate Number of events 

   

0.2      0.65 20 

0.22 0.73 15 

0.24   0.73 11 

0.26 0.70 10 

0.28 0.67 9 

0.30   0.57 7 

0.32 - 0 

   

 

 

 

 

Table 5 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E5 

 

ΔD Success rate Number of events 

   

0.2      - 0 

   

 

 

 

 

 

Table 6 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E6 



 
 

 

 

ΔD Success rate Number of events 

   

0.2      0.63 8 

0.22      0.50 4 

0.24      0.50 2 

0.26      - 0 

   

 

 

Table 7 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E7 

 

ΔD Success rate Number of events 

   

0.2      0.0 1 

0.22      - 0 

   

 

 

Table 8 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E8 

 

ΔD Success rate Number of events 

   

0.2      1.00 1 

0.22      - 0 

   

 

 

 

 



 
 

 

 

Table 9 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E9 

 

ΔD Success rate Number of events 

   

0.2      - 0 

   

 

 

 

Table 10 

ΔD , success rate, and corresponding number of events used to calculate the success rate for 

experiment E10 

 

ΔD Success rate Number of events 

   

0.2      - 0 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


