Max Silberztein

V4 Nooj

NOOJ V4

This paper presents the latest version of NooJ software. We show the need for a major overhaul of the software: the CESAR METASHARE project as well as the use of NooJ in an industrial environment. From a technical point of view, the fact that there are now three implementations of NooJ, including one in Open Source, has posed several problems of compatibility and protection of the resources. We present the various technical solutions that we have adopted.

Introduction

From its very beginning, NooJ was designed to become a "total" linguistic development environment, capable of formalizing a large gamut of linguistic phenomena: Typography, Spelling, Inflectional and Derivational Morphology, Local and Structural Syntax as well as Transformational Syntax and Semantics. For each of these levels of linguistic phenomena, NooJ provides users with one or more formalization tools such as simple dictionaries, finite-state graphs and regular grammars, recursive graphs and context-free grammars, contextual and unrestricted grammars 1 .

From the development point of view, NooJ provides linguists with a set of tools that allows them to construct, edit, test, maintain and share elementary pieces of linguistic description, and accumulate these pieces of linguistic description into consistent packages that are called NooJ modules. NooJ also contains a set of parsers that process these modules and access any property they contain -at any level of linguistic phenomena, from Typography to Semantics -in order to apply the linguistic resources to texts. NooJ is indeed used to apply linguistic modules to large texts in order to extract information or to annotate texts automatically.

Applying large linguistic modules to potentially large corpora of texts has been used in Social Sciences, e.g. in Psychological and in Literature studies2 , as well as in Business-type applications3 . Finally, the European Community got word of NooJ and the EU Competitiveness and Innovation Framework Programme Project CESAR, led by Prof. Tamas Varadi, decided to use NooJ to develop linguistic resources for several languages4 .

In the framework of the CESAR project, a team of computer scientists at the Mihajlo Pupin Institute (Belgrade) implemented Mono and Java versions of NooJ5 . In particular, the Java version is now available as an open source package and is freely distributed under a GPL license by the CESAR project (http://www.meta-net.eu/projects/cesar).

Three Implementations for NooJ

NooJ was initially developed in the C# programming language on the .NET virtual machine, developed by Microsoft. The .NET virtual machine runs on all versions of Windows (from Windows XP to Windows 8), therefore NooJ can run on any Windows PC.

MONO-NooJ

Because .NET is proprietary technology, a group of developers decided to develop an open source version of it: this initiative became the MONO project 6 . MONO is an open source implementation of Microsoft's .NET Framework based on the standard specifications of the C# programming language and the Common Language Runtime standard (used by .NET's virtual machine). MONO is largely compatible with .NET and can run most software developed with/for .NET. The MONO virtual machine is available for Mac OSX, LINUX 7 and Solaris UNIX; therefore, MONO-NooJ can be used on these Operating Systems as well.

Note however that the MONO and .NET versions of NooJ are not perfectly identical: for instance, the .NET version of NooJ contains a few functionalities that are specific to the Windows Operating System (such as DLLs that originated from the Windows or Microsoft Office platforms). Because these functionalities are not available on LINUX, UNIX or Mac OSX, the MONO version of NooJ does not contain them: for instance, MONO-NooJ running on LINUX would not be able to access neither a Microsoft Office Outlook database nor a FrameMaker document 8 .

The biggest limitation of MONO-NooJ is that it cannot process languages with non-European alphabets such as Arabic (which is written from right to left) and Khmer (in which vowels can be placed above or below consonants). This limitation was impossible to overcome, as the version of MONO that was available until April 2013 did not process RTF files in these languages correctly. However, the focus of the CESAR project was on European languages so it was not considered a serious limitation. However, despite these limitations, MONO-NooJ has been used by a fairly large number of LINUX users.

Java-NooJ

In parallel to the effort to port NooJ on MONO, a second team at the Pupin Institute decided to translate the complete NooJ software source 6 See www.mono-project.com. 7 Versions 3.X of MONO support the openSUSE desktop interface for LINUX. 8 These capabilities are added to any Windows system as soon as Microsoft Office is installed. The MONO version of NooJ does have the capability to read .DOC files though. It would be possible to add support to Open Office file formats. from C# to Java. Although the two languages have a very similar syntax, the amount of work involved proved to be challenging9 .

The two technical problems to be solved were the consequences of differences between the C# and the Java programming languages, and differences between the .NET and the Java graphical user interfaces (GUI). In particular, C# allows various methods to obtain references of parameters (via the "ref" or "out" keywords), whereas Java's methods only accept copies of parameters. To rewrite NooJ methods in Java, the team at the Pupin Institute had to encapsulate all objects that needed to be modified by a C# method inside new, temporary objects that were then copied to the corresponding Java method. Before each method call, the temporary objects had to be created; after each method call, their content had to be copied back to the initial objects. When the method in question is called recursively, potentially millions of times (for instance, when NooJ's syntactic parser processes a large corpus of texts), this overhead becomes significant. Another solution would have been to redesign NooJ's data architecture, but that was not possible given this limited resource and time frame.

The second problem was to reconstruct NooJ's Graphical User Interface (GUI), because the API support to construct GUI in Java is very different than the API support in .NET. The team in the Pupin Institute could not reuse any of the .NET GUI resources. Therefore they had to redesign a whole new GUI from the ground up. Because of the limited resources available for this project, the Java version of NooJ has a much simpler GUI than the .NET version of NooJ. However, it is perfectly suitable in a pedagogical environment and Java-NooJ has been used successfully by a large number of students in NooJ tutorials.

In conclusion: we now have three versions of NooJ: the original .NET version that runs on Windows, the MONO version that also runs on openSUSE LINUX, Mac OSX and Solaris UNIX (provided MONO has been installed), and the Java version that runs on any PC (provided Java has been installed).

Compatibility Issues

All "open" NooJ linguistic resources can be read by any of the three versions of NooJ. These resources are comprised of:

-Dictionaries (.dic format); -Dictionary property definition files (.def format); -Character Equivalence Tables (charvariants.txt files); -Textual grammars (.nof, .nom and .nog formats); -Any text file; Moreover, the MONO and .NET versions of NooJ can share the following binary files:

-graphical grammars (.nof, .nom and .nog formats) -compiled dictionaries (.nod format) -texts and corpora (.not and .noc formats) -projects (.nop formats).

However, the Java version of NooJ cannot directly process binary files compiled in a .NET or MONO version of NooJ, and uses its own set of binary files.

Protecting the NooJ community

Although the Java version of NooJ is now open source, it was not possible to simply open access to all the linguistic resources, including those posted on www.nooj4nlp.net (at the "resources" page) without their authors' agreement. Indeed, several linguistic modules available for download do not contain the source file for the dictionaries, nor do they contain grammars that have been locked (i.e. protected).

Of course, it would not be acceptable to just publish the Java methods used to access these protected and locked files without giving away these resources. That is why the Java version of NooJ does not access binary and locked files constructed or compiled with .NET-NooJ.

For dictionaries, texts and corpora, the situation is the following: users of Java-NooJ must compile NooJ dictionaries, texts and corpora from their source origins. The resulting files will have extensions .jnod (dictionaries), .jnot (annotated texts) and .jnoc (annotated corpora).

For grammars, the situation is the following: the latest (v4) version of. NET-NooJ allows users to export any unlocked graphical grammar (.nof, .nom or .nog format) in the Java-NooJ open file format; reciprocally, .NET-NooJ can now read any grammar that was created using Java-NooJ. That double compatibility allows users to create, edit and exchange grammars that were developed on both .NET (v4) and Java versions of NooJ.

However, in order to protect copyright, grammars that were created with .NET-NooJ and locked by their author cannot be read by Java-NooJ.

The Java version of NooJ

In conclusion:

-MONO and .NET versions of NooJ can create, read and share any NooJ files.

-all .dic, .def, .txt, unlocked .nof, .nom and .nog files are compatible with the new, open source Java version of NooJ;

-locked grammars, and .noc, .nod and .not compiled files cannot be accessed by Java-NooJ;

-Java-NooJ has three new binary file formats: .jnoc, .jnod and .jnot to store compiled corpora, dictionaries and texts.

The Open Source version of NooJ

The Java version of NooJ is available under the Affero-GPL license 10 . That means that anyone can download it and use it in any way they wish, including for commercial applications. However, there are two legal constraints:

-any software application that uses part of NooJ sources becomes automatically available under the same Affero-GPL license;

-the previous constraint includes any WEB service or WEB application that runs on a server.

The latter constraint would force any entity that uses NooJ's technology to offer services via a WEB server to publish the source of the application that offers these services.

We believe these two constraints offer a good protection for the NooJ community: there is no possibility that NooJ can "fork out", i.e. that two or more incompatible versions of NooJ get developed independently from different actors or competitors because any modification or enhancement of NooJ will instantly be available to the whole community and thus can be imported back to the NooJ "main" version.

Note however that the Affero-GPL license only applies to the NooJ software: it does not concern any of the many linguistic resources developed with NooJ. In other terms, NooJ users are free to continue to develop their resources as they wish, using any of the three versions of NooJ, including Java-NooJ. They will still be able to decide for themselves how they wish to distribute their own resources.

NooJ v4 new functionalities

Since Java-NooJ was released by the Mihajlo Pupin Institute, Héla Fehri has taken control of the Java source and, during a "bug hunting" 3month mission, has done an excellent job of making Java-NooJ more robust. She has already fixed a dozen simple and complex problems. The latest version of Java-NooJ has been used in several tutorial sessions with no major problem.

In parallel to the work on the Java version, I have updated NooJ to make its technology converge with Java-NooJ, and at the same time, make it more useful for industrial needs11 . Version v4 brings the following set of new functionalities:

-The definition of multiword units has been extended to be able to process sequences of delimiters (such as "$" or "…") as well as terms that start with a delimiter (such as ".NET"). In particular, these objects are now processed as ALUs and are now valid NooJ lexical entries:

.NET,TERM+OS $,DOLLAR,TERM+Currency …,PUNCTUATION+EndOfSentence -One consequence of the generalized multiword unit definition is that a grammar now can produce an output that contains delimiters. For instance, if a grammar's output is the following: <E>/$BRACKET and the value of variable $BRACKET is "<", NooJ now clearly distinguish the "<" character produced in the output from the metacharacter "<" used to insert new annotations in the TAS. Similarly, all output keywords used by NooJ's syntactic parser to trigger some special behavior (e.g. EXCLUDE, <ONCE>) now have been unified and are firstorder features (e.g. +EXCLUDE, +ONCE).

-The fact that any character or sequence of characters can now constitute a valid lexical entry has pushed us to implement a robust management of special characters. Indeed we now need to be able to process strings such as "," as bona fide lexical entries… We have introduced a double mechanism of character protection. Consider the following lexical entries: \,,PUNCTUATION+Type=comma ",",PUNCTUATION+Type=comma "abc",PUNCTUATION+Type=comma "a\"b",PUNCTUATION+Type=quote

The backslash \ character is used to protect the following character: the first lexical entry is a comma. Double quote characters are used to protect a sequence of characters: the second entry is also a comma and both lexical entries are equivalent. In the same manner, the third lexical entry represents the exact word form "abc", i.e. the two strings "ABC" and "Abc" are not recognized by this entry. The last lexical entry contains the sequence "a"b", i.e. the lowercase letter "a", followed by a double quote character, followed by a single letter "b".

-The complex inheritance system that allowed linguists to link different lexical entries has been reviewed. It was inefficient because it potentially doubled the number of dictionary lookups that had to be performed for each token of a text, and could not represent differences between variants and their standard form, such as when a standard form has a property that it does not share with its variants. For instance, the dm dictionary12 contains the two following lexical entries:

combatif,combattif,A+Opt combattif,A+Rec
The first entry indicates that combatif is an optional (+Opt) spelling variant of combattif; the second lexical entry indicates that combattif is the recommended (+Rec) spelling for this term. Obviously, we don't want the optional variant combatif to inherit the feature +Rec from the lexical entry combattif. In the new system, NooJ simply links the combatif variant to its lemma combattif, without copying the lexical properties of the combattif lexical entry. It is now even possible to have only the first lexical entry without the second one. One drawback of the new system, compared to the old system, is that any potential property for the standard form combattif (as for example: +Hum, +Emotion +Aggressive) that we want to associate with its variants, such as combatif, now would need to be copied explicitly into every lexical entry for each of its variants.

-A number of tools and functionalities have been added to facilitate the development of large resources in an industrial environment. For instance, it is now possible to edit project (.nop) files: add, remove and/or compile new resources inside a project that has already been created. The interface in Info > Preferences has been enhanced so that resources can be picked from any source folder (it is no longer limited to a specific folder in My Documents), etc.

Perspectives

Java-NooJ is still in its infancy, but it already has been proved useful to teach NooJ and linguistics thanks to its simplified user experience. Because its source is available to anyone for studying, it has been used as a pedagogical tool to teach Computational Linguistics techniques to students in Computer Science. Moreover, the very fact that its source is publicly available has opened up new possibilities of cooperation with groups of scientists who have been working on specific NLP tools that can now be interfaced with NooJ's development environment and specific functionalities.

NooJ v4 is now evolving rapidly to become a powerful industrial development tool that can process new types of linguistic objects (e.g. non alphabetical terms) in a more robust way (e.g. special treatment of special characters) and offer new tools (e.g. the new project editor) critical to an engineering approach. However, NooJ v4 is more complex to use than Java-NooJ.

At this point, nobody really knows precisely how the two versions will evolve, but the Affero-GPL policy should guarantee that the two versions will always be compatible, and that any new functionality in one version will be rapidly available to the other version.

See for instance (Ehmann 2012) and (Pignot, Lardy 2012).

See (Sidhom, Lambert 2014). Also: in the framework of the STORM French national research project, Armadillo is constructing a search engine capable of applying queries in Arabic, English and French to a large corpus of Arabic texts that describe Archeological items and Architectural monuments, see (Soussi et alii 2014).

Cf. http://www.meta-net.eu/projects/cesar.

Cf. (Spasic et alii. 2013).

Cf. (Spasic et alii 2013).

See http://www.gnu.org/licenses/agpl-3.0.html.

Many thanks to Stéphanie Brizard and her team at Invoxis for their rigourous testing and their suggestions on how to improve the NooJ experience.

Cf. (Trouilleux 2012).