NOOJ COMPUTATIONAL DEVICES MAX SILBERZTEIN

Introduction

NooJ's linguistic development environment provides tools for linguists to construct linguistic resources that formalize 7 types of linguistic phenomena: typography, orthography, inflectional and derivational morphology, local and structural syntax, and semantics. NooJ also provides a set of parsers that can process any linguistic resource for these 7 types, and apply it to any corpus of texts in order to extract examples, annotate matching sequences, perform statistical analyses, etc. 1 NooJ's approach to Linguistics is peculiar in the world of Computational Linguistics: instead of constructing a large single grammar to describe a particular natural language (e.g. "a grammar of English"), NooJ users typically construct, edit, test and maintain a large number of local (small) grammars; for instance, there is a grammar that describes how to conjugate the verb to be, another grammar that describes how to state a date in English, another grammar that describes the heads of Noun Phrases, etc. NooJ then takes charge of combining all the local grammars together, even -it is actually the most frequent case -when these local grammars have a very different nature across the 7 types of linguistic phenomena 2 . Henceforth, I use the terms letter and word when giving examples of orthographical or morphological linguistic resources: an orthographical grammar is typically used to describe sequences of letters that constitute 1 NooJ also contains a set of generators that can produce the sequences of texts that these linguistic resources describe. Combining a parser with a generator allows users to develop software applications such as an automatic paraphrase generator (that parses a given sentence and produce all its paraphrases) and an automatic translation system (that parses a given sentence in one language and produces the corresponding translation in another language). 2 Thanks to its annotation engine, cf. [START_REF] Max | NooJ's Linguistic Annotation Engine[END_REF]. certain words. I will also use the terms Atomic Linguistic Units (ALU) 3 and phrases when giving examples of syntactic linguistic resources: a syntactic grammar describes sequences of ALUs that constitute phrases.

NooJ users handle three types of objects: the linguistic phenomenon they are studying constitutes a language; they construct a grammar to describe it, and the parser tests membership of a given word (or phrase) to the language. Because the linguistic phenomena to be described are very different in nature, NooJ provides different types of grammars to formalize them and parsers to apply the grammars to texts.

The Chomsky-Schützenberger hierarchy [START_REF] Noam | Syntactic Structures[END_REF]) presented a mathematical model for grammars in which grammars are sets of rules of the form: α → β, where α and β are sequences of symbols and sequence α is to be replaced with sequence β. By applying a number of rules in sequence to a given word, an automaton can automatically test whether or not this word belongs to the language described by the grammar. Depending on the constraints on rules (e.g. sequence α may contain only one symbol, or more than one symbols), the grammars are more or less powerful, i.e. they can describe more or less complex languages. The hierarchy of languages is the following:

Set of regular languages

Set of context-free languages Set of context-sensitive languages Set of (any) languages

Each type of languages corresponds to a type of grammars that can describe them, and to a type of automaton that can test if a given word belongs to a language according to its grammar.

(Chomsky 1957) then argued that certain phenomena in natural languages are not regular, hence regular grammars cannot describe natural languages. Since then, researchers in Computational Linguistics have designed a large 3 NooJ's ALU are the elements of the vocabulary of a language. ALUs are simple words (e.g. table), prefixes or suffixes (e.g. dis-in "dismount", -ation in "demonstration"), multiword units (e.g. red tape when meaning "bureaucracy") as well as discontinuous expressions (e.g. to take X into account in "John took the meeting into account").

⊂ ⊂ ⊂

number of tools to formalize grammars. Today, the most famous of these tools are XFST4 , GPSG5 , LFG6 and HPSG7 .

Language

Grammar Automaton Regular Regular Finite-State Automaton Context-Free Context-Free Push-down Automaton Context-Sensitive Context-Sensitive Linear Bounded Automaton any language Unrestricted Turing machine

The Chomsky-Schützenberger Hierarchy

All these tools align themselves with the Chomsky-Schützenberger hierarchy: for instance XFST's parser uses Regular Grammars with a very efficient parser; GPSG uses modified Context-Free Grammars; LFG's grammars are more powerful than CFGs, however its parsers are less efficient; HPSG's grammars are the most powerful, however HPSG has inefficient parsers that makes it unsuitable for Corpus Linguistics applications.

The NooJ Approach

This hierarchical approach has two problems:

-It is not because there are complex phenomena in a natural language that we need to describe all linguistic phenomena with a powerful grammar. In practice, most morphological, lexical and syntactic phenomena can be described with Regular Grammars easily and very efficiently. Why should we have to use a complex formalism (and an inefficient parser) to process them?

NooJ answers this question by providing different types of grammars and parsers: with NooJ, a linguist can describe spelling variants of a term with a Regular Grammar (RG), then use a Context-Free Grammar (CFG) to compute the structure of a complex sentence, and then a Context-Sensitive Grammar (CSG) to check the agreement between a noun phrase and its pronoun and apply an Unrestricted Grammar (UG) to produce paraphrases of a given sentence. NooJ's architecture allows all these linguistic phenomena to be combined in a Text Annotation Structure8 .

-There seems to be confusion between the sets of languages and the languages themselves. Although it is true for instance that the set of all RGs is included inside the set of all CFGs, that does not mean that Regular languages are somehow "smaller" than Context-Free languages.

In fact, any language (be it Context-Free, Context-Sensitive or even unrestricted) is included in a Regular Language. NooJ uses this fundamental property to provide a two-component approach: in order to describe any language L, a NooJ user constructs both an RG that describes a Regular language R that is a superset of language L, and a "filter" component that filters out all the words of R that do not belong to L. We will see that this approach is very natural linguistically; it also makes NooJ parsers very efficient because they can parse any language with finite-state automata.

Regular Grammars

In order to formalize Regular languages, NooJ users can enter Regular Expressions or Finite-State Graphs. Here is a typical NooJ Regular Expression:

(a | the) (very* big | <E>) table

The "|" character corresponds to the disjunction operator, the "*" character corresponds to the Kleene operator; <E> represents the empty string; parentheses can be used to set priorities (by default, concatenation has priority over disjunction). Here is a typical NooJ Finite-State Graph:

NooJ graphs are sets of nodes; nodes are labelled by a regular expression; any two nodes can be connected; there is one initial node and one terminal node. This graph represents the French sequences of preverbal particles that occur between the subject pronoun il and the transitive verb donner.

Context-Free Grammars

In In NooJ, auxiliary symbols are prefixed with the special character ":". NooJ graphs can also include auxiliary nodes, i.e. nodes labelled with an auxiliary node (which is displayed in yellow, see below) that link to an embedded graph. NooJ recursive graphs are also equivalent to CFG.

Enhancements

NooJ also contains a few enhancements over pure Regular Grammars and Context-Free Grammars.

Symbols

NooJ allows users to use lexical and syntactic symbols that function like abbreviations. For instance, in the English module, the lexical symbol <be> is equivalent to the following regular expression: In the French module, the syntactic symbol <CONJC> (coordinating conjunction) is equivalent to the following Regular Grammar:

mais | ou | et | donc | or | ni | car
In the same manner, the syntactic symbol <V> matches over 30,000 verbal forms in English and over 300,000 in French: all the conjugated forms of lexical entries associated with the category code "V", i.e. Verbs. Any lexical property can be used in a lexical or syntactic symbol. For instance, symbol <N-Hum+Medic-m+p> matches all the nouns (N) that are not Human (-Hum), belong to the Medical domain (+Medic), are not masculine (-m) and are in the plural (+p).

Adding a lexical or a syntactic symbol to NooJ is straightforward: just add a code in a dictionary. It can be argued that NooJ symbols are more than mere abbreviations because they make the alphabet of NooJ grammars potentially infinite in size.

Order

NooJ grammars allow the use of a few operators that can help reduce the size of grammars drastically. For instance, let's say we want to describe sentences that have one subject, one verb, one direct object and one indirect object, e.g. Eva gave the pencil to Joe. In languages that have cases (e.g. nominative, accusative and dative), these four components might be written in any order. The corresponding grammar would then look like: A grammar that recognizes sentences with n components contains n! terms: 4! = 24, 5! = 120, 6! = 720, etc. As soon as we add circumstantial complements, the size of the grammar would literally explode… By contrast, consider the following NooJ recursive graph:

This graph recognizes any number of noun phrases in the nominative (NPnom), in the accusative (NP-acc), in the dative (NP-dat) as well as any number of verbs (VG). The operator +ONE then filters out all the sequences that do not contain exactly one occurrence of each component. NooJ contains other operators (EXCLUDE, ONCE, UNAMB) that also aim at simplifying grammars.

Context-Sensitive Grammars

In the Chomsky-Schützenberger hierarchy, Context-sensitive Grammars (CSG) accept rules such as: Cα → Cβ, where C is a context that needs to occur for α to be replaced with β. NooJ's CSGs are RGs or CFGs that contain variables and constraints 9 . For instance, consider the Context-Sensitive language a n b n c n that contains all the words that are sequences of a number of "a", followed by the same number of "b" followed by the same number of "c". In NooJ, we can describe this language with the following CSG:

The finite-state graph part of this grammar recognizes any sequence of "a" followed by any number of "b" followed by any number of "d". Then, the sequence of "a" is stored in variable $A, the sequence of "b" is stored in variable $B and the sequence of "c" is stored in variable $C. Finally, the two constraints check that the length of the three sequences are identical.

There are a number of linguistic phenomena that need to be formalized by CSGs. For instance, it is much easier and natural to describe the agreement with a CSG than with a RG.

Consider the following RG that describes certain noun phrases in French. The four quasi-identical paths in the graph correspond to each of the four possible types of noun phrases in French: masculine singular, feminine singular, masculine plural and feminine plural. For each of these types, we need to ensure that the determiner, the noun and the two adjectives agree both in number and in gender.

The same phenomenon can be described with the following CSG:

In this graph, we describe the Noun Phrase only once, and we add agreement constraints for each component. There are a large number of linguistic phenomena (such as morphological and syntactic reduplications, productive derivations, etc.) that can be described with NooJ CSG very naturally.

Unrestricted Grammars

In the Chomsky-Schützenberger hierarchy, Unrestricted Grammars (UG) include rules such as: α → β, where there is no constraint whatsoever on the content of α nor β. These rules correspond to a special "replacement" mode in NooJ, which basically can perform any number of replacements to a given text10 . The most linguistically useful unrestricted grammars are transformational grammars, which take a sentence as an input and produce another sentence as the output. For instance, consider the following graph:

The CFG recognizes direct transitive sentences such as "John eats an apple", then stores the subject in variable $S, the verb in variable $V and the object in variable $O. Finally, the grammar produces the output $O is $V_V+PP by $S, in which $V_V+PP takes the verb "eats" and then produces its Past Participle (PP) form "eaten". The resulting sentence is then "the apple is eaten by John".

Conclusion

NooJ proposes several types of grammars to formalize seven types of linguistic phenomena: Regular Grammars, Context-Free Grammars, Context-Sensitive Grammars as well as Unrestricted Grammars. NooJ's architecture makes it easy to combine large numbers of local (small) grammars of any type. This "engineering approach", where users are encouraged to develop a large number of linguistic resources rather than a single large (powerful) grammar brings also various advantages, such as the possibility of designing very efficient parsers.

 the Chomsky-Schützenberger hierarchy, Context-Free Grammars (CFG) contain rules such as: A → αBβ, where A and B are auxiliary symbols. NooJ CFGs contain auxiliary symbols as well; here is a typical NooJ CFG: Main = :NP (looks at | sees) :NP ; NP = (the | a) (cat | dog) ;

 am | are | is | was | were | being | been In the French module, the lexical symbol <manifester> [to demonstrate] matches any conjugated form of the verb manifester, as well as all inflected forms of its derived forms manifestation [demonstration] and manifestant [demonstrator].

Cf. (Karttunen et alii, 1997).

Cf. (Gazdar et alii 1985).

Cf. (Kaplan, Bresnan 1982).

Cf. (Pollard, Sag 1994).

Cf. (Silberztein 2006).

NooJ's parser uses a simple and efficient unification mechanism, cf. (Silberztein 2011).

NooJ can parse a sentence, and then apply a generator that produces all the corresponding paraphrases, cf. (Silberztein 2010).