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Abstract 

We propose and numerically validate an all-optical scheme to generate optical 

pulse trains with varying temporal pulse-to-pulse delay and pulse duration. 

Applying a temporal sinusoidal phase modulation followed by a shaping of the 

spectral phase enables us to maintain high-quality Gaussian temporal profiles. 
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1. Introduction 

The modulation of the temporal optical phase by a sinusoidal waveform is a 

simple but very efficient method to all-optically process the properties of a signal 

at very high-repetition rates. Various examples have indeed been demonstrated 

in the context of fiber ultrafast optics such as optical time lens [1], mitigation of 

self-phase modulation [2], improvement of nonlinear spectral compression 

process [3], enhancement of the extinction ratio [4], to cite a few … Another 

field of application that has stimulated strong interest is the photonic generation 

of optical pulse trains at repetition rates of several tens of GHz. Indeed, applying 

a sinusoidal temporal phase modulation on a continuous wave followed by a 

spectral phase shaping has been found to be a promising approach that can 

overcome the bandwidth limitations of the usual optoelectronics modulation 

schemes. Initial developments were based on a quadratic spectral phase to 

convert the temporal phase modulation into a modulation of the intensity profile 

[5, 6]. However, this scheme suffers from a detrimental residual background 

that impairs the picosecond pulse train quality [7]. The method has been 

recently improved by imprinting a triangular spectral phase profile or 

equivalently, a series of equally spaced /2 phase shifts. High-quality pulse 

trains made of Fourier transform-limited Gaussian pulses have been 

experimentally demonstrated [8]. This architecture can compete with alternate 

cavity-free approaches based on Kerr nonlinear elements [9, 10] and has the 

advantage to sustain multi-wavelength operation [11]. It has also been shown 

that starting from a two-tone sinusoidal modulation enables the generation of a 

pulse train with controllable levels of fluctuations of the peak power and 

temporal duration [12]. 



In this contribution, we further extend this approach by investigating the 

possibility of delivering pulse trains with a continuously varying pulse-to-pulse 

delay. By sweeping the frequency of the sinusoidal modulation, we numerically 

show that we can tune the properties of the pulses while maintaining an 

excellent pulse quality, both in terms of duty cycle, extinction ratio and 

waveform. The scheme that is chosen to process the spectral phase is crucial 

and very different behaviors can be observed. 

We first introduce the principle of our approach and the different configurations 

we have studied and compared. Results of numerical simulations are then 

discussed. 

 

 

2. Principle of operation 

Our method is based on the principle detailed in [8]. A continuous optical wave 

with an amplitude 0 and a carrier frequency fc is temporally phase modulated 

by a sinusoidal waveform Am cos(2 fm(t) t) with Am being the amplitude of the 

phase modulation (chosen as Am = 1.1 rad following the guidelines of [8]) and 

fm(t) its non-constant frequency. In the present work, we consider a linear 

temporal sweep of the frequency of the RF signal driving the modulator 

between fm1 and fm2 so that fm(t) = fm1 + (fm2 – fm1) t / Ts, 2 Ts being the time of 

the frequency sweep. In order to illustrate our discussion with numerical 

simulations based on realistic parameters, we have chosen the boundaries fm1 

and fm2 being 30 and 35 GHz respectively. Ts  is fixed by the RF generator and 

does not impact the results under discussion. The optical spectrum obtained 

after the temporal phase modulation is plotted in Fig. 1(a) and is symmetric. 



Compared to the frequency-constant case modulation where the spectrum is 

made of equally-spaced spectral lines with an amplitude provided by Bessel 

functions of the first kind [13, 14], the energy of the spectral components is here 

spread on spectral bands of constant amplitude. A first band appears between 

30 and 40 GHz with a span given by twice the chirp range. It is followed by a 

second band between 60 and 80 GHz. The third spectral band merges with the 

fourth one. Using an optical bandpass filter with sharp edges and with a full 

spectral width of 170 GHz (mixed grey line in Fig. 1(a)), we isolate the central 

component and the two first pairs of sidebands. The processing of the spectral 

phase is here achieved by a few /2 phase shifts that replace the continuous 

triangular phase profile initially used in [8, 11]. Only four phase-shifts are 

inserted (at 25 and 55 GHz, Fig. 1(b), solid black line). Experimentally, it can 

be achieved using programmable liquid-crystal modulators [8, 11, 15] or fiber 

Bragg gratings [16]. We will compare the temporal properties of the pulse train 

with the results achieved when a quadratic spectral phase typical of a 

dispersive element is inserted. Different levels of cumulated dispersion D are 

tested: 24, 32 and 44 ps2 (solid, dotted and dashed grey lines in Fig. 1(b)), 

corresponding to the optimum level of quadratic phase that has to be imprinted 

to observe the best compression for modulation at a constant frequency of 40, 

35 and 30 GHz respectively. Finally, we have also tested the results obtained 

in the presence of some possible bandwidth limitations of the optoelectronic 

devices. For the sake of simplicity and for the qualitative discussion, we have 

considered here that the various limitations that affect Am can be taken into 

account as a first-order lowpass filter, with a cutoff frequency of 40 GHz.  

 



 

3. Results and discussion 

Examples of the intensity profiles obtained after processing under different 

conditions are summarized for different instants of the frequency scan in Fig. 2. 

We can first note that the various schemes lead to intensity profiles with very 

different levels of background. The insertion of /2 phase shits leads to 

waveforms of high quality, with a close-to-Gaussian profile, a duty cycle (here 

defined as the ratio of the full-width at half maximum duration and the pulse-to-

pulse delay) and a peak power that remain constant when the optoelectronic 

bandwidth limitations are ignored. Note that processing a restricted limited 

number of spectral sidebands does not impair the temporal profile compared to 

the ideal case where the full spectrum is processed [8]. This strongly contrasts 

with the quadratic spectral phase that only partly compensates for the initial 

sinusoidal phase and that consequently induces much higher and detrimental 

background. Moreover, the pulse shape may vary according to the pulse-to-

pulse delay. Whereas a cumulated dispersion of 44 ps2 induces an optimal 

compression for the highest pulse-to-pulse delay (obtained at t = -TS), it is a 

value of D = 24 ps2 that leads to the best profile for the shortest pulse-to-pulse 

delay (achieved at t = TS). A more quantitative study of the impact of the 

frequency linear chirp of the modulation on the main pulse properties is reported 

in Fig. 3 and 4. As can be seen in Fig. 3, in the ideal case (/2 phase shifts, no 

optoelectronic bandwidth limitation, solid black line), the temporal duration may 

vary between -13% and +16% with respect to its average value, i.e. between 

6.2 and 8.2 ps with remarkably no change of the peak power. Additional 

simulations (in the ideal conditions, results not shown here) have stressed that 



we can achieve for higher frequency span, modulation of the duration between 

-16% and +23% with respect to the average value. When limits of the 

modulation are taken into account (mixed black line), slight variations of the 

peak power ( 5%) become visible and the range of variations of the fwhm 

duration is compressed. The results are significantly changed when a quadratic 

spectral phase modulation is involved. In that case, we can first note that the 

variations of the peak power are more pronounced and can reach as much as 

 20 % in the case of D = 44 ps2. The level of cumulated dispersion will also 

influence the range of variation of the fwhm duration that can be tuned from 

less than 10 % of the average value to more than 25 %. The link between the 

peak power and duration can remain monotonic (such as in the case of D = 24 

or 44 ps2) or become more complex as in the case of D = 32 ps2. 

Finally, we report in Fig. 4 the influence of the pulse-to-pulse delay on three 

parameters of the waveform. We can first note that the kurtosis excess that 

assesses the pulse shape [17] remains close to zero for the processing by /2 

phase shifts. That confirms that the waveform remains close to a Gaussian 

pulse, even in the presence of optoelectronics bandwidth limitations. On the 

contrary, when quadratic phase modulation is involved, the shape may 

significantly change as stressed by the large excursion of the kurtosis excess. 

Regarding the extinction ratio (defined here as the ratio of the peak power by 

the power at T/2 ), we note once again the poor performance achieved in the 

case of a quadratic spectral phase. With an extinction ratio always above 27 dB, 

the other scheme is by far much more promising. Finally, the duty cycle is found 

to be nearly constant to 0.25 in many configurations. However, when a 



quadratic spectral phase with a cumulated dispersion of 44 ps2, is applied, we 

can observe that the duty-cycle can be nearly doubled. 

 

 

4. Conclusions 

In order to conclude, we have extended the approach initially proposed in [8] 

and we have demonstrated that this scheme was also suitable with sweeping 

of the modulation frequency. Compared to the solutions based on an additional 

quadratic spectral phase, the insertion of a few discrete /2 phase shifts 

enables a clear improvement of both the stability and the overall performances. 

Numerical simulations have revealed that the same Gaussian temporal shape 

can be maintained. However, in the presence of optoelectronic bandwidth 

limitations, some additional fluctuations of the peak power may appear. 

The proposed architecture may find application in test and measurements 

where pulse trains with different pulse-to-pulse can be interesting and where 

testing different pulse durations can be wanted. With the progress of phase 

modulators [18], operation at extremely high frequencies up to 100 GHz can be 

foreseen, the optical spectral processing being not a limitation of the scheme. 

As the scheme is purely linear and does not require high-power, high signal to 

noise ratio can be expected. 
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Figure captions: 
 

 
Fig. 1 Optical spectrum. (a) Intensity profile of the phase modulated signal 

(black) and optical filter under use (grey dashed line). (b) Spectral phase profile 

applied to convert the phase modulation into temporal intensity modulation. 

Quadratic phase profiles corresponding to a cumulated dispersion D of  24, 32 

and 44 ps2 are plotted with solid, dotted and dashed grey lines respectively 

whereas the spectral phase profile made of phase shifts of /2 is shown with 

solid black line. 

 
 
Fig. 2 Examples of the temporal intensity profiles obtained for different pulse-

to-pulse delays T of -Ts, 0 and Ts ps are plotted in panels a, b and c 

respectively. The results obtained for a quadratic spectral phase profile 

(cumulated dispersion D of 24, 32 and 44 ps2 are plotted with solid, dotted and 

dashed grey lines, respectively) are compared with the results achieved using 

spectral phase shifts of /2 without or with bandwidth limitation of the optical 

modulator included (solid and dashed black lines). 

 
 
Fig. 3 Evolution of the peak power of the pulse as a function of the temporal 

fwhm duration of the pulses. The results obtained for a quadratic spectral phase 

profile (cumulated dispersion D of 24, 32 and 44 ps2 are plotted with solid, 

dotted and dashed grey lines, respectively) are compared with the results 

achieved using spectral phase shifts of /2 without or with bandwidth limitation 

of the optical modulator included (solid and dashed black lines). 

 

 

Fig. 4 Evolution of the excess kurtosis, extinction ratio and duty cycle (panels 

a, b and c, respectively) according to the pulse-to-pulse delay T. The results 

obtained for a quadratic spectral phase profile (cumulated dispersion D of 24, 

32 and 44 ps2 are plotted with solid, dotted and dashed grey lines, respectively) 

are compared with the results achieved using spectral phase shifts of /2 



without or with bandwidth limitation of the optical modulator included (solid and 

dashed black lines). 
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Figure 2 
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Figure 4 
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