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Abstract. We show in this paper that doubly lexical orders of totally
balanced formal context matrices yield a unique graphical representation
binding formal contexts, associated concepts and underlying lattice di-
rected cover graphs. Moreover this representation can be done linearly
in the size of the formal context matrix.
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1 Introduction

We will focus in this paper on a special case of formal contexts, those associated
with dismantlable lattices. These formal contexts can be helpful in practice be-
cause they only have a polynomial number of concepts that are easily computable
and, as we shall show in this paper, admit a convenient graphical representation.

Indeed, given a formal context matrix M whose associated concept lattice
is dismantlable, we present a procedure which associates each formal concept to
an element of the formal context matrix. This allows to superpose the associated
directed cover graph onto the data (Figure 2). Moreover, since the procedure is
linear in the size of the matrix and the graphical representation involves non-
overlapping ordered 2-dimensional boxes (see Figures 5 and 6), it can be used
to locally see the interactions between concepts or to explore areas of interest in
very large data-sets (through approximation of the original data, which can also
be done linearly in the size of the context matrix).

Finally, because dismantlable lattices generalize several models used in clus-
tering (hierarchical clustering and seriation clustering for instance) this proce-
dure can be used in many fields of applications. For instance they are well suited
for phylogenetic problems because co-atomic dismantlable lattices are in bijec-
tion with strongly chordal graphs (which are a sub-class of chordal graphs —
graphs whose every cycle (x1, x2, . . . , xn, x1) with n ≥ 3 contains an edge xixj

with i < j + 1 — used in perfect phylogeny) and the clusters generated by
phylogenetic trees (X-trees) form a dismantlable lattice (see [6] or [5]).

In a theoretical point of view, dismantlable lattices are the “trees” for lattices
and there is an ongoing work to see if one can decompose a given lattice into a
sum of dismantlable lattices.



Formally speaking, a formal context [8] K = (G,M, I) is a triple where G is
a set of objects, M a set of attributes and I ⊆ G ×M a binary relation. For
subsets A ⊆ G and B ⊆ M two operators (so called derivation operators) are
defined: A↑ = {y | xIy, ∀x ∈ A} and B↓ = {x | xIy, ∀y ∈ B}. A formal concept
associated with K is a pair (A,B) where:

– A ⊆ G and B ⊆M ,
– A = B↓,
– B = A↑.

We shall assume that all sets in this paper are finite. Thus if we label the
objets and the attributes of a formal context K = (G,M, I) such that G =
{l1, . . . , ln} and M = {c1, . . . , cm}, K is equivalent to a n × m binary matrix
M (called formal context matrix) such that Mi,j = 1 if liIcj and 0 otherwise.
Formal contexts or its associated formal context matrix can be represented by a
cross table (see Table 1).

Table 1. Example of cross table (left) and its associated formal context matrix (right).

c1 c2 c3 c4 c5 c6 c7 c8
l1 × × ×
l2 × × ×
l3 × × × × ×
l4 × ×
l5 × × ×

c1 c2 c3 c4 c5 c6 c7 c8
l1 0 0 1 1 1 0 0 0
l2 0 0 0 0 0 1 1 1
l3 0 1 1 1 0 1 0 1
l4 0 0 0 0 0 0 1 1
l5 1 1 1 0 0 0 0 0

The formal concepts associated with K = (G,M, I) are exactly the pairs
(A,A↑) where A↑↓ = A (equivalently the pairs (B↓, B) where B↓↑ = B). It
is well known that the set B(G,M, I) of formal concepts associated with the
order ≤ defined as (A1, B1) ≤ (A2, B2) whenever A1 ⊆ A2 (equivalently B2 ⊆
B1) forms a formal lattice that one can represent by its order diagram (see
Figure 1). The order diagram is a graphical representation of the directed cover
graph associated with the formal lattice (B(G,M, I),≤) which is the directed
graph G = (B(G,M, I), E) where uv ∈ E whenever u ≺ v.

Finally, for any n ×m binary matrix M, one can define the formal context
KM = ({1, . . . , n}, {1 . . . ,m}, IM) such that iIMj whenever Mi,j = 1. The
column j of M is equal to Cj = {i | Mi,j = 1} and the line i of M is equal to
Li = {j | Mi,j = 1}. According to these definitions, it is known [4] that:

– the closure under intersection of {C1, . . . , Cm} ∪ {{1, . . . , n}}, noted C, is
equal to the set {A | A↑↓ = A},

– the closure under intersection of {L1, . . . , Ln}, noted L, is equal to the set
{B | B↓↑ = B}.

The above equivalence gives a way to link known hypergraph classes to known
lattice models (an hypergraph is a pair H = (X,H) where H ⊆ 2X). Indeed it is



number formal concept

0 (∅, {c1, c2, c3, c4, c5, c6, c7, c8})
1 ({l2}, {c6, c7, c8})
2 ({l1}, {c3, c4, c5})
3 ({l3}, {c2, c3, c4, c6, c8})
4 ({l5}, {c1, c2, c3})
5 ({l2, l4}, {c7, c8})
6 ({l2, l3}, {c6, c8})
7 ({l1, l3}, {c3, c4})
8 ({l3, l5}, {c2, c3})
9 ({l2, l3, l4}, {c8})
10 ({l1, l3, l5}, {c3})
11 ({l1, l2, l3, l4, l5}, ∅)

Fig. 1. Order diagram (left) and formal concepts (right) associated with the formal
context matrix of Table 1 (numbered from bottom to top and left to right).

clear that by labeling X as {x1, . . . , xn} and H as {h1, . . . , hm}, each hypergraph
H is equivalent to a n×m binary matrix M(H) where M(H)i,j = 1 whenever
xi ∈ hj . Conversely, a n × m binary matrix M is equivalent to a hypergraph
H(M) = ({1, . . . , n}, {C1, . . . , Cm}).

We will in this paper focus on totally balanced hypergraphs. A hypergraph
H = (X,H) is totally balanced [2] if there is no cycle (v1, e1, . . . , vk, ek) with
k ≥ 3 such that:

– vi ∈ ei ∩ ei−1 (for i > 1) and v1 ∈ ek,
– vi /∈ ej for j /∈ {i, i− 1} and (i, j) 6= (1, k).

This class has very nice combinatorial properties (several NP-hard problems
become polynomial when focusing on this class) and a clear cluster interpretation
when dealing with real data (clusters are connected parts of some tree and
restrictions of a totally balanced hypergraph remains totally balanced [9]).

This class is in correspondence with dismantlable lattices [6]. Dismantlable
lattices where defined recursively by Rival [10] as lattices L for which there is
a doubly irreducible element x in L (a doubly irreducible element is such that
there is at most one element x− such that x− ≺ x and at most one element x+

such that x ≺ x+) such that L\{x} is also dismantlable. For instance, the order
diagram of Figure 1 represents a dismantlable lattice (elements 2, 4 and 5 are
doubly irreducible).

Considering a formal context K = (G,M, I), a formal concept (A,B) is dou-
bly irreducible for the associated lattice (B(G,M, I),≤) if there exists (g,m) ∈
(A,B) such that for any formal concept (U, V ) ∈ B(G,M, I), if g ∈ U , then
A ⊆ U and if m ∈ V then B ⊆ V . Thus, a formal context is totally balanced



(ie. its associated lattice is dismantlable) if and only if there is a decomposition
order such that [8]:

– K0 = B(G,M, I),
– there is (Ai, Bi) ∈ Ki such that ∃(g,m) ∈ (Ai, Bi) for which ∀(U, V ) ∈ Ki,

g ∈ U ⇒ Ai ⊆ U , and m ∈ V ⇒ Bi ⊆ V ,
– Ki+1 = Ki\{(Ai, Bi)}
– K|H| = ∅.

Looking at Figure 1, the formal context admits 2, 7, 4, 8, 10, 5, 1, 9, 6, 3, 0, 11
as a decomposition order (among many other).

The paper is organized as follows. We will first (Section 2) recall some prop-
erties of totally balanced matrices and use them in Sections 3 and 4 to show that
there is a one-to-one correspondence between proper formal concepts and some
elements of the associated formal concept matrix.

2 Doubly lexical ordering of totally balanced matrices

We recall here some properties of totally balanced hypergraphs and show the
implication to totally balanced formal concepts.

2.1 Formal concepts of totally balanced formal context matrices

A n×m binary matrix M is said to be totally balanced if its associated hyper-
graph H(M) is totally balanced. The result from which all the results of this
paper will follow is given by Theorem 1 and is linked with gamma-free matrices.

A n×m binary matrixM is said to be gamma-free whenever for any 1 ≤ i <
i′ ≤ n and any 1 ≤ j < j′ ≤ m: Mi,j =Mi,j′ =Mi′,j = 1 implies Mi′,j′ = 1.

For instance, the formal context matrix from Table 1 is not gamma-free
because M1,3 =M1,5 =M3,3 = 1 and M3,5 = 0.

Theorem 1 ([1]). Let M be a n ×m binary matrix. M is totally balanced if
and only if there is a gamma-free ordering of its line and columns.

Even though the formal context matrix from Table 1 is not gamma-free, it
admits a gamma-free reordering. See for instance Table 2 which is gamma-free.

We will use a special gamma-free ordering in section 2.2 which also charac-
terizes totally balanced matrices, but before that, we just state another main
property of totally balanced hypergraphs and precise it for totally balanced ma-
trices.

Hypergraphs for which the intersection of three clusters is the intersection of
two of them are called weak hierarchies [3] and are a very popular model in clas-
sification theory because they generalize the well known hierarchical model (the
intersection of two clusters is either empty or is one of them). Moreover Propo-
sition 1 shows that the closure under intersection which is usually an expensive
operation can be done easily for weak hierarchies.



Table 2. Cross table associated with a gamma-free ordering of the formal context
matrix from Table 1.

c1 c2 c3 c4 c5 c6 c7 c8
l5 × × ×
l4 × ×
l3 × × × × ×
l2 × × ×
l1 × × ×

Proposition 1 ([6]). Let H = (X,H) be a totally balanced hypergraph and
A,B,C ∈ H. We have: A ∩B ∩ C ∈ {A ∩B,A ∩ C,B ∩ C}.

Indeed, for a weak hierarchical hypergraph H = (X,H) its closure is sim-
ply equal to the clusters {A ∩ B | A,B ∈ H}, which can be done in O(|X|3)
operations. Moreover, |H| is bound by |X|2 (it derives directly from the closure
property), thus:

– the number of formal concepts associated with a totally balanced formal
context K = (G,M, I) is bound by min(|G|, |M |)2,

– the formal concepts associated with a totally balanced formal context n×m
matrix M are (Ci ∩ Cj , (Ci ∩ Cj)

↑) with 1 ≤ i, j ≤ m.

The fact that the intersections of two columns are sufficient to compute all
the formal concepts, combined with the doubly lexical ordering of Section 2.2
will be the key of all the demonstrations given in Section 3.

2.2 Doubly lexical ordering of totally balanced Matrices

A doubly lexical ordering of an n × m binary matrix is an ordering such that
if the rows and columns are viewed as n or m digit numbers read from right to
left for lines and from bottom to top for columns, both rows and columns occur
in increasing order. Clearly:

Proposition 2. A n by m binary matrix M is doubly lexically ordered if the
two following assertions are satisfied:

– for any 1 ≤ j ≤ m if there exist 1 ≤ i < i′ ≤ n such that Mi,j = 1 and
Mi′,j = 0 then there exists j′ > j with Mi,j′ = 0 and Mi′,j′ = 1,

– for any 1 ≤ i ≤ n if there exist 1 ≤ j < j′ ≤ m such that Mi,j = 1 and
Mi,j′ = 0 then there exists i′ > i with Mi′,j = 0 and Mi′,j′ = 1.

Any n×m binary matrix can be doubly lexically ordered. Several polynomial
algorithms to perform such an ordering exist, see for instance Spinrad [11] for a
O(nm) algorithm (linear in the size of M). Table 3 is a doubly lexical ordering
of Table 1.

This ordering allows another characterization of totally balanced matrices:



Table 3. Cross table associated with a doubly lexical ordering of the formal context
matrix from Table 1.

c5 c1 c4 c2 c3 c6 c7 c8
l1 × × ×
l5 × × ×
l3 × × × × ×
l4 × ×
l2 × × ×

Theorem 2 ([1]). The three following assertions are equivalent:

1. M is a totally balanced binary matrix,
2. there is a doubly lexical ordering of M which is gamma-free,
3. every doubly lexical ordering of M is gamma-free.

Since the formal context from Table 1 is totally balanced, its ordering given
in Table 3 is gamma-free. Note that a gamma-free ordering is not necessarily
doubly lexically ordered. For instance Table 2 is gamma-free but not doubly
lexically ordered. In fact the doubly lexical order “packs” the formal concepts
together as we shall show it hereafter.

3 Formal concepts of totally balanced formal context
matrices

We shall prove here that, given a totally balanced formal context K = (G,M, I),
one can associate to each formal concept (A,B) an element (i, j) of its doubly
lexically ordered formal context matrix M.

We will assume without any loss of generality that the formal context K is
such that:

– G = {1, . . . , n},
– M = {1, . . . ,m},
– its associated formal context matrix M such that Mi,j = 1 whenever iIj is

doubly lexically ordered.

If B(G,M, I) is the set of all the formal concepts, we denote by B̊(G,M, I) the
set of all the proper formal concepts: B̊(G,M, I) = B(G,M, I)\{(∅, G), (M, ∅)}.
We define f : B̊(G,M, I)→ G×M and g : G×M → 2G × 2M by:

f((A,B)) = (min(A),min(B))
g((i, j)) = ({i′ | Mi′,j = 1, i′ ≥ i}, {j′ | Mi,j′ = 1, j′ ≥ j})

Consider for instance the doubly lexically ordered formal context of Table 3.
In order to fit the above definitions, we have to write its associated formal
concepts (see Figure 1) according to the lines and the columns indices, thus
the formal concept ({l2, l3}, {c6, c8}) (number 6 in Figure 1) is here equal to
((3, 5), (6, 8)). We have then:



– f(((3, 5), (6, 8))) = (3, 6),
– g((3, 6)) = ((3, 5), (6, 8))

LetM be an n×m doubly lexically ordered totally balanced formal context
matrix. We denote by B(M) the set of all formal representative of M. A pair
(i, j) of G×M is a formal representative if:

– Mi,j = 1,
– either i = 1 or there exists j′ ≥ j such that Mi,j′ = 1 and Mi−1,j′ = 0,
– either j = 1 or there exists i′ ≥ i such that Mi′,j = 1 Mi′,j−1 = 0.

The goal of this section is to establish links between formal representatives
and formal concepts. We first need some Lemmas. Note that Lemmas 1 and 2
only suppose that the formal context matrix is gamma-free, only Lemma 3 re-
quires that M sould be doubly lexically ordered.

Lemma 1. LetM be a n×m gamma-free ordered formal context matrix associ-
ated with a formal context F = (G,M, I) and B̊(G,M, I) the set of its associated
proper formal concepts. For all (A,B) ∈ B̊(G,M, I), g(f((A,B))) = (A,B).

Proof. We will first prove that there exist jA and iB such that A = {i | Mi,jA =
1, i ≥ min(A)} and B = {j | MiBj = 1, j ≥ min(B)}.

According to Proposition 1, A is either a column Cj = {Mi,j = 1 | i ≥ 1}
or an intersection of two columns Cj ∩ Cj′ and one can assume that j < j′.
If A = Cj then A = {i′ | Mi′,j = 1i′ ≥ 1} = {i′ | Mi′,j = 1, i′ ≥ min(A)}.
If A = Cj ∩ Cj′ then min(A) is the smallest line number i for which Mi,j =
Mi,j′ = 1 and since M is gamma-free, Mi′,j = 1 implies Mi′,j′ = 1 for all
i′ ≥ i: A = Cj ∩ Cj′ = {i′ | Mi′,j = 1, i′ ≥ min(A)}.

Since tM is also gamma-free, the same proof leads to the fact that there
exists i such that B = {j′ | Mi,j′ = 1, j′ ≥ min(B)}.

Now, since Mi,jA = 1 for any i ∈ A we have that jA ∈ B (because A↑ = B)
thus min(B) ≤ jA. Moreover, Mi,min(B) = 1 for all i ∈ A (because B↓ = A)
thus {i | Mi,min(B) = 1, i ≥ min(A)} = {i | Mi,jA = 1, i ≥ min(A)} (because
M is gamma-free). This proves that A = {i | Mi,min(B) = 1, i ≥ min(A)}.

The same kind of proof can be done to prove that B = {j | Mmin(A),j =
1, j ≥ min(B)} which concludes the proof ut

Lemma 1 shows that f is an injection and that g = f−1 for its image. The
following two Lemmas will characterize the image of f .

Lemma 2. LetM be a n×m gamma-free ordered formal context matrix associ-
ated with a formal context F = (G,M, I) and B̊(G,M, I) the set of its associated
proper formal concepts. For any (A,B) ∈ B̊(G,M, I):

– either min(B) = 1 or there exists j ≥ min(B) such that Mmin(A),j−1 = 0,
– either min(A) = 1 or there exists i ≥ min(A) such that Mi−1,min(B) = 0.



Proof. We will only prove the first assertion, the second one follows by using
tM instead of M.

Lemma 1 shows that A = {i | Mi,min(B) = 1, i ≥ min(A)} and according to
Proposition 1, A is either a column Cj = {Mi,j = 1 | i ≥ 1} or an intersection
of two columns Cj ∩ Cj′ and one can assume that j < j′.

Columns Cj are equal to {i | Mi,j = 1, i ≥ i(Cj)} with i(Cj) = min{i | Mi,j =
1}. Thus either i(Cj) = 1 or Mi(Cj)−1,j = 0.

Intersection Cj ∩ Cj′ with 1 ≤ j < j′ ≤ m. Let i(Cj ∩ Cj′) = min{i | Mi,j =
Mi,j′ = 1}. Since M is gamma-free Mi′,j = 1 implies Mi′,j′ = 1 for all i′ ≥
i(Cj ∩ Cj′), thus Cj ∩ Cj′ = {i | Mi,j = 1, i ≥ i(Cj ∩ Cj′)}. Note that if
i(Cj∩Cj′) > 1 then eitherMi(Cj∩Cj′ )−1,j = 0 orMi(Cj∩Cj′ )−1,j′ = 0. The above

two cases show that if min(B) > 1 andMmin(A),j−1 = 1 for all j ≥ min(B) then
A = {i | Mi,min(B) = 1, i ≥ min(A)} cannot be an intersection of columns thus

(A,A↑) is not a formal concept, which is impossible. ut

Lemma 3. Let M be an n×m doubly lexically ordered totally balanced formal
context matrix associated with a formal context F = (G,M, I). Let (i, j) a pair
such that:

– Mi,j = 1,
– either i = 1 or there exists j′ ≥ j such that Mi,j′ = 1 and Mi−1,j′ = 0,
– either j = 1 or there exists i′ ≥ i such that Mi′,j = 1 Mi′,j−1 = 0.

We have g((i, j)) ∈ B̊(G,M, I).

Proof. Let C be the closure under intersection of the matrix columns Cj = {i |
Mi,j = 1}. We will prove by induction on the column number that if Mi,j = 1
andMi−1,j = 0 then {i′ | Mi′,j = 1, i′ ≥ i} ∈ C. First consider the last column.
Since M is doubly lexically ordered one cannot have Mi,m = 1 and Mi′,m = 0
with 1 ≤ i < i′ ≤ n. The last column is then either empty or there exists im for
whichMi,m = 1 if and only if i ≥ im thus the only possible pair (i,m) for which
Mi,m = 1 and Mi−1,m = 0 is (im,m) and {i′ | Mi′,m = 1, i′ ≥ im} = Cm ∈ C.
Suppose the property true for any j′ > j0 and let j be the largest column smaller
or equal to j0 such that there exists i for which Mi,j = 1 and Mi−1,j = 0. two
cases may occur:

– Mi′,j = 0 for all i′ < i. In this case {i′ | Mi′,j = 1, i′ ≥ i} = Cj ∈ C,
– otherwise let i2 < i be the largest index such that Mi2,j = 1. Since M

is doubly lexically ordered, there exists j2 > j such that Mi2,j2 = 0 and
Mi−1,j2 = 1. Two sub-cases are possible:

• Mi,j2 = 0. SinceM is doubly lexically ordered there exists j3 > j2 such
that Mi−1,j3 = 0 and Mi,j3 = 1. The induction hypothesis holds, so
{i′ | Mi′,j3 = 1, i′ ≥ i} ∈ C. Because M is gamma-free, {i′ | Mi′,j =
1, i′ ≥ i} = Cj ∩ {i′ | Mi′,j3 = 1, i′ ≥ i} ∈ C.



• Mi,j2 = 1. There exists i3 < i for which Mi′,j2 = 1 for any i3 ≤ i′ ≤ i
and Mi3−1,j2 = 0. The induction hypothesis holds, so {i′ | Mi′,j2 =
1, i′ ≥ i3} ∈ C. As M is gamma-free, {i′ | Mi′,j = 1, i′ ≥ i} = Cj ∩ {i′ |
Mi′,j2 = 1, i′ ≥ i3} ∈ C.

In all cases {i′ | Mi′,j = 1, i′ ≥ i} ∈ C. This concludes the proof by induction.

Let now (i, j) be a pair as stated in the Lemma. If i = 1 then A = {i′ |
Mi′,j = 1, i′ ≥ i} ∈ C and if i > 1 there exists j′ ≥ j such that Mi,j′ = 1
and Mi−1,j′ = 0. The above induction demonstration states that {i′ | Mi′,j′ =
1, i′ ≥ i} ∈ C thus A = {i′ | Mi′,j = 1, i′ ≥ i} = Cj ∩{i′ | Mi′,j′ = 1, i′ ≥ i} ∈ C.

SinceM is gamma-free,Mi,j′ = 1 with j′ ≥ j implies thatMi′,j′ = 1 for all
i′ ∈ A thus B = {j′ | Mi,j′ = 1, j′ ≥ j} ⊆ A↑. If j = 1 we clearly have equality.
If j > 1 let i′ be the largest line larger than i for which Mi′,j = 1 Mi′,j−1 = 0.
If there exists j′ < j such that j′ ∈ A↑, then Mi′,j′ = 1. Since M is doubly
lexically ordered and Mi′,j′ = 1 and Mi′,j−1 = 0 there exists i′′ > i′ for which
Mi′′,j′ = 0 and Mi′′,j−1 = 1 which implies Mi′′,j = 0 because j′ ∈ A↑. The
doubly lexical ordering of M then states that there exists i′′′ > i′′ for which
Mi′′′,j−1 = 0 and Mi′′′,j = 1 which is impossible by maximality of i′ so such a
j′ does not exist.

We finally have that A = {i′ | Mi′,j = 1, i′ ≥ i} ∈ C and A↑ = {j′ | Mi,j′ =
1, j′ ≥ j} which concludes the proof. ut

The hereunder Proposition 3 directly follows from Lemmas 1, 2 and 3.

Proposition 3. The sets B̊(G,M, I) and B(M) are in one-to-one correspon-
dence:

– for all (A,B) ∈ B̊(G,M, I): f((A,B)) = (min(A),min(B)) ∈ B(M),

– for all (i, j) ∈ B(M): g((i, j)) = ({i′ | Mi′,j = 1, i′ ≥ i}, {j′ | Mi,j′ = 1, j′ ≥
j}) ∈ B̊(G,M, I),

– g ◦ f((A,B)) = (A,B),

– f ◦ g((i, j)) = (i, j).

Table 4 shows the proper formal concepts of the formal context of Table 1
with the reordering of Table 3. Note that it is easy to find all the pairs of B(M)
in O(nm) (the size of the formal context matrix) operations.

Proposition 3 and the fact that the formal context matrix is gamma-free
allow us to state Proposition 4.

Proposition 4.

– (A,B) ≤ (A′, B′) implies that min(A) ≤ min(A′) and min(B) ≤ min(B′):
the formal concepts larger that a given (A,B) are associated with a pair in
the top-right corner of f((A,B)),

– let (i, j), (i′, j′) ∈ B(M). g((i, j)) ≤ g((i′, j′)) is equivalent to Mi,j′ = 1,

– let (i, j), (i′, j′) ∈ B(M). g((i, j)) ≥ g((i′, j′)) is equivalent to Mi′,j = 1,



Table 4. Formal concepts of Figure 1 represented by their associated pair of the doubly
lexical ordering of the formal context from Table 3.

c5 c1 c4 c2 c3 c6 c7 c8
l1 (2) (7) (10)
l5 (4) (8) ×
l3 (3) × × (6) (9)
l4 (5) ×
l2 (1) × ×

0 (∅, {c1, c2, c3, c4, c5, c6, c7, c8})
1 ({l2}, {c6, c7, c8})
2 ({l1}, {c3, c4, c5})
3 ({l3}, {c2, c3, c4, c6, c8})
4 ({l5}, {c1, c2, c3})
5 ({l2, l4}, {c7, c8})
6 ({l2, l3}, {c6, c8})
7 ({l1, l3}, {c3, c4})
8 ({l3, l5}, {c2, c3})
9 ({l2, l3, l4}, {c8})
10 ({l1, l3, l5}, {c3})
11 ({l1, l2, l3, l4, l5}, ∅)

Proposition 4 gives a way to show all the formal concepts of a given totally
balanced formal context and their order relationship on a special ordering of
its associated formal context matrix. We shall extend this property in the next
section by showing that the whole formal concept lattice can be embedded into
the matrix.

4 Cover graphs and graphical representation

In this section, we show that the formal representatives can be associated to
non-overlapping boxes of the formal context matrix. This also represents the
directed cover graph.

Let M be a n×m doubly lexically ordered totally balanced formal context
matrix associated with a formal context F = (G,M, I), B̊(G,M, I) the set of all
its proper formal concepts and B(M) the set of formal representatives.

We associate the pair (n + 1, 1) to the formal concept (∅, {1, . . . ,m}) and
the pair (1,m + 1) to the formal concept ({1, . . . , n}, ∅). So we extend maps f
and g to all the formal concepts B(G,M, I). Thus we can draw the directed
cover graph directly onM as shown in Figure 2. For the rest of this section, we
shall then consider that g((n + 1, 1)) = (∅, {1, . . . ,m}) and that g((1,m + 1)) =
({1, . . . , n}, ∅).

By Proposition 3, for such a figure, the edges ((ui, uj), (vi, vj)) of the di-
rected cover graph are such that ui ≥ vi and uj ≤ vj and at least one of these
inequalities is strict.

We shall precise this drawing by using all the 1s of the matrix. Let (i, j) ∈
B(M), we define:

– n(i, j): the smallest column such that n(i, j) > j and for which there exists
i′ ≥ j with Mi′,n(i,j) = 1 and Mi′,n(i,j)−1 = 0. If i′ does not exist, n(i, j) =
m + 1.
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Fig. 2. Directed cover graph of the totally balanced formal context of Table 3. The
unmarked 1 of the matrix are in dark grey.

– w(i, j): the largest column such that j ≤ w(i, j) < n(i, j) and Mi,j′′ = 1 for
all j ≤ j′′ ≤ w(i, j). Note that w(i, j) always exists (it can be equal to j).

It is clear that, given two formal representatives (i, j) and (i′, j′), the inter-
section of the two intervals [j, w(i, j)] and [j′, w(i′, j′)] is either empty or one
of them. The set of all the intervals is a hierarchy. Moreover, if [j, w(i, j)] 6⊂
[j′, w(i′, j′)] then i < i′.

Figure 3 shows the hierarchy formed by the formal concepts of the totally
balanced formal context of Table 3. Note that this hierarchy can be directly
drawn on the doubly lexically ordered context matrix and that it is a part of the
associated directed cover graph.

Since tM is also doubly lexically ordered and gamma-free, if we note tw(i, j)
the element of M associated with w(j, i) in tM, there is a also a hierarchy
formed by the intervals [i,t w(i, j)]. Figure 4 shows this hierarchy for the formal
concepts of the totally balanced formal context of Table 3.

Note that the union of the two hierarchies forms the directed cover graph.
Some of the 1s of the matrix tM are not “used”. The hereunder procedure
combines the two drawings into a unique one. Given a formal representative
(i, j), the box formed by the two intervals [i,t w(i, j)]× [j, w(i, j)] is full of 1s in
M and all the 1s ofM are at least in one box. If we do not want to allow boxes
overlapping we have to favor one dimension upon the other. In the hereunder
construction we favor [j, w(i, j)] upon [i,t w(i, j)].
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Fig. 3. Interval hierarchy of the columns of the formal concepts of the formal context
of Table 3.

We associate to each 1 ≤ i ≤ n, 1 ≤ j ≤ m such that Mi,j = 1 a formal
concept g((i′, j′)):

– where i′ = i and j′ is such that there exists (i, j′) ∈ B(M) for which j ≤
j′ < w(i, j′),

– or where i < i′ and i′ the largest element such that there exists (i′, j′) ∈
B(M) for which j ≤ j′ < j + w(i′, j′).

The above construction ensures that each formal concept is represented by
two intervals forming a “box full of 1s” inM and that all these boxes never over-
lap. Note that the above association is unique and that each formal representative
is self-associated. This association can be easily done in O(nm) operations.

In addition, one can prove that: g((i, j)) ≺ g((i′, j′)) if their associated boxes
in M are neighbors. One can then draw the associated directed cover graph of
the formal context on the matrix as shown in Figure 5.

5 Conclusion

This paper gives a way of representing, for a given totally balanced formal con-
text, the context matrix, the directed cover graph and its concepts into a unique
representation. This can be performed linearly in the size of the matrix allowing
to address big data sets.
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Fig. 4. Interval hierarchy of the lines of the formal concepts of the formal context of
Table 3.
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Fig. 5. Directed cover graph embedded into the formal context matrix of Table 4.



Spinrad [12] gives aO(nm) approximation scheme to transform a non-gamma-
free n×m binary matrix into a gamma-free one. Since a gamma-free matrix ad-
mits a gamma-free doubly lexical order, one can linearly approximate a formal
context matrix into a totally balanced one. This can be done for large datasets
as a first step of a Data Analysis process. It allows to find potential areas of
interest before searching for all the formal concepts of the original context in
this area.

Figure 6 shows a way of presenting such data by coloring the different con-
cepts. One can clearly see the concepts and their relationships despite the size
of the matrix. All the algorithms have been implemented and there is a ongoing
study to apply the on big datasets.

Fig. 6. Approximation of a 50× 170 Matrix.
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6. François Brucker and Alain Gély: Parsimonious cluster systems. Advances in Data
Analysis and Classification 3, 189-204 (2009)

7. Martin Farber: Characterizations of strongly chordal graphs. Discrete Mathematics
43, 173–189 (1983).



8. Bernhard Ganter and Rudolf Wille.: Formal Concept Analysis. Springer, Heidelberg
(1999)
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