
HAL Id: hal-02435796
https://hal.science/hal-02435796

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distinguishing and Classifying from n-ary Properties
Pascal Préa, Monique Rolbert

To cite this version:
Pascal Préa, Monique Rolbert. Distinguishing and Classifying from n-ary Properties. Journal of
Classification, 2014, 31 (1), pp.28-48. �10.1007/s00357-014-9151-1�. �hal-02435796�

https://hal.science/hal-02435796
https://hal.archives-ouvertes.fr


Distinguishing and Classifying from n-ary
Properties

Pascal Préa
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Abstract

We present a hierarchical classification based on n-ary relations of the enti-
ties. Starting from the finest partition that can be obtained from the attributes, we
distinguish between entities having the same attributes by using relations between
entities. The classification that we get is thus a refinement of this finest partition.
It can be computed in O(n+m2) space and O(n · p ·m5/2) time, where n is the
number of entities, p the number of classes of the resulting hierarchy (p is the size
of the output; p < 2n) and m the maximum number of relations an entity can have
(usually, m � n). So we can treat sets with millions of entities.

Keywords: Classification, Data Analysis, Hierarchy, Ultrametric, Computa-
tional Linguistics, Generation of Referring Expressions.

1 Introduction
Many algorithms and methods in classification and data analysis are based on the at-
tributes of the entities (see Barthélemy and Guénoche 1991; Gordon 1999; Jardine and
Sibson 1971).For instance, classical taxonomy (see Buffon 1749; Linné 1735) classi-
fies living species according to some attributes, such as having hair, feathers, or scales.
Ecology, i.e. relations between animals (like who eats who or who parasitizes who)
or between an animal and its surroundings, is a meta-knowledge which is not taken
into account by taxonomy. Since it seems that we are living a mass extinction event,
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and although such an event is measured by the number of disappearing taxa, ecology
is becoming more and more important. When an animal disappears, the impact of its
extinction is more related to its ecological role than to its place in the evolution tree
(the quasi-extinction of tigers does not affect lions, although tigers and lions are very
close species, but the extinction of gnus would have heavy consequences for lions).
Another example of the importance of links and relations between entities is that, with
the growing influence of social networks, it is often said that the identity of a person is
more who, and how, he is linked to than his own qualities.

In this paper, we present a hierarchical classification of entities using not only at-
tributes but also relations between the entities. Actually, this idea comes from previous
work (see Rolbert and Préa 2009) in computational linguistics: we tailor a solution to a
classical problem in computational linguistics (the generation of referring expressions)
and show that this solution yields an efficient method for classifying objects.

We first present the general purpose of generating referring expressions. Then, in
section 3, we give a precise definition of distinguishability (i.e. we give necessary
and sufficient conditions for an entity to admit a referring expression) that takes into
account n-ary relations between entities. We show that this definition yields a hier-
archical classification of the entities. In section 4, we give an O(n + m2) space and
O(n · p · m5/2) time algorithm to compute this hierarchy, where n is the number of
entities, p the number of classes of the resulting hierarchy (p is the size of the out-
put; p < 2n) and m the maximum number of relations an entity can have (usually,
m � n). This algorithm is efficient enough to treat data sets with millions of entities.
In the penultimate section, we will apply our method to classical attribute data, namely
the Fisher iris data (from Fisher 1936). In the last section, we will mention some related
work and possible extensions.

2 The generation of referring expressions
The generation of referring expressions has been a classical task in natural language
processing for more than twenty years. Its aim is to generate a definite description
(the referring expression) which designates one and only one entity among others in a
context set like a scene or a discourse (see Dale 1989; Deemter 2002; Krahmer et al.
2003; Croitoru and Deemter 2007). An entity which admits such a description is said
to be distinguishable.

Let us see this more precisely in the example in Figure 1.
In this scene, the entities are tables (t1 and t2), cups (c1 . . . c6), balls (b1 . . . b5),

a flower (f ) and the floor. For the sake of simplicity, let us suppose that this scene
is described using unary relations (like is a table or is a flower), and only two binary
relations: being in/containing, being on/having on. So, we have:

t1 is a table which has c1 and c2 on it.
c1 is a cup which is on t1 and contains b1
b2 is a ball which is in c2
b3 is a ball which is in c3
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Figure 1: A simple scene

b5 is a ball which is on the floor.
. . .

From this description, one can designate these entities by using the following referring
expressions:

f : The flower
b5: The ball on the floor
c4: The cup with a flower in it
c5: The cup on the floor with a ball in it
c6: The empty cup
b3: The ball in a cup which is on a table on which there is a cup containing a flower
. . .

The aim of the generation of referring expressions is to make a computer do the same
thing, and more precisely to produce an expression close to what would be produced by
a human being. Following this goal, most works in generation of referring expressions
do not focus on formal determination of what is a distinguishable entity, especially
when this distinguishability does not have a “natural expression” (see Gardent 2002;
Khan et al. 2009; Mitchell 2009). For instance, the entity b3 may be considered as non-
distinguishable, since its referring expression is rather long (a human being would not
use it). Other works (see Khramer et al. 2003; Deemter and Krahmer 2006; Rolbert
and Préa 2009) tend to explore, in a systematic and complete way, all the relations
which can yield distinguishability. We will apply this approach to classification.

3 An iterative definition for distinguishability and a hi-
erarchical classification of entities

Intuitively, an entity e1 is distinguishable from an entity e2 in two cases:

• e1 and e2 do not have the same set of properties (we will say that e1 is 0-
distinguishable from e2). In the example of Figure 1, the entity b3 is 0-distinguishable
from f since b3 has a property (is a ball) that f does not have. More generally,
in the example of Figure 2, the tables t1 and t2 are 0-distinguishable one from
the other since t1 has 5 cups on it and t2 has 3 cups on it.
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t1 t2

Figure 2: Another simple scene

• otherwise, e1 and e2 are in relation (we will see precisely how below) with at
least two distinguishable entities e′1 and e′2. In this case, we will say that e1
is (k + 1)-distinguishable from e2 if e′1 is k-distinguishable from e′2. In the
example of Figure 1, c3 is 1-distinguishable from c4 since c3 contains b3 which
is 0-distinguishable from f which is in c4.

LetE = {e1, e2, . . .} be a finite set (whose elements are called entities) with a finite set

F = {f1, f2, . . .} of boolean functions (fi :

ni︷ ︸︸ ︷
E × . . .× E → {True, False}) called

relations.
A property is a relation, together with a rank (the argument’s position); we denote

by pq the property built from relation p and rank q. For instance, the fact e1 gives
e2 to e3 corresponds to the relation give : E × E × E → {True, False} such that
give(e1, e2, e3) = True, and e1 has the property give with rank 1 (denoted by give1),
e2 has the property give2 and e3 has the property give3. So, e1, e2 and e3 do not have
the same set of properties. Conversely, if e1 gives x1 to y1 and e2 gives x2 to y2, e1
and e2 have the same property (give1).

For an entity e, we denote by P(e) the set of its properties. Given an entity e and a
property pq ofP(e), we will say that a tuple of entities t = (x1, . . . , xq−1, xq+1, . . . , xp)
matches pq with e if p(x1, . . . , xq−1, e, xq+1, . . . , xp) is true. For instance, with the
fact e1 gives e2 to e3 (that we represent by give(e1, e2, e3) = True), the tuple (e1, e3)
matches give2 with e2.

For an entity e and a property pq of P(e), we denote by T (e, pq) the set of all tuples
that match pq with e. If pq /∈ P(e), T (e, pq) = ∅. Given a set X , we denote by |X| the
number of elements of X .

Definition 1. k-distinguishability Dk:
An entity e1 is 0-distinguishable from an entity e2 (we denote it by e1D0 e2) if there
exists a property pq such that |T (e1, pq)| 6= |T (e2, pq)|.
An entity e1 is k-distinguishable (k > 0) from an entity e2 (we denote it by e1Dk e2)
if e1Dk−1 e2 or if there exists a property pq in P(e1) such that, if we set T (e1, pq) =
{t1, . . . , ts}:

For every ordering (t′1, . . . , t
′
s) of T (e2, pq)1:

There exists i in [1 . . . s], j in [1, . . . r] such that xj is (k − 1)-distinguishable from
yj , where ti = (x1, . . . xj . . . xr) and t′i = (y1, . . . yj . . . yr).

1We suppose that |T (e2, pq)| = |T (e1, pq)| since otherwise e1D0 e2.
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We say that an entity e is distinguishable from an entity e′ if eDk e
′ for some

k ≥ 0, that e is k-confusable with e′ if e is not k-distinguishable from e′, and that e is
confusable with e′ if e is not distinguishable from e′. We denote this, respectively, by
eD e′, eCke

′ and eC e′.
We denote by κ(e1, e2) the smallest k such that e1Dke2.

Claim 1. For any entities e1 and e2, and every k ≥ 0, e1Dke2 if and only if e2Dke1.
Equivalently, κ(e1, e2) = κ(e2, e1).

Definition 1 may seem rather complicated, especially the There exists a property/
For every ordering combination. One way to explain the underlying ideas is to inter-
pret this definition through a game theoretic point of view (see Osborne 2009). We
consider e1 and e2 as players of the following game2: At “round” k, if e1 is not already
distinguishable from e2, his goal is to be k-distinguishable from e2, and the goal of e2
is to be k-confusable with e1. To achieve their goals, e1 exhibits a set of relationships
it thinks to be specific to tself, and e2 replies by exhibiting a set of relationships which
is identical to those of e1.

Let us see some examples. In the scene in Figure 3, there are tables, cups, balls
and flowers. We use the same hypothesis as in Figure 1, i.e. we suppose that the scene
is described using only unary relations (like is a table) and the binary relations is in1,
is in2 (is in/has in), is on1 and is on2 (is on/has on).

t1 t2
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

wb1 wb2 wb3 wb4 wb5tjf1
tjf2

tjf3
tjf4

tjf5

Figure 3: Another scene

As definition 1 is iterative, its application takes several steps. Each step consists
in distinguishing more entities from the others: many objects are 0-confusable but few
are 4-confusable. At the end, there only remain entities which are not distinguishable.
These steps are the following:

1. With our definition, the tables t1 and t2 are 0-confusable (both are tables with five
objects on them) but they are both 0-distinguishable from all the other entities.
Similarly, the cups are 0 distinguishable from the flowers, the balls and the tables,
and so on.

2. The cups c1, c2, c3, c6 and c7 are 1-distinguishable with the other cups since
they are in relation (via has in) with entities (the balls b1. . . b5) which are 0-
distinguishable from all the entities (the flowers) which are in relation via has in
with the cups c4, c5, c8, c9 and c10. The cups with balls inside them are 1-
distinguishable from cups with flowers inside them.

2Actually, there are n2 simultaneous games, where n is the number of entities.
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3. The tables t1 and t2 are 2-distinguishable one from the other: they both have five
cups on them, but there do not exist three cups on t2 which are simultaneously
1-confusable with c1, c2 and c3 (and conversely, there do not exist three cups
on t1 which are simultaneously 1-confusable with c8, c9 and c10). So, for all
the orderings (c′1, c

′
2, c
′
3, c
′
4, c
′
5) of T (t2, has on1) = {c6, c7, c8, c9, c10}, it is

impossible to have simultaneously c1C1c
′
1, c2C1c

′
2 and c3C1c

′
3. Conversely, for

all the orderings (c′′1 , c
′′
2 , c
′′
3 , c
′′
4 , c
′′
5) of T (t1, has on1) = {c1, c2, c3, c4, c5}, it is

impossible to have simultaneously c′′3C1c8, c′′4C1c9 and c′′5C1c10.

4. The cups c1, c2 and c3 are 3-distinguishable from c6 and c7 (and reciprocally)
since they are on t1 which is 2-distinguishable from t2. Similarly, the cups c4
and c5 are 3-distinguishable from the cups c8, c9 and c10.

5. The balls b1, b2 and b3 are 4-distinguishable from the balls b4 and b5 since they
are in cups which are 3-distinguishable from the cups containing b4 and b5. Sim-
ilarly, the flowers f1 and f2 are 4-distinguishable from f3, f4 and f5.

6. No 4-confusable entity is 5-distinguishable. The iteration stops.

We notice that the flowers and the balls are used to distinguish t1 and t2 one from the
other (steps 2 and 3) and that the distinguishability of t1 and t2 is used to partition the
flowers and the balls (step 5). But although there is a cycle, there is no infinite loop.

It can be proven that for every k ≥ 0, Ck is an equivalence relation. In addition,
if two entities are k-distinguishable, then they are k′-distinguishable for every k′ > k.
So:

Property 1. Definition 1 yields a hierarchy on the entity set. Equivalently:
K − κ is a pseudo-ultrametric3, where K is the greatest κ(x, y).

The dendrogram obtained from the example of Figure 3 is the one in Figure 4.
In this example, one can see that unary properties give the first level of the hierarchy
(κ = 0): from left to right, these four classes are the tables (C10 = {t1, t2}), the
cups (C20 = {c1, c2 . . . , c10}), the balls (C30 = {b1, b2 . . . , b5}) and the flowers (C40 =
{f1, f2 . . . , f5}). The use of n-ary relations give four more levels of classification.

At level κ = 1, the class C20 is partitioned into C11∪C21 , where C11 = {c1, c2, c3, c6, c7}
is the class of the cups containing a ball and C21 = {c4, c5, c8, c9, c10} is the class of
the cups containing a flower.

At level κ = 2, the class C10 is partitioned into C12 ∪ C22 = {t1} ∪ {t2}.
At level κ = 3, C11 is partitioned into C13∪C23 , where C13 = {c1, c2, c3} is made of the

cups containing a ball which are on t1 and C23 = {c6, c7} is made of the cups containing
a ball which are on t2. Similarly, C21 is partitioned into C33∪C43 = {c4, c5}∪{c8, c9, c10}.

At level κ = 4, C30 is partitioned into C14 ∪ C24 , where C14 = {b1, b2, b3} are the
elements e of C30 which are contained in elements of C13 , i.e. C14 are the balls which are
in cups on t1. C24 = {b4, b5} is the class of the balls in cups on t2. Similarly, C40 is

3d = K−κ is not an ultrametric since x 6= y does not imply d(x, y) 6= 0. In order to get an ultrametric,
one can define d′(x, y) = 0 if x = y and d′(x, y) = d(x, y) + 1 otherwise.
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t1 t2 c1c2c3 c6c7 c4c5 c8c9c10 b1b2b3 b4b5 f1f2 f3f4f5

. . . . . . κ = 0

. . . . . . κ = 1

. . . . . . κ = 2

. . . . . . κ = 3

. . . κ = 4

Figure 4: The dendrogram for the scene in Figure 3

partitioned into C34 ∪ C44 = {f1, f2} ∪ {f3, f4, f5} (the flowers in cups on t1 and the
flowers in cups on t2).

One characteristic of our ultrametric is that the distance between two entities de-
pends on all of the entities in the context. So if we take out one entity, the whole
hierarchy may change. In the example in Figure 3, if we take out b1 and f5, we obtain
the dendrograms in Figure 5 and Figure 6. One can see that the dendrograms in Figure

t1 t2 c1 c2c3 c6c7 c4c5 c8c9c10 b2b3 b4b5 f1f2 f3f4f5

Figure 5: The dendrogram for Figure 3 if b1 is taken out

4, Figure 5 and Figure 6 are structurally different.
Figure 5 and Figure 6 also illustrate another characteristic of definition 1. Actu-

ally, looking at the dendrogram in Figure 4, it may seem that 0-distinguishability only
derives from unary properties like being a table, or being a cup, etc as it is often the
case in classical taxonomy, where attributes are ordered and these ones would be con-
sidered as “main” attributes. In our work, properties are not ordered: in Figure 5 and
Figure 6, empty cups (c1 in Figure 5 and c1, c10 in Figure 6) are 0-distinguishable from
not empty cups, as they are 0-distinguishable from tables and flowers. Actually, in the
dendrogram of Figure 4, the class C10 is made of entities which are tables and have 5
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t1t2 c1c10 c2c3c6c7 c4c5c8c9 b2b3b4b5 f1f2f3f4

Figure 6: The dendrogram for Figure 3 if b1 and f5 are taken out

objects on them, the class C20 is made of cups which are on something and have an
object inside them, the class C30 is made of balls which are in something, and the class
C40 is made of flowers which are in something.

We now take as entity setE the elements of an circular array T [0 . . . n−1], with the
relations equals 1(T [i]) and is near(T [i], T [j]), which is true if 0 < |i − j| ≤ k (the
operations are made modulo n). So every entity e has property is near1 and is near2,
and, for each of these properties, there are 2k tuples (made of one element) that match
it with e. Some entities also have property equals 1. Let us consider, with n = 14 and
k = 2:

T = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

• At Step 0, E is partitioned into {T [0], T [3], T [8]} (the elements with value 1) on
one hand, and the other elements on the other hand.

• At Step 1, E is partitioned into [a, b, b, a, c, c, c, c, a, c, c, 11, c, c], where a de-
notes the elements which are equal to 1, b the elements which have two “neigh-
bors” with value 1, c those which have one neighbor with value 1, and 11 the
(unique) element all of whose neighbors have value 0.

• At Step 2, E is partitioned into [f, b, b, f, 4, e, e, e, 8, d, d, 11, d, 13]. The entity
marked 13 is the unique one to have one neighbor in each of the classes a, b, c
and 11; the entity marked 4 has one neighbor in a, one in b and two in c; the
entity marked 8 is the only element of class a not to have a neighbor in class
b, the class f is made of the other elements of class a; class d is made of the
elements of class c having two neighbors in c, one in class 11 and one in a; class
e is made of entities of class c which have three neighbors in class c and one in
class a.

• At step 3, all entities become distinguishable: T [0] is the unique element of
class f with a neighbor in class 13; T [2] is the only element of class b to have a
neighbor in class 4; T [5] is the unique element of class e with a neighbor in class
f ; and so on.

So, we have the dendrogram of Figure 7. Our method does not explicitly take into
account symmetric relations, but it is possible to transform a symmetric relation into a
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0 3 8 1 3 11 4 13 9 10 12 5 6 7

Figure 7: The dendrogram for the array T

non-symmetric one. In the last example (which corresponds to dendrogram of Figure
7), we have a symmetric relation (is near(e, e′) ⇐⇒ is near(e′, e)). Note that we
have represented a fact like e is near e′ by is near(e, e′) and is near(e′, e); so we have
indicated that (e′) matches is near1 and is near2 with e and that (e) matches is near1
and is near2 with e′. It is possible to avoid this “duplication of information” by ignor-
ing property is near2 which is equivalent to property is near1. This simplification is
impossible for n-ary relations, and, more generally, this technique is not possible for
n-ary symmetric relations (the size of the data would be multiplied by n!).

Another approach to represent a symmetric relation is the use of a fictive addi-
tional entity; this is similar to the transformation of a database with n-ary relations
into a equivalent database with only binary relations. For instance, a symmetric n-ary
relation R, such that R({e1, e2, . . . , en}) and R({e′1, e′2, . . . , e′n}) are true can be rep-
resented by a binary (non-symmetric) relation B with B(e1, x), B(e2, x),. . .B(en, x),
B(e′1, x

′), . . .B(e′n, x
′) true, where x and x′ are additional entities. The size of the data

then remains nearly unchanged, but the hierarchy is slightly changed: for instance, if
e1 is k-distinguishable from e′1, then e2, . . . en should be (k + 1)-distinguishable from
e′2, . . . e

′
n. But in fact, x would be (k+1)-distinguishable from x′ and e2, . . . en would

be (k + 2)-distinguishable from e′2, . . . e
′
n.

For entities, having a property (whatever its arity is) can be seen as an attribute
(an entity has or does not have this property/attribute). We can see that our method
first builds a partition (the one we get with 0-distinguishability), which is the finest
partition that one can get from these attributes. Then the following steps refine this
partition. It is possible to obtain the first partition (the one which corresponds to 0-
distinguishability) by a “classical” method using attributes. For instance, if we look at
the usual classification of animals, there is an order on the attributes: the attribute hav-
ing a notochord, which defines the chordates, must be considered before the attribute
having a head, which defines the craniates, which is prior to having a backbone, which
defines the vertebrates. Our method can be used to continue this partition by taking into
account the interactions between species. If we have classified animals (using only at-
tributes), then we can, for instance, classify carnivore by taking into account what kind
of animals they eat, and also herbivore (depending on what animals eat them).
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4 An efficient algorithm to compute the hierarchy
In this section, we give an algorithm which computes the hierarchy. An implementation
of this algorithm can be found at: https://github.com/pascalprea/Classification.
This algorithm takes as entry a finite set E of entities, with the sets P(e) and T (e, pq)
for each e ∈ E and pq ∈ P(e). Sets are given with their cardinality. This algorithm
relies on testing k-confusability, i.e. determining if two entities are k-confusable or
k-distinguishable for a given integer k. We first study this core test.

4.1 Testing k-confusability
If k = 0, we only have to check for every property pq if |T (e1, pq)| 6= |T (e2, pq)|. This
can be done in O(|P(e1)|), assuming that the sets P(e) are initially sorted. Sorting
these sets takes O(nm logm) time, where n is the number of entities and m the maxi-
mum number of properties an entity can have. Since our algorithm takesO(n ·p ·m5/2)
time (p is the size of the output), sorting the sets P(e) does not increase the complexity
of our algorithm.

If k > 0, we suppose that all the couples (e, e′) of entities such that κ(e, e′) < k
have been already computed; so (k − 1)-confusability can be tested in O(1).

At first glance, it may seem that definition 1 yields an exponential algorithm since
we have to test all the permutations of the set [1 . . . s]. But in fact, testing whether
e1Dke2 or not can be done in the following way:
For every property pq of P(e1):

1. We construct a bipartite graph Ge1,e2
pq

= (V e1,e2
pq

, Ee1,e2
pq

), where:

• V e1,e2
pq

= T (e1, pq) ∪ T (e2, pq)
• for t = (x1, . . . xr) in T (e1, pq) and t′ = (y1, . . . yr) in T (e2, pq), {t, t′} ∈
Ee1,e2

pq
if for all i ∈ [1 . . . r], xi is (k − 1)-confusable with yi.

The graphGe1,e2
pq

can be constructed inO(|T (e1, pq)|·|T (e2, pq)|·r) = O(|T (e1, pq)|2·
r). It captures how many tuples in relation with e1 and tuples in relation with e2
through the same relation are pairwise confusable.

2. We check ifGe1,e2
pq

admits a perfect matching (i.e. if there exists a setX of edges
such that every vertex is incident with exactly one edge of X). This can be done
in O((|T (e1, pq)|+ |T (e2, pq)|)5/2) = O(|T (e1, pq)|5/2) with the algorithm of
Hopcroft and Karp (1973)4.

Claim 2. The entities e1 and e2 are k-distinguishable if and only if one graph Ge1,e2
pq

does not admit a perfect matching.
4There exists an O(n1.5

√
m/ logn algorithm to compute a maximal matching in a bipartite graph with

n vertices andm edges (see Alt et al. 2001) but this algorithm improves the one of Hopcroft and Karp (1973)
only for dense graphs. In addition, the graphs Ge1,e2

pq are generally very small.
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Proof. Suppose that T (e1, pq) = (t1, . . . , tk). If (t′1, . . . , t
′
k) is an ordering of T (e2, pq)

which does not satisfy the condition of Definition 1, then {{t1, t′1}, {t2, t′2}, . . . {tk, t′k}}
is a perfect matching of Ge1,e2

pq
; and reciprocally.

Claim 3. Knowing (k−1)-confusability/distinguishability of every pair of entities, test-
ing k-confusability can be done inO(r ·m2+m5/2) time andO(m2) space, wherem is
the maximum number of properties an entity can have (m = maxe∈E

∑
pq∈P(e) |T (e, pq)|),

and r the greatest arity of properties.

Proof. Let e and e′ be two (k− 1)-confusable entities. For every property pq of P(e1)
(= P(e2)), the algorithm first constructs the graph Ge1,e2

pq
in O(|T (e1, pq)|2 · r). The

graph Ge1,e2
pq

can be represented by a |T (e1, pq)| × |T (e1, pq)| matrix. Then the algo-
rithm tests ifGe1,e2

pq
admits a perfect matching inO(|T (e1, pq)|5/2). As

∑
pq∈P(e) |T (e, pq)|

2 ≤
(
∑

pq∈P(e) |T (e, pq)|)
2 and

∑
pq∈P(e) |T (e, pq)|

5/2 ≤ (
∑

pq∈P(e) |T (e, pq)|)
5/2, the

result follows.

One generally considers only properties with small arity: a property of arity> 10 is
something very rare. In addition, if r can not be neglected, it has also to be considered
when evaluating the size of the instance of the problem; not neglecting r is equivalent
to multiplying both the size of the instance and the computation time by r. So we will
consider r as a constant.

4.2 The complete algorithm
We now give the entire algorithm. Its output is a hierarchy H, given as a set of nodes;
each node corresponds to a class (i.e. a subset of E) and is given by a triple made of:

• Its representative: an entity of the class corresponding to the node.

• Its depth in the dendrogram (we have fixed the depth of the root to be −1, so,
if the depth of a class C is k, then two elements of C are k-confusable, and
elements of C are k-distinguishable from all the entities which are not in C).

• Its father, i.e. the smallest class strictly containing it, which is given by a couple
(representative, depth). There may be many classes with the same representative
(and many with the same depth), but a couple (representative, depth) is charac-
teristic for exactly one class.

We call k-class a maximal set of entities which are pairwise k-confusable. In the
dendrogram in Figure 4 one can see that {b1, b2, b3, b4, b5} is a 0-class. It is also a
1-class, a 2-class and a 3-class. In the resulting hierarchy H, {b1, . . . b5} will only be
considered as a 0-class, but during the progress of the algorithm, {b1 . . . b5} will also
be considered as a 1-class, a 2-class and a 3-class. A k-class which is not a class of
H corresponds to a (k − 1)-class which has not been subdivided at step k. So every
k-class is equal to a class ofH. The total number of k-classes can be much larger than
the number of classes in H. For instance, in a dendrogram like the one in Figure 8
with n = 6 leaves, there are 2n − 1 = 11 “real” classes (the black circles), but the
total number of k-classes is n(n+1)/2 = 21 (the white circles represent the k-classes
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which are not classes of H). We will see later that, although our algorithm considers
all the k-classes, its complexity does not depend on the number of k-classes but is
linear in the number of classes ofH. The main variables used by our algorithm are the

t tt tt tt tt tt
ddd
d

ddd dd d
Figure 8: A dendrogram with n leaves, 2n− 1 classes and n(n+ 1)/2 k-classes

following:

• The integer k denotes the steps of the algorithm. At step k (each step goes from
line 4 to 24), we look for k-distinguishability and construct all the k-classes.

• At the end of step k, Rep[k] is the set of the representatives of all the k-classes.
If e and e′ are in Rep[k], eDke

′, and if e /∈ Rep[k], ∃e′ ∈ Rep[k] such that
eCke

′.

• Sets[k] is an array indexed by the set E of all entities. At the end of step k, for
each entity e in Rep[k], Sets[k][e] is the k-class which admits e as a representa-
tive. If e is not a representative, Sets[k][e] is not defined and is not used. Sets
does not need to be initialized.

• OppSets[k] is an array indexed by the set E of all entities. If e ∈ Sets[k][e′],
then OppSets[k][e] = e′. Equivalently, at the end of step k, for each entity e
in E, OppSets[k][e] is the representative of the k-class containing e. We will
see that, at step k, OppSets[k − 1] is already computed; it is thus possible to
test (k − 1)-confusability in O(1) (eCk−1e

′ if and only if OppSets[k − 1][e] =
OppSets[k−1][e′]). So testing k-confusability at step k can be done inO(m5/2)
time and O(m2) space.

• Depth is an array indexed by E. At step k, for every entity e which is represen-
tative of one or many classes ofH of depth≤ k,Depth[e] is the greatest depth of
these classes. Equivalently, Depth[e] is the depth of the smallest (yet computed)
class of H containing e. If e is not the representative of a class, Depth[e] is not
defined. Depth does not need to be initialized.

• Continue indicates if, at step k, some classes are created. If it is not the case,
the algorithm stops.

We now detail how Algorithm 1 works.
At line 2, the algorithm creates the root of the hierarchy: a unique class containing

all the elements of E, whose representative is e1 and depth −1.
At the beginning of each step, there is no k-class, so Rep[k] is empty.
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Algorithm 1: HIERARCHY COMPUTATION

Input: A set E = {e1, . . . en} of entities.
Output: A hierarchyH on E.
1 begin
2 H ← {(e1,−1, ∅)} ; Rep[−1]← e1 ; Sets[−1][e1]← E ; Depth[e1]← −1 ;
3 k ← 0 ; Continue← True ;
4 while Continue do
5 Rep[k]← ∅ ;
6 foreach e ∈ Rep[k − 1] do
7 Temp← Depth[e] ;
8 CurrentRep← ∅ ;
9 foreach e′ ∈ Sets[k − 1][e] do
10 New ← True ;
11 foreach e′′ ∈ CurrentRep do
12 if e′Cke

′′ then
13 Sets[k][e”]← Sets[k][e”] ∪ {e′} ;
14 OppSets[k][e′]← e” ; New ← False ;
15 if New then
16 CurrentRep← CurrentRep ∪ {e′} ;
17 Sets[k][e′]← {e′} ; OppSets[k][e′]← e′ ;
18 Depth[e′]← k ;H ← H∪ {(e′, k, (e, Temp))} ;
19 if CurrentRep = {e} then
20 H ← H \ {(e, k, (e, Temp))} ; Depth[e]← Temp ;
21 Rep[k]← Rep[k] ∪ CurrentRep ;
22 Continue← (|Rep[k]| 6= |Rep[k − 1]|) ;
23 Delete (Rep[k − 1]) ; Delete (Sets[k − 1]) ; Delete (OppSets[k − 1]) ;
24 k ← k + 1 ;
25 foreach e ∈ Rep[k − 1] do
26 foreach e′ ∈ Sets[k − 1][e] do
27 H ← H∪ {(e′, k, (e,Depth[e]))} ;
28 end

The k-classes are subclasses of (k− 1)-classes. So the algorithm, on lines 6 and 9,
will consider the (k−1)-classes independently (instead of considering all the elements
of E “at the same time”).

CurrentRep is the set of the representatives of the (already known) subclasses of
the (k − 1)-class of e. For every entity e′ of Sets[k − 1][e], the algorithm checks if
e′ is k-confusable with a representative of a class. If e′ is k-confusable with a rep-
resentative e′′, the algorithm adds e′ to the k-class of e′′, i.e. to Sets[k][e′′]. If e′ is
k-distinguishable with all the (already known) representative, then, at line 15, New is
true and a new k-class is created with representative e′ (lines 16—18). This is always
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the case for the first element of Sets[k − 1][e].
Before the loop 9—18, CurrentRep is empty. Once computed, it is added to the

set Rep[k] (line 21).
On lines 19 and 20 is treated the case when the (k − 1)-class C of e is not parti-

tioned at step k; in this case, C is also a k-class and CurrentRep contains exactly one
element, the representative of C. We can suppose that each time the algorithm goes
through a set, it does it in the same order, so the representative of C, as a k-class, is
also e. C must not appear as a k-class in H. So the algorithm takes it out of H and
gives the value it had before lines 9—18 to Depth[e]. This value has been loaded into
Temp at line 7.

On line 22, the algorithm checks if “something has been done at step k”, i.e. if there
are more k-classes than (k− 1)-classes. If it is not the case, no other step is necessary.

After step k, the algorithm will not use what has been done at step k − 1. So
Rep[k − 1], Sets[k − 1] and OppSets[k − 1] are deleted in order to minimize the
memory used by the algorithm.

On lines 25—27, each entity is assigned to the smallest class containing it; the
hierarchyH is then complete.

Property 2. Algorithm 1 runs in O(n+m2) space and O(n · p ·m5/2) time in worst
case, where n is the number of entities, p is the number of classes in H (p < 2n) and
m is the maximum number of properties an entity can have.

Proof. The algorithm uses 9 sets5 of elements (Rep[k − 1], Rep[k], Sets[k − 1],
Sets[k], OppSets[k − 1], OppSets[k], Depth, CurrentRep and H) which are all
of size O(n). It also has to build graphs with 2m vertices, but only one at a time. So it
runs in O(n+m2) space.

The time complexity of Algorithm 1 depends on the number of tests “if e′Cke
′′”

(line 12), where e′ is an entity and e′′ a representative of a k-class (we recall that each
of these tests takes O(m5/2) time; in addition, what the algorithm does in each case
takes a constant amount of time). We prove that, for each entity e, the number of these
tests is O(p).
Let e be a fixed entity. At Step k, e is only “compared” with subclasses of the (k− 1)-
class to which it belongs (lines 6, 9 and 11).

We first give an upper bound of the number of times e is compared with a class
it does not belong to. For any k, all the k-classes to which e is compared while not
belonging to them are disjoint. Moreover, since all these k-classes are subclasses of
the (k− 1)-class of e, the (k− 1)-classes not containing e and to which e is compared
are disjoint from the compared k-classes not containing e. All are subclasses of the
(k − 2)-class of e, so the compared (k − 2)-subclasses not containing e are disjoint
from the compared k-classes and (k − 1)-classes. Thus all the classes not containing
e to which e is compared are disjoint. Since every class is equal to a class of H, e is
compared with at most p− 1 classes not containing it.

We now give the number of comparisons between e and a class to which it belongs.
For every k ≤ K, e is in exactly one k-class. At each step of the algorithm (except the

5Actually, most of them (Sets, OppSets, Depth) are associative arrays.
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last one), at least one class is divided and so two or more classes of H are “created”.
So K ≤ p and e is compared with at most p classes containing it.

Each entity is compared with O(p) classes, so there are O(n · p) tests of line 12
and Algorithm 1 runs in O(n · p ·m5/2) time (lines 25—27 take O(n) time and do not
change the overall complexity).

The bound O(np) for the number of comparisons can be reached, for instance if
all the entities are 0-distinguishable. On the contrary, if the hierarchy is a balanced
binary tree, at each step, every entity is compared with at most two classes; so the total
number of comparisons is O(n log p).

4.3 Tests on large sets of entities
Today, one often has to treat huge data sets, i.e. millions of entities. So, although
our algorithm has a polynomial time and space complexity, it is interesting to test it
on large data sets and so, we have tested our algorithm on data sets up to 10 million
entities. We do not pretend that our implementation is the best possible (the program
is written in Python, which is an interpreted language; more precisely, these tests ran
in Python 2.7 on a 16 Intel Xeon X5560 at 2.8 GHz computer with 48 Gb RAM. The
computer has 16 processors, but only one was used for these tests); these tests are just
“feasibility tests”.

The construction of the entity sets is similar to what was done for the last example
of section 3: we have generated large data sets with {0,1}-arrays of size 1 million,
2 millions, . . . 16 millions . More precisely, the arrays are random arrays (each cell
has probability 0.5 to be one). The relations are equals 1(e) and is near(e1, e2) (two
entities T [i] and T [j] are “near” if 0 < |i−j| < 3). Since relation is near is symmetric,
we only consider property is near1. For each entity e, there are four tuples that match
is near1 with e. For such data sets, all the entities are distinguishable, so p ≈ n. This
is the worst case for our algorithm. We obtained the results of Figure 9.

• The amount of memory used is approximatively 2.5 GigaBytes per million enti-
ties.

• The computation time grows slower than np (the time needed to treat 5 million
entities is smaller than 25 times the time needed to treat one million), which is
the theoretical complexity. Actually, the computation time also depends on the
depth of the hierarchy. For arrays used in this test, this depth is< 15 (two entities
are 15-confusable if two balls of radius 30 are identical; there are 261 possible
such balls).

So, we can see that our algorithm is able to treat large data sets. The classification
method that we propose in this paper is thus applicable for “real world” applications.
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Figure 9: Time needed to treat large entity sets

5 Test on Fisher’s iris data set
Our method is, basically, a discrimination method: we detect differences between en-
tities which are, a priori, similar (since they are 0-confusable). When we apply it on
a randomly generated entity set as in Section 4.3, we get a final partition made of sin-
gletons. On the contrary, when applied on real data, our method may yield a partition
made (at least partly) of “large” sets. In this case, we can say that there is a “structure”
inside this data set.

We have tested our method on the Fisher iris data set (from Fisher 1936). This
data set is made of 150 iris flowers: 50 iris i.setosa, 50 iris i.versicolor and 50 iris
i.virginica. Each flower is given with four parameters: the length and width of the
petal and the sepal. It is very easy to recognize the i.setosa among the iris: they all
have a petal width ≤ 0.3 while all the others have a petal width ≥ 1. There is not such
an easy separation between the i.versicolor and the i.virginica. In Figure 10 is shown
the result of a Principal Component Analysis of this data set.

In order to apply our method to this data set, we first have to define relations be-
tween iris. We do that in the following way:

1. We normalize the four parameters: the average value is 0 and the standard devi-
ation is 1.

2. Given a threshold h, we say that two iris are close if they have two parameters
which differ by less than h; so we have one binary relation: is close (iris1, iris2)
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Figure 10: The result of a PCA on Fisher’s iris; The i.setosa are marked with a circle,
the i.versicolor with a triangle and the i.virginica with a cross.

and one property is close1 (the properties is close1 and is close2 are equiva-
lent). Actually, we build a graph with 150 vertices (the iris) and a number of
edges that will depend on h.

By applying our method, we get the following results:

• With h = 1, no information or structure can be detected among the iris: the final
partition of the iris set is made of 130 small classes (the greatest is of size 5).

• With h = 1/2, we “recognize” the i.setosa: the final partition is made of one
class with 39 elements (all i.setosa) one class with 5 elements (all i.setosa), two
pairs and singletons.

• With h = 2, we recognize the i.versicolor: the final partition is made of one
class with 51 elements (47 i.versicolor and 4 i.virginica), one with 6 elements
(all i.setosa), 8 pairs and singletons.

These results can be interpreted in the following way:

• With threshold h = 1/2, we link each iris with its close neighbors (the standard
deviation for each parameter is 1). The i.setosa form a dense class, which is well
separated from the other iris. So each i.setosa has many neighbors among the
i.setosa and none among the other classes. Actually, the “large” class is made of
iris which have 49 neighbors, 38 of them having 49 neighbors. The other i.setosa
have a little less than 49 neighbors (among which 38 have 49 neighbors).
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• The threshold h = 2 is approximatively the radius of the set. We recognize the
i.versicolor because they are in central position among the iris. The large class
is made of the iris which are neighbors with all the other iris.

6 Related works and perspectives
Some previous works deal with n-ary functions on entities (see Agarwal et al. 2005;
Diatta 2004; Préa 1994), but their goal is to define a measure on sets which is based on
many points, and then to apply metric methods. Basically, our method is not metric:
we do not use a n-metric to classify, but we build an ultrametric from boolean (n-ary)
functions.

Although the tests have shown that it is possible to treat huge data sets, treating
efficiently such data sets would require some improvements; a promising one would
be parallel programming. Parallelisation is possible, since at each step, the same treat-
ment is independently applied on all entities (more precisely, at each couple (entity,
representative) of its class).

A characteristic of the ultrametric we build is its dependence on the entire set of en-
tities, or, equivalently, the instability of the obtained classification, which is illustrated
in Figures 4, 5 and 6. If we consider a social network with the relation is friend with,
such an instability is critical: people often add, and sometimes remove, friends. In ad-
dition, for such a network, distinguishing between someone who has 511 friends, and
another one who has “only” 497 is not pertinent. Actually, this precision is the cause
of the instability. This precision is also better for discriminate/separate than for clas-
sify/put together. One way to correct these two defaults would be to use an imprecise
measure, like fuzzy sets (see Zadeh 1965) to estimate the number of tuples matching
a property with an entity. For instance, with less precision when analysing the Fisher
iris, with threshold h = 1/2, we can characterize the i.setosa as the iris which have
around 49 neighbors, each of these neighbors also having around 49 neighbors, and
with threshold h = 2, we can characterize the i.versicolor (plus around 8 i.virginica)
as the iris having nearly 149 neighbors.
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