Pascal Préa
email: prea@lif.univ-mrs.fr

Monique Rolbert
email: rolbert@lif.univ-mrs.fr

Distinguishing and Classifying from n-ary Properties

Keywords: Classification, Data Analysis, Hierarchy, Ultrametric, Computational Linguistics, Generation of Referring Expressions

HAL is a

Introduction

Many algorithms and methods in classification and data analysis are based on the attributes of the entities (see Barthélemy and Guénoche 1991; Gordon 1999; [START_REF] Jardine | Mathematical Taxonomy[END_REF].For instance, classical taxonomy (see Buffon 1749; Linné 1735) classifies living species according to some attributes, such as having hair, feathers, or scales. Ecology, i.e. relations between animals (like who eats who or who parasitizes who) or between an animal and its surroundings, is a meta-knowledge which is not taken into account by taxonomy. Since it seems that we are living a mass extinction event, 1 and although such an event is measured by the number of disappearing taxa, ecology is becoming more and more important. When an animal disappears, the impact of its extinction is more related to its ecological role than to its place in the evolution tree (the quasi-extinction of tigers does not affect lions, although tigers and lions are very close species, but the extinction of gnus would have heavy consequences for lions). Another example of the importance of links and relations between entities is that, with the growing influence of social networks, it is often said that the identity of a person is more who, and how, he is linked to than his own qualities.

In this paper, we present a hierarchical classification of entities using not only attributes but also relations between the entities. Actually, this idea comes from previous work (see Rolbert and Préa 2009) in computational linguistics: we tailor a solution to a classical problem in computational linguistics (the generation of referring expressions) and show that this solution yields an efficient method for classifying objects.

We first present the general purpose of generating referring expressions. Then, in section 3, we give a precise definition of distinguishability (i.e. we give necessary and sufficient conditions for an entity to admit a referring expression) that takes into account n-ary relations between entities. We show that this definition yields a hierarchical classification of the entities. In section 4, we give an O(n + m 2) space and O(n • p • m 5/2) time algorithm to compute this hierarchy, where n is the number of entities, p the number of classes of the resulting hierarchy (p is the size of the output; p < 2n) and m the maximum number of relations an entity can have (usually, m n). This algorithm is efficient enough to treat data sets with millions of entities. In the penultimate section, we will apply our method to classical attribute data, namely the Fisher iris data (from [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF]). In the last section, we will mention some related work and possible extensions.

The generation of referring expressions

The generation of referring expressions has been a classical task in natural language processing for more than twenty years. Its aim is to generate a definite description (the referring expression) which designates one and only one entity among others in a context set like a scene or a discourse (see [START_REF] Dale | Cooking up Referring Expressions[END_REF][START_REF] Deemter | Generating Referring Expressions: Boolean Extensions of the Incremental Algorithm[END_REF][START_REF] Krahmer | Graph-based Generation of Referring Expressions[END_REF]; [START_REF] Croitoru | A Conceptual Graph Approach to the Generation of Referring Expressions[END_REF]). An entity which admits such a description is said to be distinguishable.

Let us see this more precisely in the example in Figure 1.

In this scene, the entities are tables (t 1 and t 2), cups (c 1 . . . c 6), balls (b 1 . . . b 5), a flower (f) and the floor. For the sake of simplicity, let us suppose that this scene is described using unary relations (like is a table or is a flower), and only two binary relations: being in/containing, being on/having on. So, we have: The ball in a cup which is on a table on which there is a cup containing a flower . . . The aim of the generation of referring expressions is to make a computer do the same thing, and more precisely to produce an expression close to what would be produced by a human being. Following this goal, most works in generation of referring expressions do not focus on formal determination of what is a distinguishable entity, especially when this distinguishability does not have a "natural expression" (see [START_REF] Gardent | Generating Minimal Definite Descriptions[END_REF][START_REF] Khan | A Hearer-Oriented Evaluation of Referring Expression Generation[END_REF][START_REF] Mitchell | Class-Based Ordering of Prenominal Modifiers[END_REF]. For instance, the entity b 3 may be considered as nondistinguishable, since its referring expression is rather long (a human being would not use it). Other works (see Khramer et al. 2003;[START_REF] Deemter | Graphs and Booleans: On the generation of referring expressions[END_REF]; Rolbert and Préa 2009) tend to explore, in a systematic and complete way, all the relations which can yield distinguishability. We will apply this approach to classification.

t 1 is a table which has c 1 and c 2 on it. c 1 is a cup which is on t 1 and contains b 1 b 2 is a ball which is in c 2 b 3 is a ball which is in c 3 t1 t2 c1 c2 c3 c4 c5 c6 v b1 v b2 v b3 v b4 v b5 t i f

An iterative definition for distinguishability and a hierarchical classification of entities

Intuitively, an entity e 1 is distinguishable from an entity e 2 in two cases:

• e 1 and e 2 do not have the same set of properties (we will say that e 1 is 0distinguishable from e 2). In the example of Figure 1, the entity b 3 is 0-distinguishable from f since b 3 has a property (is a ball) that f does not have. More generally, in the example of Figure 2, the tables t 1 and t 2 are 0-distinguishable one from the other since t 1 has 5 cups on it and t 2 has 3 cups on it. • otherwise, e 1 and e 2 are in relation (we will see precisely how below) with at least two distinguishable entities e 1 and e 2 . In this case, we will say that e 1 is (k + 1)-distinguishable from e 2 if e 1 is k-distinguishable from e 2 . In the example of Figure 1,

c 3 is 1-distinguishable from c 4 since c 3 contains b 3 which is 0-distinguishable from f which is in c 4 .
Let E = {e 1 , e 2 , . . .} be a finite set (whose elements are called entities) with a finite set

F = {f 1 , f 2 , . . .} of boolean functions (f i : ni E × . . . × E → {T rue, F alse}) called relations.
A property is a relation, together with a rank (the argument's position); we denote by p q the property built from relation p and rank q. For instance, the fact e 1 gives e 2 to e 3 corresponds to the relation give : E × E × E → {T rue, F alse} such that give(e 1 , e 2 , e 3) = T rue, and e 1 has the property give with rank 1 (denoted by give 1), e 2 has the property give 2 and e 3 has the property give 3 . So, e 1 , e 2 and e 3 do not have the same set of properties. Conversely, if e 1 gives x 1 to y 1 and e 2 gives x 2 to y 2 , e 1 and e 2 have the same property (give 1).

For an entity e, we denote by P(e) the set of its properties. Given an entity e and a property p q of P(e), we will say that a tuple of entities t = (x 1 , . . . , x q-1 , x q+1 , . . . , x p) matches p q with e if p(x 1 , . . . , x q-1 , e, x q+1 , . . . , x p) is true. For instance, with the fact e 1 gives e 2 to e 3 (that we represent by give(e 1 , e 2 , e 3) = T rue), the tuple (e 1 , e 3) matches give 2 with e 2 .

For an entity e and a property p q of P(e), we denote by T (e, p q) the set of all tuples that match p q with e. If p q / ∈ P(e), T (e, p q) = ∅. Given a set X, we denote by |X| the number of elements of X.

Definition 1. k-distinguishability D k :
An entity e 1 is 0-distinguishable from an entity e 2 (we denote it by e 1 D 0 e 2) if there exists a property p q such that |T (e 1 , p q)| = |T (e 2 , p q)|.

An entity e 1 is k-distinguishable (k > 0) from an entity e 2 (we denote it by e 1 D k e 2) if e 1 D k-1 e 2 or if there exists a property p q in P(e 1) such that, if we set T (e 1 , p q) = {t 1 , . . . , t s }:

For every ordering (t 1 , . . . , t s) of T (e 2 , p q)1 : There exists i in [1 . . . s], j in [1, . . . r] such that x j is (k -1)-distinguishable from y j , where t i = (x 1 , . . . x j . . . x r) and t i = (y 1 , . . . y j . . . y r).

We say that an entity e is distinguishable from an entity e if e D k e for some k ≥ 0, that e is k-confusable with e if e is not k-distinguishable from e , and that e is confusable with e if e is not distinguishable from e . We denote this, respectively, by e D e , e C k e and e C e . We denote by κ(e 1 , e 2) the smallest k such that e 1 D k e 2 .

Claim 1. For any entities e 1 and e 2 , and every k ≥ 0, e 1 D k e 2 if and only if e 2 D k e 1 . Equivalently, κ(e 1 , e 2) = κ(e 2 , e 1).

Definition 1 may seem rather complicated, especially the There exists a property/ For every ordering combination. One way to explain the underlying ideas is to interpret this definition through a game theoretic point of view (see [START_REF] Osborne | An Introduction to Game Theory[END_REF]. We consider e 1 and e 2 as players of the following game2 : At "round" k, if e 1 is not already distinguishable from e 2 , his goal is to be k-distinguishable from e 2 , and the goal of e 2 is to be k-confusable with e 1 . To achieve their goals, e 1 exhibits a set of relationships it thinks to be specific to tself, and e 2 replies by exhibiting a set of relationships which is identical to those of e 1 .

Let us see some examples. In the scene in Figure 3, there are tables, cups, balls and flowers. We use the same hypothesis as in Figure 1, i.e. we suppose that the scene is described using only unary relations (like is a table) and the binary relations is in 1 , is in 2 (is in/has in), is on 1 and is on 2 (is on/has on).

t 1 t 2 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 w b 1 w b 2 w b 3 w b 4 w b 5 t j f 1 t j f 2 t j f 3 t j f 4 t j f 5

Figure 3: Another scene

As definition 1 is iterative, its application takes several steps. Each step consists in distinguishing more entities from the others: many objects are 0-confusable but few are 4-confusable. At the end, there only remain entities which are not distinguishable. These steps are the following:

1. With our definition, the tables t 1 and t 2 are 0-confusable (both are tables with five objects on them) but they are both 0-distinguishable from all the other entities.

Similarly, the cups are 0 distinguishable from the flowers, the balls and the tables, and so on. 3. The tables t 1 and t 2 are 2-distinguishable one from the other: they both have five cups on them, but there do not exist three cups on t 2 which are simultaneously 1-confusable with c 1 , c 2 and c 3 (and conversely, there do not exist three cups on t 1 which are simultaneously 1-confusable with c 8 , c 9 and c 10). So, for all the orderings (c 6. No 4-confusable entity is 5-distinguishable. The iteration stops.

1 , c 2 , c 3 , c 4 , c 5) of T (t 2 , has on 1) = {c 6 , c 7 , c 8 , c 9 , c 10 }, it is impossible to have simultaneously c 1 C 1 c 1 , c 2 C 1 c 2 and c 3 C 1 c 3 . Conversely, for all the orderings (c 1 , c 2 , c 3 , c 4 , c 5) of T (t 1 , has on 1) = {c 1 , c 2 , c 3 , c 4 , c 5 }, it is impossible to have simultaneously c 3 C 1 c 8 , c 4 C 1 c
We notice that the flowers and the balls are used to distinguish t 1 and t 2 one from the other (steps 2 and 3) and that the distinguishability of t 1 and t 2 is used to partition the flowers and the balls (step 5). But although there is a cycle, there is no infinite loop.

It can be proven that for every k ≥ 0, C k is an equivalence relation. In addition, if two entities are k-distinguishable, then they are k -distinguishable for every k > k. So: Property 1. Definition 1 yields a hierarchy on the entity set. Equivalently: K -κ is a pseudo-ultrametric 3 , where K is the greatest κ(x, y).

The dendrogram obtained from the example of Figure 3 is the one in Figure 4.

In this example, one can see that unary properties give the first level of the hierarchy (κ = 0): from left to right, these four classes are the tables (C

1 0 = {t 1 , t 2 }), the cups (C 2 0 = {c 1 , c 2 . . . , c 10 }), the balls (C 3 0 = {b 1 , b 2 . . . , b 5 }) and the flowers (C 4 0 = {f 1 , f 2 . . . , f 5 }).
The use of n-ary relations give four more levels of classification.

At level κ = 1, the class One characteristic of our ultrametric is that the distance between two entities depends on all of the entities in the context. So if we take out one entity, the whole hierarchy may change. In the example in Figure 3, if we take out b 1 and f 5 , we obtain the dendrograms in Figure 5 and Figure 6. One can see that the dendrograms in Figure Figure 5 and Figure 6 also illustrate another characteristic of definition 1. Actually, looking at the dendrogram in Figure 4, it may seem that 0-distinguishability only derives from unary properties like being a table, or being a cup, etc as it is often the case in classical taxonomy, where attributes are ordered and these ones would be considered as "main" attributes. In our work, properties are not ordered: in Figure 5 and Figure 6, empty cups (c 1 in Figure 5 and c 1 , c 10 in Figure 6) are 0-distinguishable from not empty cups, as they are 0-distinguishable from tables and flowers. Actually, in the dendrogram of Figure 4, the class C 1 0 is made of entities which are tables and have 5 We now take as entity set E the elements of an circular array T [0 . . . n-1], with the relations equals 1(T [i]) and is near(T [i], T [j]), which is true if 0 < |i -j| ≤ k (the operations are made modulo n). So every entity e has property is near 1 and is near 2 , and, for each of these properties, there are 2k tuples (made of one element) that match it with e. Some entities also have property equals 1. Let us consider, with n = 14 and k = 2: T = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] non-symmetric one. In the last example (which corresponds to dendrogram of Figure 7), we have a symmetric relation (is near(e, e) ⇐⇒ is near(e , e)). Note that we have represented a fact like e is near e by is near(e, e) and is near(e , e); so we have indicated that (e) matches is near 1 and is near 2 with e and that (e) matches is near 1 and is near 2 with e . It is possible to avoid this "duplication of information" by ignoring property is near 2 which is equivalent to property is near 1 . This simplification is impossible for n-ary relations, and, more generally, this technique is not possible for n-ary symmetric relations (the size of the data would be multiplied by n!).

C 2 0 is partitioned into C 1 1 ∪C 2 1 , where C 1 1 = {c 1 , c 2 , c 3 , c 6 , c 7 } is the class of the cups containing a ball and C 2 1 = {c 4 , c 5 , c 8 , c 9 , c 10 } is the class of the cups containing a flower. At level κ = 2, the class C 1 0 is partitioned into C 1 2 ∪ C 2 2 = {t 1 } ∪ {t 2 }. At level κ = 3, C 1 1 is partitioned into C 1 3 ∪C 2 3 , where C 1 3 = {c 1 , c 2 , c 3 } is made of the cups containing a ball which are on t 1 and C 2 3 = {c 6 , c 7 } is made of the cups containing a ball which are on t 2 . Similarly, C 2 1 is partitioned into C 3 3 ∪C 4 3 = {c 4 , c 5 }∪{c 8 , c 9 , c 10 }. At level κ = 4, C 3 0 is partitioned into C 1 4 ∪ C 2 4 ,
t 1 t 2 c 1 c 2 c 3 c 6 c 7 c 4 c 5 c 8 c 9 c 10 b 2 b 3 b 4 b 5 f 1 f 2 f 3 f 4 f 5
t 1 t 2 c 1 c 10 c 2 c 3 c 6 c 7 c 4 c 5 c 8 c 9 b 2 b 3 b 4 b 5 f 1 f 2 f 3 f 4
• At Step 0, E is partitioned into {T [0], T [3],
Another approach to represent a symmetric relation is the use of a fictive additional entity; this is similar to the transformation of a database with n-ary relations into a equivalent database with only binary relations. For instance, a symmetric n-ary relation R, such that R({e 1 , e 2 , . . . , e n }) and R({e 1 , e 2 , . . . , e n }) are true can be represented by a binary (non-symmetric) relation B with B(e 1 , x), B(e 2 , x),. . . B(e n , x), B(e 1 , x), . . . B(e n , x) true, where x and x are additional entities. The size of the data then remains nearly unchanged, but the hierarchy is slightly changed: for instance, if e 1 is k-distinguishable from e 1 , then e 2 , . . . e n should be (k + 1)-distinguishable from e 2 , . . . e n . But in fact, x would be (k + 1)-distinguishable from x and e 2 , . . . e n would be (k + 2)-distinguishable from e 2 , . . . e n .

For entities, having a property (whatever its arity is) can be seen as an attribute (an entity has or does not have this property/attribute). We can see that our method first builds a partition (the one we get with 0-distinguishability), which is the finest partition that one can get from these attributes. Then the following steps refine this partition. It is possible to obtain the first partition (the one which corresponds to 0distinguishability) by a "classical" method using attributes. For instance, if we look at the usual classification of animals, there is an order on the attributes: the attribute having a notochord, which defines the chordates, must be considered before the attribute having a head, which defines the craniates, which is prior to having a backbone, which defines the vertebrates. Our method can be used to continue this partition by taking into account the interactions between species. If we have classified animals (using only attributes), then we can, for instance, classify carnivore by taking into account what kind of animals they eat, and also herbivore (depending on what animals eat them).

An efficient algorithm to compute the hierarchy

In this section, we give an algorithm which computes the hierarchy. An implementation of this algorithm can be found at: https://github.com/pascalprea/Classification. This algorithm takes as entry a finite set E of entities, with the sets P(e) and T (e, p q) for each e ∈ E and p q ∈ P(e). Sets are given with their cardinality. This algorithm relies on testing k-confusability, i.e. determining if two entities are k-confusable or k-distinguishable for a given integer k. We first study this core test.

Testing k-confusability

If k = 0, we only have to check for every property p q if |T (e 1 , p q)| = |T (e 2 , p q)|. This can be done in O(|P(e 1)|), assuming that the sets P(e) are initially sorted. Sorting these sets takes O(nm log m) time, where n is the number of entities and m the maximum number of properties an entity can have. Since our algorithm takes O(n•p•m 5/2) time (p is the size of the output), sorting the sets P(e) does not increase the complexity of our algorithm.

If k > 0, we suppose that all the couples (e, e) of entities such that κ(e, e) < k have been already computed; so (k -1)-confusability can be tested in O [START_REF] Agarwal | Beyond Pairwise Clustering[END_REF].

At first glance, it may seem that definition 1 yields an exponential algorithm since we have to test all the permutations of the set [1 . . . s]. But in fact, testing whether e 1 D k e 2 or not can be done in the following way: For every property p q of P(e 1):

1. We construct a bipartite graph G e1,e2 pq = (V e1,e2 pq , E e1,e2 pq), where:

• V e1,e2 pq = T (e 1 , p q) ∪ T (e 2 , p q)

• for t = (x 1 , . . . x r) in T (e 1 , p q) and t = (y 1 , . . . y r) in T (e 2 , p q), {t, t } ∈ E e1,e2 pq if for all i ∈ [1 . . . r], x i is (k -1)-confusable with y i .

The graph G e1,e2 pq can be constructed in O(|T (e 1 , p q)|•|T (e 2 , p q)|•r) = O(|T (e 1 , p q)| 2 • r). It captures how many tuples in relation with e 1 and tuples in relation with e 2 through the same relation are pairwise confusable.

2. We check if G e1,e2 pq admits a perfect matching (i.e. if there exists a set X of edges such that every vertex is incident with exactly one edge of X). This can be done in O((|T (e 1 , p q)| + |T (e 2 , p q)|) 5/2) = O(|T (e 1 , p q)| 5/2) with the algorithm of Hopcroft and Karp (1973) 4 .

Claim 2. The entities e 1 and e 2 are k-distinguishable if and only if one graph G e1,e2 pq does not admit a perfect matching.

Proof. Suppose that T (e 1 , p q) = (t 1 , . . . , t k). If (t 1 , . . . , t k) is an ordering of T (e 2 , p q) which does not satisfy the condition of Definition 1, then {{t 1 , t 1 }, {t 2 , t 2 }, . . . {t k , t k }} is a perfect matching of G e1,e2 pq ; and reciprocally. Claim 3. Knowing (k-1)-confusability/distinguishability of every pair of entities, testing k-confusability can be done in O(r•m 2 +m 5/2) time and O(m 2) space, where m is the maximum number of properties an entity can have (m = max e∈E pq∈P(e) |T (e, p q)|), and r the greatest arity of properties.

Proof. Let e and e be two (k -1)-confusable entities. For every property p q of P(e 1) (= P(e 2)), the algorithm first constructs the graph G e1,e2 pq in O(|T (e 1 , p q)| 2 • r). The graph G e1,e2 pq can be represented by a |T (e 1 , p q)| × |T (e 1 , p q)| matrix. Then the algorithm tests if G e1,e2 pq admits a perfect matching in O(|T (e 1 , p q)| 5/2). As pq∈P(e) |T (e, p q)| 2 ≤ (pq∈P(e) |T (e, p q)|) 2 and pq∈P(e) |T (e, p q)| 5/2 ≤ (pq∈P(e) |T (e, p q)|) 5/2 , the result follows.

One generally considers only properties with small arity: a property of arity > 10 is something very rare. In addition, if r can not be neglected, it has also to be considered when evaluating the size of the instance of the problem; not neglecting r is equivalent to multiplying both the size of the instance and the computation time by r. So we will consider r as a constant.

The complete algorithm

We now give the entire algorithm. Its output is a hierarchy H, given as a set of nodes; each node corresponds to a class (i.e. a subset of E) and is given by a triple made of:

• Its representative: an entity of the class corresponding to the node.

• Its depth in the dendrogram (we have fixed the depth of the root to be -1, so, if the depth of a class C is k, then two elements of C are k-confusable, and elements of C are k-distinguishable from all the entities which are not in C).

• Its father, i.e. the smallest class strictly containing it, which is given by a couple (representative, depth). There may be many classes with the same representative (and many with the same depth), but a couple (representative, depth) is characteristic for exactly one class.

We call k-class a maximal set of entities which are pairwise k-confusable. In the dendrogram in Figure 4 which are not classes of H). We will see later that, although our algorithm considers all the k-classes, its complexity does not depend on the number of k-classes but is linear in the number of classes of H. The main variables used by our algorithm are the • Depth is an array indexed by E. At step k, for every entity e which is representative of one or many classes of H of depth ≤ k, Depth[e] is the greatest depth of these classes. Equivalently, Depth[e] is the depth of the smallest (yet computed) class of H containing e. If e is not the representative of a class, Depth[e] is not defined. Depth does not need to be initialized.

t
• Continue indicates if, at step k, some classes are created. If it is not the case, the algorithm stops.

We now detail how Algorithm 1 works. At line 2, the algorithm creates the root of the hierarchy: a unique class containing all the elements of E, whose representative is e 1 and depth -1.

At the beginning of each step, there is no k-class, so Rep[k] is empty. The k-classes are subclasses of (k -1)-classes. So the algorithm, on lines 6 and 9, will consider the (k -1)-classes independently (instead of considering all the elements of E "at the same time").

CurrentRep is the set of the representatives of the (already known) subclasses of the (k -1)-class of e. For every entity e of Sets[k -1][e], the algorithm checks if e is k-confusable with a representative of a class. If e is k-confusable with a representative e , the algorithm adds e to the k-class of e , i.e. to Sets[k][e]. If e is k-distinguishable with all the (already known) representative, then, at line 15, N ew is true and a new k-class is created with representative e (lines [START_REF] Krahmer | Graph-based Generation of Referring Expressions[END_REF][START_REF] Linn É | Systema Naturae, available at gallica[END_REF][START_REF] Mitchell | Class-Based Ordering of Prenominal Modifiers[END_REF]. This is always the case for the first element of Sets

[k -1][e].
Before the loop 9-18, CurrentRep is empty. Once computed, it is added to the set Rep[k] (line 21).

On lines 19 and 20 is treated the case when the (k -1)-class C of e is not partitioned at step k; in this case, C is also a k-class and CurrentRep contains exactly one element, the representative of C. We can suppose that each time the algorithm goes through a set, it does it in the same order, so the representative of C, as a k-class, is also e. C must not appear as a k-class in H. So the algorithm takes it out of H and gives the value it had before lines 9-18 to Depth[e]. This value has been loaded into T emp at line 7.

On line 22, the algorithm checks if "something has been done at step k", i.e. if there are more k-classes than (k -1)-classes. If it is not the case, no other step is necessary.

After step k, the algorithm will not use what has been done at step k -

1. So Rep[k -1], Sets[k -1]
and OppSets[k -1] are deleted in order to minimize the memory used by the algorithm.

On lines 25-27, each entity is assigned to the smallest class containing it; the hierarchy H is then complete. The time complexity of Algorithm 1 depends on the number of tests "if e C k e " (line [START_REF] Gordon | Classification[END_REF], where e is an entity and e a representative of a k-class (we recall that each of these tests takes O(m5/2) time; in addition, what the algorithm does in each case takes a constant amount of time). We prove that, for each entity e, the number of these tests is O(p). Let e be a fixed entity. At Step k, e is only "compared" with subclasses of the (k -1)class to which it belongs (lines 6, 9 and 11).

We first give an upper bound of the number of times e is compared with a class it does not belong to. For any k, all the k-classes to which e is compared while not belonging to them are disjoint. Moreover, since all these k-classes are subclasses of the (k -1)-class of e, the (k -1)-classes not containing e and to which e is compared are disjoint from the compared k-classes not containing e. All are subclasses of the (k -2)-class of e, so the compared (k -2)-subclasses not containing e are disjoint from the compared k-classes and (k -1)-classes. Thus all the classes not containing e to which e is compared are disjoint. Since every class is equal to a class of H, e is compared with at most p -1 classes not containing it.

We now give the number of comparisons between e and a class to which it belongs. For every k ≤ K, e is in exactly one k-class. At each step of the algorithm (except the last one), at least one class is divided and so two or more classes of H are "created". So K ≤ p and e is compared with at most p classes containing it.

Each entity is compared with O(p) classes, so there are O(n • p) tests of line 12 and Algorithm 1 runs in O(n • p • m 5/2) time (lines 25-27 take O(n) time and do not change the overall complexity).

The bound O(np) for the number of comparisons can be reached, for instance if all the entities are 0-distinguishable. On the contrary, if the hierarchy is a balanced binary tree, at each step, every entity is compared with at most two classes; so the total number of comparisons is O(n log p).

Tests on large sets of entities

Today, one often has to treat huge data sets, i.e. millions of entities. So, although our algorithm has a polynomial time and space complexity, it is interesting to test it on large data sets and so, we have tested our algorithm on data sets up to 10 million entities. We do not pretend that our implementation is the best possible (the program is written in Python, which is an interpreted language; more precisely, these tests ran in Python 2.7 on a 16 Intel Xeon X5560 at 2.8 GHz computer with 48 Gb RAM. The computer has 16 processors, but only one was used for these tests); these tests are just "feasibility tests".

The construction of the entity sets is similar to what was done for the last example of section 3: we have generated large data sets with {0,1}-arrays of size 1 million, 2 millions, . . . 16 millions . More precisely, the arrays are random arrays (each cell has probability 0.5 to be one). The relations are equals 1(e) and is near(e 1 , e 2) (two entities T [i] and T [j] are "near" if 0 < |i-j| < 3). Since relation is near is symmetric, we only consider property is near 1 . For each entity e, there are four tuples that match is near 1 with e. For such data sets, all the entities are distinguishable, so p ≈ n. This is the worst case for our algorithm. We obtained the results of Figure 9.

• The amount of memory used is approximatively 2.5 GigaBytes per million entities.

• The computation time grows slower than np (the time needed to treat 5 million entities is smaller than 25 times the time needed to treat one million), which is the theoretical complexity. Actually, the computation time also depends on the depth of the hierarchy. For arrays used in this test, this depth is < 15 (two entities are 15-confusable if two balls of radius 30 are identical; there are 2 61 possible such balls).

So, we can see that our algorithm is able to treat large data sets. The classification method that we propose in this paper is thus applicable for "real world" applications. Our method is, basically, a discrimination method: we detect differences between entities which are, a priori, similar (since they are 0-confusable). When we apply it on a randomly generated entity set as in Section 4.3, we get a final partition made of singletons. On the contrary, when applied on real data, our method may yield a partition made (at least partly) of "large" sets. In this case, we can say that there is a "structure" inside this data set.

We have tested our method on the Fisher iris data set (from Fisher 1936). This data set is made of 150 iris flowers: 50 iris i.setosa, 50 iris i.versicolor and 50 iris i.virginica. Each flower is given with four parameters: the length and width of the petal and the sepal. It is very easy to recognize the i.setosa among the iris: they all have a petal width ≤ 0.3 while all the others have a petal width ≥ 1. There is not such an easy separation between the i.versicolor and the i.virginica. In Figure 10 is shown the result of a Principal Component Analysis of this data set.

In order to apply our method to this data set, we first have to define relations between iris. We do that in the following way:

1. We normalize the four parameters: the average value is 0 and the standard deviation is 1.

2. Given a threshold h, we say that two iris are close if they have two parameters which differ by less than h; so we have one binary relation:

is close (iris 1 , iris 2) -3 -2 -1 0 1 2 3 -2 -1 0 1 2 1st component 2nd component Figure 10:
The result of a PCA on Fisher's iris; The i.setosa are marked with a circle, the i.versicolor with a triangle and the i.virginica with a cross. and one property is close 1 (the properties is close 1 and is close 2 are equivalent). Actually, we build a graph with 150 vertices (the iris) and a number of edges that will depend on h.

By applying our method, we get the following results:

• With h = 1, no information or structure can be detected among the iris: the final partition of the iris set is made of 130 small classes (the greatest is of size 5).

• With h = 1/2, we "recognize" the i.setosa: the final partition is made of one class with 39 elements (all i.setosa) one class with 5 elements (all i.setosa), two pairs and singletons.

• With h = 2, we recognize the i.versicolor: the final partition is made of one class with 51 elements (47 i.versicolor and 4 i.virginica), one with 6 elements (all i.setosa), 8 pairs and singletons.

These results can be interpreted in the following way:

• With threshold h = 1/2, we link each iris with its close neighbors (the standard deviation for each parameter is 1). The i.setosa form a dense class, which is well separated from the other iris. So each i.setosa has many neighbors among the i.setosa and none among the other classes. Actually, the "large" class is made of iris which have 49 neighbors, 38 of them having 49 neighbors. The other i.setosa have a little less than 49 neighbors (among which 38 have 49 neighbors).

• The threshold h = 2 is approximatively the radius of the set. We recognize the i.versicolor because they are in central position among the iris. The large class is made of the iris which are neighbors with all the other iris.

6 Related works and perspectives Some previous works deal with n-ary functions on entities (see [START_REF] Agarwal | Beyond Pairwise Clustering[END_REF][START_REF] Diatta | A Relation Between the Theory of Formal Concepts and Multiway Clustering[END_REF]; Préa 1994), but their goal is to define a measure on sets which is based on many points, and then to apply metric methods. Basically, our method is not metric: we do not use a n-metric to classify, but we build an ultrametric from boolean (n-ary) functions.

Although the tests have shown that it is possible to treat huge data sets, treating efficiently such data sets would require some improvements; a promising one would be parallel programming. Parallelisation is possible, since at each step, the same treatment is independently applied on all entities (more precisely, at each couple (entity, representative) of its class).

A characteristic of the ultrametric we build is its dependence on the entire set of entities, or, equivalently, the instability of the obtained classification, which is illustrated in Figures 4, 5 and 6. If we consider a social network with the relation is friend with, such an instability is critical: people often add, and sometimes remove, friends. In addition, for such a network, distinguishing between someone who has 511 friends, and another one who has "only" 497 is not pertinent. Actually, this precision is the cause of the instability. This precision is also better for discriminate/separate than for classify/put together. One way to correct these two defaults would be to use an imprecise measure, like fuzzy sets (see [START_REF] Zadeh | Fuzzy Sets[END_REF] to estimate the number of tuples matching a property with an entity. For instance, with less precision when analysing the Fisher iris, with threshold h = 1/2, we can characterize the i.setosa as the iris which have around 49 neighbors, each of these neighbors also having around 49 neighbors, and with threshold h = 2, we can characterize the i.versicolor (plus around 8 i.virginica) as the iris having nearly 149 neighbors.

Figure 1 : 5 : 4 : 5 : 6 :

 15456 Figure 1: A simple scene

t 1 t 2 Figure 2 :

 22 Figure 2: Another simple scene

2 .

 2 The cups c 1 , c 2 , c 3 , c 6 and c 7 are 1-distinguishable with the other cups since they are in relation (via has in) with entities (the balls b 1 . . . b 5) which are 0distinguishable from all the entities (the flowers) which are in relation via has in with the cups c 4 , c 5 , c 8 , c 9 and c 10 . The cups with balls inside them are 1distinguishable from cups with flowers inside them.

9 and c 5 C 1 c 10 . 4 .

 5104 The cups c 1 , c 2 and c 3 are 3-distinguishable from c 6 and c 7 (and reciprocally) since they are on t 1 which is 2-distinguishable from t 2 . Similarly, the cups c 4 and c 5 are 3-distinguishable from the cups c 8 , c 9 and c 10 . 5. The balls b 1 , b 2 and b 3 are 4-distinguishable from the balls b 4 and b 5 since they are in cups which are 3-distinguishable from the cups containing b 4 and b 5 . Similarly, the flowers f 1 and f 2 are 4-distinguishable from f 3 , f 4 and f 5 .

where C 1 4 = 3 . . . κ = 4 Figure 4 :

 4344 Figure 4: The dendrogram for the scene in Figure 3

Figure 5 :

 5 Figure 5: The dendrogram for Figure 3 if b 1 is taken out 4, Figure 5 and Figure 6 are structurally different.Figure5and Figure6also illustrate another characteristic of definition 1. Actually, looking at the dendrogram in Figure4, it may seem that 0-distinguishability only derives from unary properties like being a table, or being a cup, etc as it is often the case in classical taxonomy, where attributes are ordered and these ones would be considered as "main" attributes. In our work, properties are not ordered: in Figure5and Figure6, empty cups (c 1 in Figure5and c 1 , c 10 in Figure6) are 0-distinguishable from not empty cups, as they are 0-distinguishable from tables and flowers. Actually, in the dendrogram of Figure4, the class C 1 0 is made of entities which are tables and have 5

Figure 6 :

 6 Figure 6: The dendrogram for Figure 3 if b 1 and f 5 are taken out

Figure 7 :

 7 Figure 7: The dendrogram for the array T

one can see that {b 1 , b 2 , b 3 , b 4 , b 5 }

 12345 is a 0-class. It is also a 1-class, a 2-class and a 3-class. In the resulting hierarchy H, {b 1 , . . . b 5 } will only be considered as a 0-class, but during the progress of the algorithm, {b 1 . . . b 5 } will also be considered as a 1-class, a 2-class and a 3-class. A k-class which is not a class of H corresponds to a (k -1)-class which has not been subdivided at step k. So every k-class is equal to a class of H. The total number of k-classes can be much larger than the number of classes in H. For instance, in a dendrogram like the one in Figure8with n = 6 leaves, there are 2n -1 = 11 "real" classes (the black circles), but the total number of k-classes is n(n + 1)/2 = 21 (the white circles represent the k-classes

Figure 8 :••

 8 Figure 8: A dendrogram with n leaves, 2n -1 classes and n(n + 1)/2 k-classes

Algorithm 1 :begin 2 H ← {(e 1 , 3 k ← 0 ; 4 while Continue do 5 Rep[k] ← ∅ ; 6 foreach e ∈ Rep[k - 1] do 7 T 8 CurrentRep ← ∅ ; 9 foreach 15 if N ew then 16 CurrentRep← 19 if CurrentRep = {e} then 20 H

 12130456178915161920 HIERARCHY COMPUTATIONInput: A set E = {e 1 , . . . e n } of entities.Output: A hierarchy H on E. 1 -1, ∅)} ; Rep[-1] ← e 1 ; Sets[-1][e 1] ← E ; Depth[e 1] ← -1 ; Continue ← True ; emp ← Depth[e] ; e ∈ Sets[k -1][e] do10 N ew ← True ; 11 foreach e ∈ CurrentRep do 12 if e C k e then 13 Sets[k][e"] ← Sets[k][e"] ∪ {e } ; 14 OppSets[k][e] ← e" ; N ew ← False ; CurrentRep ∪ {e } ; 17 Sets[k][e] ← {e } ; OppSets[k][e] ← e ; 18 Depth[e] ← k ; H ← H ∪ {(e , k, (e, T emp))} ; ← H \ {(e, k, (e, T emp))} ; Depth[e] ← T emp ; 21 Rep[k] ← Rep[k] ∪ CurrentRep ; 22 Continue ← (|Rep[k]| = |Rep[k -1]|) ; 23 Delete (Rep[k -1]) ; Delete (Sets[k -1]) ; Delete (OppSets[k -1]) ; 24 k ← k + 1 ; 25 foreach e ∈ Rep[k -1] do 26 foreach e ∈ Sets[k -1][e] do 27 H ← H ∪ {(e , k, (e, Depth[e]))} ; 28 end

Property 2 .

 2 Algorithm 1 runs in O(n + m 2) space and O(n • p • m 5/2) time in worst case, where n is the number of entities, p is the number of classes in H (p < 2n) and m is the maximum number of properties an entity can have. Proof. The algorithm uses 9 sets 5 of elements (Rep[k -1], Rep[k], Sets[k -1], Sets[k], OppSets[k -1], OppSets[k], Depth, CurrentRep and H) which are all of size O(n). It also has to build graphs with 2m vertices, but only one at a time. So it runs in O(n + m 2) space.

Figure 9 :

 9 Figure 9: Time needed to treat large entity sets

We suppose that |T (e

, pq)| = |T (e 1 , pq)| since otherwise e 1 D 0 e 2 .

Actually, there are n 2 simultaneous games, where n is the number of entities.

d = K -κ is not an ultrametric since x = y does not imply d(x, y) = 0. In order to get an ultrametric, one can define d (x, y) = 0 if x = y and d (x, y) = d(x, y) + 1 otherwise.

There exists an O(n1.5 m/ log n algorithm to compute a maximal matching in a bipartite graph with n vertices and m edges (see[START_REF] Alt | Computing a maximal cardinality matching in a bipartite graph in time O(n 1.5 m/ log n)[END_REF]) but this algorithm improves the one of[START_REF] Hopcroft | An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs[END_REF] only for dense graphs. In addition, the graphs G e 1 ,e 2 pq are generally very small.

Actually, most of them (Sets, OppSets, Depth) are associative arrays.