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Abstract

A dissimilarity D on a finite set S is said to be Robinsonian if S can be totally ordered in such a way
that, for every i < j < k, D(i, j) ≤ D(i, k) and D(j, k) ≤ D(i, k). Intuitively, D is Robinsonian if S can
be represented by points on a line. Recognizing Robinsonian dissimilarities has many applications in se-
riation and classification. In this paper, we present an optimal O(n2) algorithm to recognize Robinsonian
dissimilarities, where n is the cardinal of S. Our result improves the already known algorithms.
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1 Introduction

A dissimilarity on a finite set S is a symmetric function D : S × S → IR+ such that D(i, j) = 0 if i = j.
Dissimilarities can be seen as a generalization of distances. A dissimilarity on an n-set S can be represented
by a symmetric n×n matrix on IR+ with a null diagonal, and we shall identify dissimilarities and symmetric
non negative matrices with null diagonal. An n × n matrix (or dissimilarity) D on a set S is said to be
Robinsonian if S can be linearly sorted in such a way that, for every i < j < k, D(i, j) ≤ D(i, k) and
D(j, k) ≤ D(i, k) (Robinson 1951). Such an order is called a compatible order or a compatible permutation.
If D is Robinsonian and S is sorted along a compatible order, then all the rows and columns of D (considered
as a matrix) are non-decreasing when going from the diagonal.

Robinsonian dissimilarities first appeared as a tool to solve problems in seriation of archeological deposits
(Robinson 1951). Given a set of archeological deposits, archeologists often make the following hypothesis: the
further in time are the deposits, the farther they are from a stylistic point of view; that is to say that, when we
measure the stylistic difference between deposits, we get a Robinsonian dissimilarity, and the chronological
ordering (which is looked for) is one of the compatible orderings (see Petrie 1899, Kendall 1969). Similar
problems arise in musicology (see Halperin 1994), matrix visualisation (see Caraux and Pinloche 2005,
Chen and all 2004), philology (see Boneva 1980), hypertext analysis (see Berry and all 1996), ecology (see
Miklós and all 2005), DNA sequencing (see Benzer 1962, Mirkin and Rodin 1984) . . . Actually, Robinsonian
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dissimilarities appear when data has a underlying linear total ordering and they play a prominent role in
seriation.

In addition, Robinsonian dissimilarities are a generalization of ultrametrics (a distance D on a set S is
an ultrametric if ∀x, y, z ∈ S, D(x, y) ≥ max(D(x, z), D(y, z))) which are in one-to-one correspondence with
hierarchies (see Bartélemy and Guénoche 1991, Critchley and Fichet 1994). Similarly, Robinson dissimi-
larities are in one-to-one correspondence with a generalization of hierarchies, namely the indexed pseudo
hierarchies, also called pyramids (see Durand and Fichet 1988 and Diday 1986). A pseudo-hierarchy on a
set S is a subset H of P(S), whose elements are called classes and such that:

• S ∈ H .
• ∀x ∈ S, {x} ∈ H .
• ∀h, h′ ∈ H , (h ∩ h′ = ∅) or (h ∩ h′ ∈ H).
• There exists an order ≤H on S such that, when S is sorted along ≤H , every class is an interval.

A (weak) index on a pseudo hierarchy H is a function i : H → IR+ such that:
• ∀x ∈ S, i({x}) = 0.
• ∀h, h′ ∈ H, h ⊂ h′ =⇒ i(h) ≤ i(h′).
• ∀h, h′ ∈ H , h ! h′, i(h) = i(h′) =⇒ h′ =

⋂
{h” ∈ H : h ! h”}.

Given an indexed pseudo hierarchy (H, i), the dissimilarity D defined by D(x, y) is the index of the smallest
class containing x and y is Robinsonian. Conversely, given a Robinsonian dissimilarity D, it is possible to
construct a pseudo-hierarchy from the set BD = {B(x, λ), x ∈ S, λ ∈ IR+}, where B(x, λ) = {y ∈ S, D(x, y) ≤
λ}. More precisely, if D is a Robinsonian dissimilarity on a finite set S, then {B(x, D(x, y))∩B(y, D(x, y)) :
x, y ∈ S} is a pseudo hierarchy on S. This one-to-one correspondence makes Robinsonian dissimilarities have
many applications in classification and data analysis (see Durand and Fichet 1988 ,Critchley and Fichet 1994,
Strehl and Ghosh 2003).

From a graph theoretical point of view, these dissimilarities are in relation with interval hypergraphs (see
Fulkerson and Gross 1965). An interval hypergraph is an hypergraph (i.e. a vertex set V with a hyperedge
set E, each hyperedge being a subset of V ) such that the vertex set can be ordered in such a way that every
hyperedge is an interval; given a dissimilarity D on a set S, (S,BD) is an interval hypergraph if and only if
D is Robinsonian.

The first polynomial algorithm to recognize Robinsonian dissimilarities was given in Mirkin and Rodin
(1984). This algorithm is based on the relation between interval hypergraphs and Robinsonian dissimilarities;
it runs in O(n4) time and O(n3) space. Chepoi and Fichet (1997) and Seston (2008a) gave O(n3) time and
O(n2) space algorithms to recognize Robinsonian dissimilarities; these algorithms consider the values of D
in decreasing order. The first of these algorithms uses the divide-and-conquer paradigm, and the second one
constructs paths in threshold graphs of D. Seston (2008b) improved the second algorithm to O(n2 log n).

Optimal L∞-fitting of a dissimilarity by a Robinsonian dissimilarity is a NP-hard problem (see Barthélemy
and Brucker 2003 and Chepoi and all 2009). So, there is no efficient exact algorithms for this problem, and
one has to use heuristics like Brusco (2002) and Hubert (1974), or an approximation algorithm like Chepoi
and Seston (2011).

In this paper, we present a new algorithm to recognize Robinsonian dissimilarities, based on interval
graphs (see Golumbic 1980). Our algorithm runs in O(n2) time. Since the recognition of Robinsonian
matrices needs at least to check all the elements of the matrix, our algorithm is optimal.

In Section 2, we establish some links between Robinsonian dissimilarities and interval graphs and give a
sketch of our algorithm. In Sections 3, we give some sub-routines which are needed by our algorithm. In
Section 4, we give a precise description of our algorithm. In Section 5, we show, on an example, how our
algorithm runs. In Section 6, we mention some other applications of our algorithm.

The crucial idea of our algorithm is to consider the values D(x, y) in increasing order. So, we first
consider small values of D from which we get local necessary conditions on the permutations compatible
with Robinson property. Although local, these informations are quite accurate: we get subsets of S such
that, if D is Robinsonian, then for every compatible permutation σ, these subsets are intervals of S when S
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is sorted along σ.
Then we retrieve the relative locations of these intervals thanks to large values of D (opposite to increasing

threshold); however, we do not have to consider all the points of S: since the informations on the intervals
are accurate, we just have to keep one or two representatives for each interval and recursively apply our
algorithm on the set of representatives. This set of representatives remains small enough to guarantee that
the recursion does not change the overall complexity. The major achievement over previous algorithms relies
on this parsimonious shrinking of points of S.

For the sake of simplicity, our algorithm does not systematically test if D is Robinsonian or not. So, after
the recursive calls, we are in one of the following two cases:

• If D is Robinsonian, then we have the set of the compatible permutations.
• If D is not Robinsonian, then we have an arbitrary set of permutations.

In order to distinguish between these two cases, we just have to take one (arbitrary) permutation of the
returned set and test if it is a compatible permutation or not.

2 Robinsonian dissimilarities and interval graphs

The main goal of this section is to give some links between Robinsonian dissimilarities and interval graphs.
This is a kind of folklore and, for instance, such results can be found in Mirkin and Rodin (1984). All sets
and graphs considered in this paper are finite.

A graph G = (V, E) is an interval graph if G is the intersection graph of a family of intervals on the real
line, i.e. if there exists a family I of intervals such that V = {xi, i ∈ I} and {xi, xj} ∈ E ⇐⇒ i ∩ j ̸= ∅
(see Golumbic 1980). It is well known (see Gilmore and Hoffman 1964) that graph G is an interval graph if
and only if its maximal cliques can be linearly ordered in such a way that if c1 < c2 < c3, i ∈ c1 and i ∈ c3,
then i ∈ c2. Equivalently, the vertex-clique incidence matrix of G has the Consecutive One’s Property: if the
rows are indexed by the vertices and the columns are indexed by the maximal cliques, it is possible to sort
the columns in such a way that, on every row, the 1’s appear consecutively. The set of all the compatible
orders for a dissimilarity can be represented by a PQ-tree (see Booth 1975, Lueker 1975 and Booth and
Lueker 1976). A PQ-tree T on a set S is a tree that represents a set of permutations on S. The leaves
of T are the elements of S, and the nodes of T are of two types : the P-nodes and the Q-nodes. We use
the general convention of writing that is to represent P-nodes by circles, and Q-nodes by rectangles. On
a P-node, one can apply any permutation of its children (equivalently, its children are not ordered). The
children of a Q-node are ordered, and the only permutation we can apply on them is to reverse the order.
For instance, the PQ-tree of figure 1 represents the set of permutations {(1,2,3,4,5), (1,3,2,4,5), (2,1,3,4,5),
(2,3,1,4,5), (3,1,2,4,5), (3,2,1,4,5), (5,4,1,2,3), (5,4,1,3,2), (5,4,2,1,3), (5,4,2,3,1), (5,4,3,1,2), (5,4,3,2,1)}.

✐
!
! ❅

❅
1 2 3

4 5

Figure 1: A PQ-tree

For a node α of a PQ-tree T , we denote by T (α) the subtree of T with root α and by Sα the set of the
leaves of T (α). We will say that a node is basic if all its children are leaves.

Claim 1. For any permutation represented by T , Sα is an interval of S.

Let D be a dissimilarity on an n-set S. For every x in S and k in [0, . . . , n], we define the sets Γk(x) by
setting:

• Γ0(x) = {x},
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• Γk(x) = {y ∈ S, ∀z ∈ S \ Γk−1(x), D(x, y) ≤ D(x, z)}.

Equivalently,

• Γ0(x) = ∆0(x) = {x},

• ∆k(x) = {y ∈ S \ Γk−1(x), ∀z ∈ S \ Γk−1(x), D(x, y) ≤ D(x, z)},

• Γk(x) = Γk−1(x) ∪∆k(x).

The sets ∆k(x) are spheres with center x, and the sets Γk(x) are balls with center x. Intuitively speaking,
∆1(x) contains the elements of S closest from x, the sphere made of its “inner circle” of neighbors, ∆2(x)
contains the “second circle” of neighbors,. . . For all i, Γk(x) is the unions of the k first ∆i(x).

Claim 2. If D is Robinsonian and S is sorted along a compatible order, then the sets Γk(x) are intervals.
We will call these sets Γ-intervals.

For every l in [0, . . . , n], we define the intersection graph Gl = (Vl, El), where:

• Vl = {Γk(x), x ∈ S, 0 ≤ k ≤ l}

• El = {{vi, vj}, vi ∩ vj ̸= ∅}

On Figure 2, one can see that two different dissimilarities on three points a, b, c yield two different graphs
G1, although, for these four dissimilarities, the intersection graphs of {Γ1(x)} or {Γ2(x)} are K3, and the
intersection graph of {Γ1(x)} ∪ {Γ2(x)} is K6.
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Figure 2: The graphs G1 for the four dissimilarities on three points

The graphs Gl do not contain all the information on D. Let x and y be two elements of S. We say that
D(x, y) is l-known (or known) if x ∈ Γl(y) or y ∈ Γl(x). Otherwise, we say that D(x, y) is l-unknown (or
unknown) The graphs Gl have the following properties:
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Property 1. If D is Robinsonian, then, for any l in [0,. . . ,n], Gl is an interval graph. In addition, the set
of the permutations compatible with D is a subset of the set represented by the PQ-tree of Gl.

Proof. Follows from Claim 2.

It is clear that, if I is a set of horizontal intervals, then the maximal cliques of the intersection graph of
I corresponds to vertical lines (see Figure 3). For the graphs Gl, we have the more precise property 2.

Figure 3: Maximal cliques of an interval graph

Property 2. If D is Robinsonian, then for any l in [0, . . . , n], the maximal cliques of Gl are in one-to-one
correspondence with the points of S.

Proof. Let C = {v1, . . . vp} be a maximal clique of Gl. By Claim 2, each vi is an interval, so v1∩ . . .∩vp ̸= ∅.
Suppose that v1 ∩ . . . ∩ vp = {x1, . . . , xq}, with q > 1. The set Γ0(x1) is not in C (it does not contain xq),
but it intersects all the elements of C. So C ∪ {Γ0(x1)} is also a clique, which is in contradiction with the
maximality of C. So each maximal clique contains one (and only one) set Γ0(x).

Conversely, each element x of S corresponds to one maximal clique, namely the clique which contains
Γ0(x).

Property 3. For any k in [0, . . . , n− 1] and any x in S, if Γk(x) = Γk+1(x), then Γk(x) = S.

Proof. If Γk(x) = Γk+1(x), then ∆k+1(x) = ∅, and so S \ Γk(x) = ∅

Corollary 1. For any k in [0, . . . , n− 1] and any x in S, |Γk(x)| > k.

Proof. Since |Γ0(x)| = 1, if for every i < k, |Γi+1(x)| > |Γi(x)|, then |Γk(x)| > k. Otherwise, by Property 3,
|Γk(x)| = n > k.

Theorem 1. (Mirkin and Rodin 1984 p.62) D is Robinsonian if and only if Gn is an interval graph. In this
case, the PQ-tree of Gn represents the set of the permutations compatible with D.

Proof. By Property 1, if D is Robinsonian, then Gn is an interval graph and the set of the compatible
permutations is a subset of the set represented by the PQ-tree of Gn.
Conversely, let us suppose that Gn is an interval graph and that S is ordered according to a permutation
represented by the PQ-tree of Gn. For any x < y < z, if an interval contains x and z, it contains y. Suppose
that, for some x < y < z, we have D(x, z) < D(x, y), then there exists k ∈ [1, . . . , n− 1] such that z ∈ Γk(x)
and y /∈ Γk(x), which is impossible.

Given l ∈ [0, . . . , n−1], let α be a P-node of the PQ-tree of Gl, and β be one of its children. If Γl(x) ⊂ Sβ

for some x in Sβ , then we say that β is l-free or free. Otherwise, β is l-closed or closed. We say that a node
α is l-big if |Sα| > l. Otherwise, we say that α is l-small.

Property 4. Each l-free child is l-big.

Proof. Let α be a P-node of the PQ-tree of Gl, and β a l-free child of α, Sβ contains a set Γl(x) which has,
by Corollary 1, more than l elements.

Property 5. Let α be a P-node of the PQ-tree of Gl, β a closed child of it and x an element of Sβ.
Then there exists l′ ≤ l such that Γl′−1(x) ⊂ Sβ and Sα ⊂ Γl′(x). So if y and z are in Sα \ Sβ, then
D(x, y) = D(x, z).
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Proof. Let us suppose that there exist x ∈ Sβ and l′ such that Sβ ! Γl′(x) ! Sα. Let y ∈ Γl′(x) \ Sβ and
z ∈ Sα \Γl′(x). Then y is in a Sγ1

and z is in a Sγ2
, where γ1 and γ2 are children of α. For any permutation

compatible with the PQ-tree of Gl, z cannot be between x and y. But this is impossible since if γ1 = γ2, we
can reverse the order of Sγ1

, and if γ1 ̸= γ2, as α is a P-node, we can “put” γ2 between γ1 and β.

Property 6. Let D be a Robinsonian dissimilarity and T be the PQ-tree which represents the permutations
compatible with D. If α is a node of T , x, y ∈ Sα and z ∈ S \ Sα,then D(x, y) ≤ D(x, z) = D(y, z).

Proof. We can reverse the order of the children of any node of T (included the root), and Sα is an interval
of S. So there exists a compatible order for which x < y < z, and another one for which y < x < z.

Our algorithm can be briefly described in the following way (K is a fixed integer which does not depend
on S):

step 1 Initialization
Check if GK is an interval graph (actually, the algorithm checks if the vertex-clique incidence matrix
of GK has the consecutive one’s property).
If this is the case, then compute the PQ-tree T of GK .
Otherwise, D is not Robinsonian and the algorithm halts.

step 2 Treatment of P-Nodes
For each P-node α of T , check if, for every x in S \Sα, D(x, y) has a constant value for y ∈ Sα. If this
is not the case, then transform α into a Q-node.

step 3 Treatment of Q-Nodes
For each Q-node α, determine if α satisfies the conditions of Property 6. If this is not the case, and
if α is the child of Q-node, then delete α (the children of α become children of its parent). If α is the
child of a P-node, it will be deleted at step 4.

These three first steps constitute the “local part” of our algorithm. After Step 3, if D is Robinsonian, we
have subsets of S which are intervals for any compatible permutation. These intervals correspond to some
nodes of T .

step 4 Recursive Calls and Merging
Construct a subset S′ of S on which the values of D which have not been used to build GK may have
influence on the structure of T (these values will determine the relative locations of the intervals built
during the three first steps). The set S′ will be precisely defined in Subsection 4.4.
Recursively determine if D restricted to S′ is Robinsonian and construct its PQ-tree T ′. The recursion
stops when S′ < 3.
Merge T and T ′.

step 5 Verification
Choose one (arbitrary) permutation represented by T and verify if it corresponds to a linear ordering.
If this is the case, then D is Robinsonian and T represents the set of its compatible permutations.
Otherwise, D is not Robinsonian.

During Step 1, the algorithm considers some values of D (the ones which define the graph GK) and constructs,
if it does not halt, the PQ-tree T which represents all the permutations compatible with these values. Since
T corresponds to a subset of the n×n values of D, it represents a set of permutations which contains all the
permutations compatible with D (Property 1). During Steps 2—4, the algorithm considers more and more
values of D and maintains T such that T always represents the set of the permutations compatible with the
considered values of D. So, at every moment, T represents a superset of the permutations compatible with
D. At the end of Step 4, if D is Robinsonian, the non-considered values of D do not have any influence on
T , the set represented by T is the set of the permutations compatible with D.
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3 Auxiliary Sub-routines

In this Section, we give some auxiliary sub-routines which are needed by our algorithm and are independent
of the PQ-tree structure.

3.1 Basic procedures on sequences

We will use the following basic procedures, each running in linear time in the size of the input:

• Reverse(X), whose input is a sequence X = (x1, x2, . . . , xp), and output the sequence (xp, xp−1, . . . , x1).

• Insert(X, xi, Y ), where X = (x1, . . . , xi, . . . , xp) and Y = (y1, . . . , yq) are sequences, whose output is
the sequence (x1, . . . , xi−1, y1, . . . , yq, xi+1, . . . , xp).

• Concat(X1, . . . , Xp), whose input are the sequences (X1 = (x1
1, . . . , x

1
i1

), X2 = (x2
1, . . . , x

2
i2

), . . . , Xp =
(xp

1, . . . , x
p
ip

)), and whose output is the sequence (x1
1, . . . , x

1
i1

, x2
1, . . . , x

2
i2

, . . . , xp
1, . . . , x

p
ip

).

3.2 Construction of the vertex-clique incidence matrix of Gl

Let D be a dissimilarity on an n-set S. For any point x and any l in [1,. . . ,n], it is possible to construct the
sets (Γk(x))0≤k≤l in O(n · l) with the following pseudo-code:

Procedure Γ-Construction(x, l)
Input x ∈ S, l is an integer ≤ n.
Output the sets Γk(x), for k ≤ l, with their cardinality Nb(k, x).
begin

PreviousMin← −1 ;

Γ0(x)← {x} ;

For k ← 1 To l Do
V al(x)[k]←∞ ;

For y ← 1 To n Do

If (PreviousMin < D(x, y) < V al(x)[k]) and (x ̸= y) Then
V al(x)[k]← D(x, y) ;

PreviousMin← V al(x)[k] ;
For k ← 1 To l Do

Γk(x)← ∅ ; Nb(k, x)← 0 ;

For y ← 1 To n Do
If (D(x, y) ≤ V al(x)[k]) Then

Γk(x)← Γk(x) ∪ {y} ;

Nb(k, x)← Nb(k, x) + 1 ;
end

This procedure consists of two loops. In the first loop, the value V al(x)[k] such that y ∈ Γk(x) if and only
if D(x, y) ≤ V al(x)[k] is computed. In the second loop, the procedure computes the sets Γk(x).

The vertex-clique incidence matrix M of Gl has n rows and n(l + 1) columns. For x in [1, . . . , n] the xth

row corresponds to the point x of S, which is a clique of Gl. The column (n · k + x), where 0 ≤ k < l and
1 ≤ x ≤ n, corresponds to the set Γk(x). We can construct M in O(n2l) time with the following algorithm:
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Procedure Vertex-Clique-Matrix-Construction(l)
Input l is an integer ≤ n.
The sets Γk(x), for x ∈ S and k ≤ l, with their cardinality Nb(k, x).
Output The vertex-clique-incidence matrix M of Gl.
begin

ForAll (x, j) ∈ [1, . . . , n]× [1, . . . , n(l + 1)] Do
M [x, j]← 0 ;

ForAll (x, i) ∈ [1, . . . , n]× [1, . . . , l] Do

N [i, x]← 1 ;
ForAll (x, y) ∈ [1, . . . , n]× [1, . . . , n] Do

For i← 1 To l Do

If (N [i, y] ≤ Nb(i, y)) and (x = Γi(y)[N [i, y]]) Then
N [i, y]← N [i, y] + 1 ;

M [x, n · i + y]←1 ;

end

3.3 Refinement of partition

Given two disjoint subsets X and Y of S, refining X (with respect to Y ) consists in partitioning X into
X1 ∪X2 ∪ . . . , Xk in such a way that there exists a subset Y ′ of Y such that:

• ∀i, 0 < i ≤ k, ∀x, y ∈ Xi, z ∈ Y , D(x, z) = D(y, z).

• ∀i, j, 0 < i < j ≤ k, ∀x ∈ Xi, y ∈ Xj , z ∈ Y , if z ∈ Y ′, D(x, z) ≤ D(y, z), and if z ∈ Y \ Y ′,
D(x, z) ≥ D(y, z).

We remark that this operation is not always possible, for example with X = {x1, x2, x3}, Y = {y1, y2} and
D(x1, y1) = D(x1, y2) < D(x2, y1) = D(x3, y2) < D(x3, y1) = D(x2, y2). But if D is Robinsonian, and if,
when X ∪ Y is sorted along a compatible order, X is an interval of X ∪ Y , then it is possible to refine X
with respect to Y . In this case, Y ′ is the set of the points on the left of X and Y \ Y ′ is the set of the
points on the right of X (or vice-versa); in addition, each Xi is an interval of X when X ∪ Y is sorted along
a compatible order.

If Y has only one element, it is possible, by using a binary search tree, to refine X with respect to Y in
O(m · k) time, where m is the cardinality of X and k the number of classes in the partition. If Y is empty
or X has only one element, there is nothing to do. If Y and X have more than one element, the following
pseudo-code refines X with respect to Y .
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Procedure Refine((X1, . . . , Xp), Y )
Input X and Y = {y1, . . .} are two disjoint subsets of S.
(X1, . . . , Xp) is a partition of X.
Output A partition (X ′

1, . . . , X
′
k) of X.

begin

For i← 1 To p Do
Ξi ← Refine(Xi, {y1}) ;

# Ξi is a partition (X1
i , . . . , Xri

i ) of Xi such that
# ∀j ∈ {1, . . . ri}, x, x′ ∈ Xj

1 , D(x, y1) = D(x′, y1) and
# ∀(x1, . . . xri) ∈ X1

1 × . . .×Xri

1 , D(x1, y1) < D(x2, y1) < . . . < D(xri , y1) or
# D(x1, y1) > D(x2, y1) > . . . > D(xri , y1)
If (p > 1) and (ri > 1) Then

# This part tests and treats the case y1 ∈ Y ′

Take x1 in X1
i , x2 in Xri

i , x3 in Xi−1, x4 in Xi+1 ;

# At least one of x3, x4 exists
If (D(x2, y1) < D(x3, y1)) or (D(x1, y1) > D(x4, y1)) Then

# In this case, y1 ∈ Y ′

Reverse(X1
i , . . . , Xri

i ) ;

(X ′
1, . . . , X

′
q)← Concat(Ξ1, . . . , Ξp) ;

# (X ′
1, . . . , X

′
q) is a partition of X

# (X ′
1, . . . , X

′
q) = (X1

1 , X2
1 , . . .Xr1

1 , X1
2 , . . .Xr2

2 , . . .X
rp−1

p−1 , X1
p , . . . X

rp
p )

If Y \ {y1} = ∅ Then

Return(X ′
1, . . . , X

′
q)

Else

Refine((X ′
1, . . . , X

′
q), Y \ {y1}) ;

end

Although the definition of refining deals with two sets, the procedure Refine takes as arguments a sequence
of sets (X1, . . . , Xp) and a set Y . This procedure is recursive and its initial call takes as arguments the
(initial) sets X and Y . The recursive calls take as arguments a partition (X1, . . . , Xp) of X and a subset of
Y .

If refining X with respect to Y is not possible, this procedure returns an arbitrary partition of X . If D is
Robinsonian, every time our algorithm uses the Refine procedure, refining X with respect to Y is possible.
This is not the case if D is not Robinsonian, but because of Step 5 (Verification), this does not matter.

Theorem 2. The procedure Refine runs in O(m2) time, where m = max(|X |, |Y |).

Proof. Set n = |X |, n = |Y | and m = max(n, n). Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}.
We first consider the yi’s such that, if (X1, . . .Xp) is the partition obtained by refining X with respect

to {y1, . . . yi−1}, for every j ∈ {1 . . . p}, {D(yi, x) : x ∈ Xj} has only one value. Refining X with respect to
{yi} takes O(n) time. So treating all such yi’s takes O(m2) time.

We now consider the other yi’s, i.e. the yi’s such that, when refining X with respect to {yi}, at least one
set Xj is partitioned into many subsets. There cannot be more such yi’s than subsets in the (final) partition
of X and thus there cannot be more such yi’s than elements in X . So we can suppose that m = n. We now
prove by induction on m that the time T (m) used by Refine to treat these yi’s is O(m2), in a similar way
to the one in Heun (2008).

By the induction hypothesis, there exists a constant c such that T (r) ≤ 2c · r2 for every r < m. We can
take c such that Reverse, Concat and partitioning X into X1 ∪X2 ∪ . . . Xk (i.e. Refine(X, {y1})) takes
less than c · k · m time (partitioning X takes O(km) time, Reverse and Concat take O(m) time). So, we
have:

T (m) ≤ ckm +
k∑

i=1

T (mi)

9



With k > 1,
∑k

i=1 mi ≤ m (mi is the cardinality of X i), and thus mi < m for every i. So:

T (m) ≤ ckm +
k∑

i=1

2cm2
i ≤ ckm + 2c

k∑

i=1

mi(m−m + mi)

≤ ckm + 2c
k∑

i=1

mim− 2c
k∑

i=1

mi(m−mi).

Since x(m− x) ≥ m− 1 for all x in {1, . . . , m− 1}:

T (m) ≤ ckm + 2cm2 − 2c
k∑

i=1

(m− 1)

≤ ckm + 2cm2 − 2ck(m− 1) ≤ 2cm2.

Remark: This partition refinement technique has already been used in similar problems, such as ul-
trametric recognition in Heun (2008), interval graph recognition in Habib and all (2000) or doubly lexical
ordering in Paige and Tarjan (1987).

4 The algorithm

In this Section, we present our algorithm in a more precise way. Let D be a dissimilarity on an n-set S and
K be a fixed integer. The value of K has no incidence on the structure or the correctness of the algorithm;
in Subsection 4.4, we will fix K > 12 for ease of proving Step 4 runs in O(n2).

4.1 Initialization (Step 1)

The aim of this step is to construct the PQ-tree TK of GK . By property 1, if D is Robinsonian, then this
PQ-tree represents a set of permutations which contains all the compatible permutations.

step 1: Initialization
begin

ForAll x ∈ S Do

Γ-Construction(x, K) ;
M ← Vertex-Clique-Matrix-Construction(K) ;

Booth-and-Lueker(M) ;

If GK is not an interval graph Then
Stop ; # D is not Robinsonian

Else

# The algorithm has built a PQ-tree TK

Add-Information-on-Nodes(TK) ;

end

We have used, as a sub-routine called Booth-and-Lueker, the algorithm of Booth and Lueker (1976).
This algorithm takes as input the vertex-clique incidence matrix of a graph G and determines if G is an
interval graph or not. In addition, if G is an interval graph, this algorithm computes the PQ-tree which
represents the sets of the possible orders of the maximal clique set. We recall that, for a graph Gl, the
maximal clique set is in one-to-one correspondence with S. The algorithm of Booth and Lueker runs in
linear time in the size of the matrix; more precisely, it runs in O(c + r + o), where c (resp. r, resp. o) is the
number of columns (resp. rows, resp. ones) in the vertex-clique incidence matrix.

10



Add-Information-on-Nodes associates, with each node α, Sα and |Sα| so that in the following steps,
it will be possible to get these informations in O(1). Add-Information-on-Nodes runs in O(n2).

The loop forall x ∈ S do Γ-Construction runs in O(n2K), as Vertex-Clique-Matrix-Construction.
The graph GK has n · K vertices and n maximal cliques. So M is an n × (nK) matrix, and Booth-and-
Lueker also runs in O(n2K). Since K is a constant, this step runs in O(n2).

4.2 Treatment of P-nodes (Step 2)

For any P-node α, different from the root of TK , let α be the nearest ancestor of α which is a P-node. If α
has no P-node as ancestor, we take α equal to the root of TK . We define Sα as Sα \ Sα.

step 2: Treatment of P-Nodes
begin

ForAll P-node α (TK is traversed in postorder) Do

1 Refine(Sα, Sα) ; # We get a partition Sα = S1
α ∪ S2

α ∪ . . . Skα
α

If (kα > 1) Then
2 Create a Q-node α′ with children (ν1, ν2, . . . , νkα), each νi being

a basic P-node with Sνi = Si
α ;

ForAll child β of α such that |Sβ | > 1 Do
SubTree-Insertion(β, α′, False) ;

α← α′ ;
end

The aim of this step is to check if, for each P-node α, D(x, y) has a constant value on Sα for each y ∈ S \Sα

and, if it is not the case, to transform α into a Q-node. For example, let us consider the dissimilarity D1

(see Figure 4).

D1

a

b

c

d

e

f

a b c d e f

0 1 1 1 2 5
0 1 1 2 4

0 1 2 4
0 2 3

0 2
0

"
a

"
b

"
c

"
d

"
e

"
f

Γ1(a) 1 1 1 1 0 0
Γ1(b) 1 1 1 1 0 0
Γ1(c) 1 1 1 1 0 0
Γ1(d) 1 1 1 1 0 0
Γ1(e) 1 1 1 1 1 1
Γ1(f) 0 0 0 0 1 1
Γ0(a) 1 0 0 0 0 0
Γ0(b) 0 1 0 0 0 0
Γ0(c) 0 0 1 0 0 0
Γ0(d) 0 0 0 1 0 0
Γ0(e) 0 0 0 0 1 0
Γ0(f) 0 0 0 0 0 1

a b c d e f

Figure 4: The dissimilarity D1, its sets Γ1(x) and the vertex-clique incidence matrix of G1(D1)

In Figure 4, the intervals Γ1(x) are represented with a vertical line above x. When Γ1(x) = Γ1(y), the
interval is represented once. At Step 1, from the vertex-clique incidence matrix of G1(D1), the algorithm
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constructs the PQ-tree of the left part of Figure 5. Then, at Step 2, the algorithms changes the P-node α
into a Q-node and we get the PQ-tree on the right part of Figure 5. Notice that α, as a Q-node, will be
changed again at Step 3.

a b c d

♥α
✓

✓
❙

❙
✄✄ ❈❈

e f

β
.−→

a
b c

d

α

e f

β

Figure 5: The PQ-tree built from the graph G1(D1) and its transformation at Step 2

We remark that, when treating a P-node α, the algorithm tests D(x, y) only for y ∈ Sα \ Sα (and x in
Sα). If α is not the root of TK , then the test for y ∈ S \ Sα is done when treating α, which is also a P-node.

After Line 1, we get a partition of Sα into S1
α∪S2

α∪. . . Skα
α such that, when S is sorted along a compatible

order, S1
α, S2

α, . . . Skα
α are, in this order, consecutive intervals of S. After Line 2, the node α′ is such that

after changing α into α′ in TK , the permutations represented by TK respect this condition.
If, before being treated, α is a non-basic P-node with children β1, . . . βq, then Sα = Sβ1

∪ . . . ∪ Sβq and
Sβ1

, . . . Sβq are also intervals of S when S is sorted along a compatible order. The aim of the SubTree-
Insertion procedure is to make TK also respecting this condition. If D is Robinsonian and, if β is a
descendant of α, then, we are in one of the following two cases:

1. ∃ i ∈ [1, . . . , kα] such that Sβ ⊂ Si
α.

2. ∃ i, j ∈ [1, . . . , kα], i < j such that:

• Sβ ∩ Sk
α = Sk

α for i < k < j.

• Sβ ∩ Sk
α = ∅ for k < i or j < k.

In Case 2, we say that [νi, . . . , νj] is the intersection interval of β and, if β is a Q-node with children γ1, . . . , γp,
we can fix the orientation of the γi relatively to that of S1

α, S2
α, . . . , Skα

α . More precisely, up to a reversal of
the γi, we have:
∃ j1 < j2 < . . . jp+1 such that ∀i ∈ [1, . . . , p]:

If k < ji or k > ji+1, Sk
α ∩ Sγi = ∅.

If ji < k < ji+1, Sk
α ⊂ Sγi .

The pseudo-code of SubTree-Insertion expands as:

12



Procedure SubTree-Insertion(β, α, Bool)
Input: α is a Q-node with children ν1, . . . , νp.
β is a node with children γ1, . . . , γk and such that Sβ ⊂ Sα.
Bool is a boolean which is true if the algorithm has to consider the order of the children of β.
begin

If There exists νi such that Sβ = Sνi Then
νi ← β ;

Else

If There exists νi such that Sβ ⊂ Sνi Then
Suppress among the children of νi those whose leaves are in Sβ ;

If Bool Then

Add β among the children of α, just before νi ;
Else

Add β among the children of νi ;

Else
# Let [νl, . . . , νm] be the intersection interval of β
Create two basic P-nodes ν′

l and ν′
m, the children of ν′

l (resp. ν′
m) are those of νl (resp. νm)

which have an empty intersection with Sβ ; Delete these children from νl and νm ;

Add ν′
l and ν′

m among the children of α, ν′
l just before νl and ν′

m just after νm ;

Create a Q-node α′ with children (νl, . . . , νm) ;
Replace, in (ν1, . . . , νp), (νl, . . . , νm) by α′ ;

Bool’ ← (β is a Q-node) ;

If Bool’ and ¬((Sνl
∩ Sγ1

̸= ∅) ∧ (Sνm ∩ Sγp ̸= ∅)) Then
Reverse(γ1, γ2, . . . , γp) ;

For i← 1 To k Do
SubTree-Insertion(γi, α′, Bool′) ;

Insert(children of α, α′, children of α′) ;

end

For example, with the dissimilarity D2 of Figure 6, the algorithm, at Step 1, constructs the PQ-tree of Figure
7.

D2

a

b

c

d

e

f

g

h

a b c d e f g h

0 2 2 2 2 2 4 6
0 1 1 2 2 3 6

0 1 2 2 3 6
0 2 2 3 5

0 1 3 5
0 3 4

0 1
0

"
a

"
b

"
c

"
d

"
e

"
f

"
g

"
h

Figure 6: A dissimilarity and its sets Γ1(x)

At Step 2, from the P-node α of the PQ-tree in Figure 7 and the last two columns of the dissimilarity
of Figure 6, the algorithm constructs the P-node α′ in Figure 7. Then, after SubTree-Insertion, the
algorithm transforms the PQ-tree of Figure 7 into the one of Figure 8.
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a
✚

✚
✚

✚✚

b
✧✧

c d
❜❜

✐

e f

✒✑
✓✏

α

&&&&&&

g h

♥
❝

❝
❝

❝❝

✏✏✏✏✏

α′

a
b c

✐
! ❅

d e

✐
! ❅ f

Figure 7: The PQ-tree built from the graph G1(D2) and the Q-node α′ built at Line 2 of Step 2

a b c

✐
! ❅

d e f

α

g h

♥
❝

❝
❝

❝❝

✏✏✏✏✏

Figure 8: The PQ-tree of the dissimilarity of Figure 6 after Step 2

We now give the complexity of this step: The procedure Refine does not change the order of the
leaves. More precisely, within each Si

α, the order of the leaves is the same as the one in α (and thus as
the one in β). So, all the tests and operations in SubTree-Insertion take at most linear time. There
are at most log(|Sβ |) recursive calls; thus, in step 2, the loop “forall childβ of α such that |Sβ| > 1 do
SubTreeInsertion(β, α′, False)” takes O(log(|Sα|)). Thus the complexity of the treatment of one P-node
α is the complexity of Refine(Sα, Sα), which is O(p2), where p is the greatest of |Sα|, |Sα|. It is possible
for p to be in O(n), and there may exist O(n) P-nodes. But if we look at step 2 as a whole, each D(x, y) is
used at most twice: one with x in a Sα and y in Sα, and one with y in a Sα′ and y in Sα′ . So, step 2 runs
in O(n2) time. In addition, we have:

Property 7. Let α be a P-node of TK after Step 2. If D is Robinsonian with PQ-tree A, then there exists
a node α′ of A such that Sα′ = Sα.

Proof. Let α′ be the node of A such that Sα ⊂ Sα′ and such that none of its children has this property. Let
us suppose that the claim is false, i.e. that Sα ̸= Sα′ . For any x ∈ S \ Sα, D(x, y) has a constant value for
y ∈ Sα. So, for every permutation represented by A, the reversal of Sα is possible. Thus α′ is a P-node
with children β1, . . .βk, . . . , βp, with k > 1 and Sα = Sβ1

∪ . . . ∪ Sβk
. There exists dα such that, for every

i ̸= j ∈ {1, . . . , p}, x ∈ Sβi , y ∈ Sβj , D(x, y) = dα. Let x ∈ Sα, we set I = {y ∈ S, D(x, y) ≤ dα}. The
Γ-interval I is contained in all the Γ-intervals containing Sα; in addition, Sα′ ⊂ I. The Γ-interval I has been
considered to construct TK (otherwise, α would be the root of TK). So (as Sα ̸= I), there exist x ∈ S, d > 0
such that the Γ-interval J = {y ∈ S, D(x, y) ≤ d} contains points of Sα′ \ Sα and points of S \ Sα′ and is
such that J ∩Sα = ∅. So, there exist y ∈ S \Sα′ , z ∈ Sα′ such that D(y, z) ≤ d. By Property 6, D(y, z′) ≤ d
for every z′ ∈ Sα′ , which contradicts J ∩ Sα = ∅.
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4.3 Treatment of Q-nodes (Step 3)

This step aims at checking, for every Q-node α whether α fulfills Property 6. For this step, we will consider
all nodes with two children as Q-nodes. We first give some definitions and properties.

Let α be a Q-node and let β be a node which is not a descendant of α (i.e. either Sα ⊂ Sβ or
Sα ∩ Sβ = ∅). We say that α is orientable with respect to β if there exist x, y in Sα and z in Sβ \ Sα

such that D(x, z) ̸= D(y, z).

Let α be a Q-node with children (γ1, . . . , γp). The two extreme points aα and bα of α are defined as
follows:

• if γ1 (resp. γp) is a leaf x, then x is aα (resp. bα).
• If γ1 (resp. γp) is a P-node, we take for aα (resp. bα) any point of Sγ1

(resp. Sγp).
• If γ1 (resp. γp) is a Q-node with extreme points x and y, we choose one of them for aα (resp. bα).

Claim 3. If a Q-node α is orientable with respect to a node β, then there exists z in Sβ \ Sα such that
D(aα, z) ̸= D(bα, z).

Proof. For any z in Sβ \ Sα, and any x, y in Sα, either D(aα, z) ≤ D(x, z) ≤ D(bα, z) and D(aα, z) ≤
D(y, z) ≤ D(bα, z) or D(aα, z) ≥ D(x, z) ≥ D(bα, z) and D(aα, z) ≥ D(y, z) ≥ D(bα, z). In both cases, if
D(x, z) ̸= D(y, z), then D(aα, z) ̸= D(bα, z).

For any pair of Q-nodes {α, β}, let us compare D(aα, aβ), D(aα, bβ), D(bα, aβ), D(bα, bβ). If Sα and Sβ

are disjoint, then, up to symmetry, we are in one of the following cases:

• D(aα, aβ) = D(aα, bβ) = D(bα, aβ) = D(bα, bβ)
Then α and β are not orientable with respect to each other.

• D(aα, aβ) < D(aα, bβ) and D(bα, aβ) < D(aα, aβ)
Then both α and β are orientable with respect to the other. In this case, if D is Robinsonian, for
any ordering of S compatible with D, the quadruplet {aα, bα, aβ , bβ} is ordered as (aα, bα, aβ , bβ) or
(bβ, aβ , bα, aα).

• D(aα, aβ) = D(bα, aβ) < D(aα, bβ) = D(bα, bβ)
In this case, β is orientable with respect to α : if D is Robinsonian, for any ordering of S compatible
with D, the quadruplet {aα, bα, aβ, bβ} is ordered as (aα, bα, aβ , bβ), (bα, aα, aβ , bβ), (bβ , aβ, bα, aα) or
(bβ, aβ , aα, bα).

It could be possible, even when D is Robinsonian, that, for a point x of Sβ \ {aβ, bβ}, we have
D(x, bα) < D(x, aα) (for example, with Sα = {aα, bα}, Sβ = {aβ, x, bβ}, D(aα, aβ) = D(bα, aβ) = 1,
D(aα, bβ) = D(bα, bβ) = 4, D(x, bα) = 2 and D(x, aα) = 3). If this is the case, α is also orientable
relatively to β, that is to say that, if D is Robinsonian, for any ordering of S compatible with D,
{aα, bα, aβ , bβ} is ordered as (aα, bα, aβ , bβ) or (bβ, aβ , bα, aα). We then say that α is orientable via an
internal point of β. If α is orientable via an internal point of β, we define the dissimilarity D′ on S by:

– if x ̸= aα and y ̸= aβ , then D′(x, y) = D(x, y)

– D′(aα, aβ) = D′(aα, aβ)+ϵ, where ϵ is a positive real, small enough not to interfere with the other
values of D. For instance, if all the values of D are integer, we can take ϵ = 0.1.

Claim 4. D′ is Robinsonian if and only if D is Robinsonian; in addition, if D and D′ are Robinsonian,
they have the same set of compatible permutations.

The advantage of D′ upon D is that, at Step 4, the algorithm needs to consider only the extreme points of
the sets Sα.
If Sβ is a subset of Sα, then, up to symmetry, we are in one of the following cases:
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• If β is not an extreme child of α and if D(aα, aβ) < D(aα, bβ) or D(bα, aβ) > D(vα, bβ), then β is
orientable with respect to α. In this case, it is possible to delete β from T , that is to say to replace,
among the children of α, β by its children (see Figure 9).

α

aα

. . .

x
β

aβ

. . .
bβ

y

. . .

bα aα

. . .

xaβ

. . .

bβ y

. . .

bα

α.−→

Figure 9: Deletion of a child of a Q-node

This transformation corresponds to Insert(children of α, β, children of β).

• D(aα, aβ) = D(aα, bβ) and D(bα, aβ) = D(bα, bβ).
It may be possible that, for a point x in Sα \ (Sβ ∪ {aα, bα}), D(x, aβ) ̸= D(x, bβ); in fact, we are then
in the previous case and it is possible to delete β from T . As before, we shall say that β is orientable
via an internal point.

• If β is an extreme child of α, for instance the last one, and if D(aα, aβ) < D(aα, bβ), then, as in the
first case, β is orientable with respect to α and it is possible to delete β from T via the transformation
of Figure 10. After this transformation, bα has to be equal to bβ, although, before the transformation,

α

aα

. . . . . .

x
β

aβ

. . .
bβ

aα

. . . . . .

x aβ

. . .

bβ

α.−→

Figure 10: Deletion of a extreme child of a Q-node

bα can be equal to aβ or bβ.

• β is an extreme child of α, for instance the last one, and D(aα, aβ) = D(aα, bβ).
It may be possible that, for a point x in Sα \ (Sβ ∪ {aα}), D(x, aβ) ̸= D(x, bβ); we shall say that β is
orientable with respect to α via an internal point. In fact, we are then in the previous case and it is
possible to delete β from T .

We have the following properties:

Claim 5. Let α be a Q-node orientable with respect to a P-node β. Then, for any x ∈ Sβ, D(x, aα) ̸=
D(x, bα).

Proof. After Step 2, both D(x, aα) and D(x, bα) has a constant value for all x ∈ Sβ .

Claim 6. Let α be a Q-node, child of a P-node β and γ be a node such that Sγ ∩ Sβ = ∅, then α is not
orientable with respect to γ. In addition, if α is orientable, it is orientable with respect to β or to a descendant
of β.

Proof. Since aα and bα are in Sβ , after Step 2, for every x in S \ Sβ, D(x, aα) = D(x, bα).

Claim 7. Let α be a Q-node orientable with respect to a node β and γ be an ancestor of β. Then α is
orientable with respect to to γ.

Proof. As α is orientable with respect to β, there exists x ∈ Sβ such that D(aα, x) ̸= D((bα, x). Since
Sβ ⊂ Sγ , x ∈ Sγ and α is orientable with respect to γ.
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Property 8. Let α and β be Q-nodes, α being a child of β. If α is orientable (with respect to β or to another
node), then it can be deleted.

Proof. If α is orientable with respect to a child of β, then, by Claim 7, α is orientable with respect to β and
thus can be deleted from T . If α is orientable with respect to a node γ and not with respect to β, there exists
z in Sγ \Sβ such that D(aα, z) ̸= D(bα, z) (let us suppose, for instance, that D(aα, z) < D(bα, z)). As aα and
bα are in Sβ , β is orientable with respect to γ. So, we have either D(aβ , z) ≤ D(aα, z) < D(bα, z) ≤ D(bβ , z)
or D(bβ, z) ≤ D(aα, z) < D(bα, z) ≤ D(aβ , z). In both cases, α can be deleted from T .

We recall that a node α is said to be K-big if |Sα| > K. A node β, child of a P-node α, is said to be
K-closed if ΓK(x) ̸⊂ Sβ for all x ∈ Sβ; otherwise, β is said to be K-free.

Property 9. Let α be an orientable Q-node. If α cannot be deleted from T , then:
• α is a K-big child of a P-node γ.
• γ has a K-big child β such that α is orientable with respect to β.

Proof. By Property 8, α is the child of a P-node γ. By Claims 6 and 7 α is orientable with respect to γ. Let
x in Sγ be such that D(x, aα) ̸= D(x, bα), there exists a child β of γ such that x ∈ Sβ ; α is orientable with
respect to β.
Let us suppose that β is a K-closed node, then, by Property 5, for every y in Sβ , D(y, z) has a constant
value on Sγ \ Sβ . It would be impossible that D(x, aα) ̸= D(x, bα). So β is a K-free child of γ; by Property
4, β is K-big.
Let us suppose that α is a K-closed node, D(aα, x) and D(bα, x) are K-known, and they are different. So,
among the permutations which are compatible with the K-known values of D, we can have (aα < bα < x)
or (bα < aα < x) but not both. But after step 1, T represents the set of permutations of S which are
compatible with the K-known values of D. For these orders, we can reverse the aα and bα without changing
the place of x. So both (aα < bα < x) and (bα < aα < x) appear in the permutations compatible with T .
So α is a K-free child of γ; by property 4, α is K-big.

We can now give the pseudo-code of step 3:

step 3: Treatment of Q-Nodes
Output: A subset S′ of S.
begin

Compute-Extreme-Points ;

ForAll Q-node α (# T is traversed in postorder) Do
Q-Node-Examination(α) ;

end

Compute-Extreme-Points computes aα and bα for each Q-node α and Q-Node-Examination deletes
Q-nodes that can be deleted or changes D when a Q-node is orientable via an internal point.

We now give an example to illustrate this step. If we consider the dissimilarity D1 of Figure 4 and its
PQ-tree after Step 2 (see Figure 5), at Step 3, since D1(b, f) < D1(a, f) (a and b are the extreme points of
α) and D1(a, e) < D1(a, f), both α and β are deleted and this PQ-tree is transformed into the PQ-tree of
Figure 11.

a
b c

d e f

Figure 11: The PQ-tree for the dissimilarity D1 after Step 3
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We now consider the dissimilarity D3 (see Figure 12). At Step 1, the algorithm builds the PQ-tree of
Figure 13, which remains unchanged at Step 2. At Step 3, since α2 is orientable via an internal point of α1

(namely b), the dissimilarity D3 is changed into the one of Figure 13.

D3

a
b
c
d
e
f

a b c d e f

0 1 2 5 5 5
0 1 3 4 5

0 3 3 3
0 1 2

0 1
0

"
a

"
b

"
c

"
d

"
e

"
f

Figure 12: A dissimilarity and its sets Γ1(x)

"
a

"
b

"
c

"
d

"
e

"
f

α1

✟✟✟

α2

❍❍❍
♥

D3

a
b
c
d
e
f

a b c d e f

0 1 2 5 5 5.1
0 1 3 4 5

0 3 3 3
0 1 2

0 1
0

Figure 13: The PQ-tree built from the graph G1(D3) and the dissimilarity D3 after Step 3

In worst case, Q-Node-Examination(α) compares D(x, aα) and D(x, bα) for all x in S \ Sα. So Q-
Node-Examination runs in O(n) time. As T cannot have more than n Q-nodes, this step runs in O(n2)
time.

4.4 Recursive Calls and Merging (Step 4)

This step aims at orienting Q-nodes if applicable. An orientable Q-node is the child of a P-node, and, by
Property 7, these P-nodes can be treated independently. We denote by D|S′ the dissimilarity D applied on
a subset S′ of S. The pseudo-code of this step is the following:

step 4: Recursive Calls and Merging
begin

ForAll K-big P-node α (# T is traversed in postorder) Do

S′
α ← Representatives(α) ;

If |S′
α| > 2 Then

# Otherwise, there is no Q-node to orient
Apply the whole algorithm (steps 1—5) to D|S′

α
;

If D|S′

α
is not Robinsonian Then

Stop ; # D is not Robinsonian
Else

# T ′ is the PQ-tree of D|S′

α

Merging(α, T ′) ;
end

Representatives(α) constructs a set S′
α which contains:
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• aβ and bβ for each K-big Q-node β which is a child of α.
• An element of Sγ for each K-big P-node γ which is a child of α.

By Properties 4 and 5, there is no need to consider K-small children of α (if D is Robinsonian and β is a
K-small child of α, then β is a node of the PQ-tree A of D; in addition, if α′ is the node of A such that
Sα′ = Sα, then β is (in A) a child of α′). Since D has been changed at Step 3, by Claim 4, it is sufficient
to consider D|S′

α
. The aim of Merging is to rearrange T (α) according to what has been done during the

recursive call on α. Its pseudo-code is :

Procedure Merging(α, T ′)
Input α is a P-node.
T ′ is a PQ-tree on a subset of Sα.
begin

If Not all the subtrees of T ′ are leaves or Q-nodes with two leaves aβ and bβ, where β is a Q-node of T
Then

# Otherwise, no Q-node has been oriented
ForAll K-big child γ of α Do

If γ is a P-node Then
# Let x be the representative of γ, x is a leaf of T ′

Replace, in T ′, x by γ ;

If γ is a Q-node Then
# Let aγ and bγ be the representatives of γ
# aγ and bγ are leaves of T ′ and are consecutive children of a Q-node ξ
# Let ν1, . . . , νp be the children of γ
Replace, among the children of ξ, aγ , bγ by ν1, . . . , νp ;

If α has K-small children η1, . . . , ηq Then
If The root of T ′ is a P-node or a Q-node with two children Then

Add η1, . . . , ηq among the children of the root of T ′ ;

# If the root of T ′ is a Q-node with two children, it becomes a P-node
Replace α by T ′ ;

Else
Delete the K-big children of α ;

Add T ′ among the children of α ;

Else
Replace α by T ′ ;

end

We now give the complexity of this step.
Merging(α, T ′) runs in O(|Sα|) time, so, at this step, the calls of Merging not in recursive calls are,
altogether, in O(n2).
Let us calculate the total number of representatives.

There are less than n/K K-big nodes with no K-big descendants, and thus less than n/K K-big nodes
with more than two K-big descendants such that none of the two is a descendant of the other.

Let α be a node with only one K-big descendant β. If both α and β have representatives, then the parent
of β is a P-node with more than two children and α is a Q-node. So Sα \Sβ contains at least three elements
(see Figure 14).

Since a Q-node has at most two representatives, and a P-node at most one :
∑

α

|S′
α| ≤ 2× n/3 + 4× n/K

We shall see below that step 5 (as steps 1— 3) runs in O(n2) time. By taking K > 12, we get
∑

α |S′
α| <

0.98 · n. Thus step 4 runs in O(n2) time, and so does the whole algorithm.
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Figure 14:

4.5 Verification (Step 5)

If D is Robinsonian, after Step 4, T represents the set of all the permutations compatible with D and any
permutation represented by T corresponds to a linear ordering. Conversely, if D is not Robinsonian, Steps
1—4 of the algorithm may produce a PQ-tree: for instance, in Step 3, we do not check if there is some
contradiction between the orientations of the Q-nodes. In this case, no permutation on S corresponds to a
linear ordering. So, the algorithm has to check if D is actually Robinsonian.

To do that, the algorithm has only to choose a permutation among the ones compatible with T and
verify that it corresponds to a linear ordering, that is to say to verify that every row and every column is
not decreasing when starting from the diagonal. This step runs in O(n2) time.

5 A complete example

We now show on an example how our algorithm runs. Let us consider the following dissimilarity:

D x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13x14x15x16x17x18x19

x1 0 9 2 11 6 11 6 6 9 11 6 11 6 5 11 11 9 11 6
x2 0 9 11 2 11 3 6 1 11 6 11 6 9 11 11 1 11 3
x3 0 11 6 11 6 6 9 11 6 11 6 1 11 11 9 11 6
x4 0 11 8 11 11 11 8 11 8 11 11 1 8 11 2 11
x5 0 11 3 4 2 11 4 11 4 6 11 11 2 11 1

x6 0 11 11 11 1 11 5 11 11 6 3 11 6 11
x7 0 4 3 11 4 11 4 6 11 11 3 11 2

x8 0 5 11 1 11 3 4 11 11 5 11 4
x9 0 11 5 11 6 9 11 11 1 11 3
x10 0 11 5 11 11 7 2 11 6 11
x11 0 11 2 4 11 11 5 11 4
x12 0 11 11 2 5 11 1 11
x13 0 4 11 11 6 11 4
x14 0 11 11 9 11 6
x15 0 7 11 1 11
x16 0 11 7 11
x17 0 11 3
x18 0 11
x19 0

We take, for this example, K = 2. The intervals Γ1(xi) and Γ2(xi) are represented in Figure 15:
In Figure 15, the intervals Γ1(xi) and Γ2(xi) are represented with a vertical line above xi. When Γ1(xi) = Γ1(xj)

(or Γ2(xi) = Γ2(xj)), the interval is represented once, but if Γ1(xi) = Γ2(xj), the interval is represented twice. To
construct these intervals (or, more precisely, the vertex-clique incidence matrix of G2(D)), we have used the values
in italic of the matrix D.

• At Step 1 (from the vertex-clique incidence matrix of G2(D)), we construct the PQ-tree T (see Figure 16).

• At Step 2:
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Figure 15: The sets Γ1(xi) and Γ2(xi)
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Figure 16: The PQ-tree T after Step 1

– On α6, because of D(x2, x11) > D(x17, x11) = D(x9, x11) ≥ D(x5, x11), we do the transformation of
Figure 17.

"
x17

"
x2

"
x9

✍✌
✎☞
α6 .−→

"
x2

"
x17

✁✁ "
x9

❆❆
✍✌
✎☞
α8

α′
6

Figure 17:

– Since for all i ̸= 17, 9, D(xi, x17) = D(xi, x9), α8 remains a P-node.

• At Step 3:

– Since D(x2, x8) > D(x9, x8), α′
6 is orientable with respect to α3 and, by property 8, it can be deleted

from T . As D(x2, x8) > D(x5, x8), α2 is transformed into the Q-node of Figure 18.

"
x2

"
x17

✁
✁ "

x9

❆
❆ "

x5

"
x19

"
x7

✍✌
✎☞
α8

α2

Figure 18:

– Since D(x9, x8) < D(x9, x13), α7 is orientable. As its parent is a Q-node, it can be deleted from T . As
D(x9, x8) < D(x9, x1), α3 is transformed into the Q-node of Figure 19.

– Since D(x4, x6) = D(x4, x16) > D(x12, x6) = D(x12, x16), α4 is orientable and, in order to check if α5 is
orientable, we have to consider the interior points of Sα4

. Since D(x15, x6) < D(x15, x16), α5 is orientable
and the algorithm adds 0.1 to the value of D(x4, x16).
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α3

Figure 19:

– Since
D(x2, x4) = D(x2, x12) = D(x7, x4) = D(x7, x12)
D(x2, x6) = D(x2, x16) = D(x7, x6) = D(x7, x16)
D(x8, x4) = D(x8, x12) = D(x1, x4) = D(x1, x12)
D(x8, x6) = D(x8, x16) = D(x1, x6) = D(x1, x16)
(D(x2, x8) < D(x2, x1)) ∧ (D(x2, x1) > D(x7, x1))

nothing else has to be done at this step.

• At Step 4:
α2, α3, α4 and α5 are K-big, and they are all children of the P-node α1.
S′

α1
= {x1, x2, x4, x6, x7, x8, x12, x16}.

D|S′
α1

and the sets Γ1(xi) and Γ2(xi) are represented in Figure 20.

D|S′
α1

x1 x2 x4 x6 x7 x8 x12 x16

x1 0 9 11 11 6 6 11 11
x2 0 11 11 3 6 11 11
x4 0 8 11 11 8 8 .1

x6 0 11 11 5 3

x7 0 4 11 11
x8 0 11 11
x12 0 5

x16 0

"
x2

"
x7

"
x8

"
x1

"
x4

"
x12

"
x6

"
x16

Figure 20: The dissimilarity D|S′

α1

and its sets Γ1(x) and Γ2(x)

– We first construct the PQ-tree T ′ of G2(D|S′
α1

) (see Figure 21).

– On D|S′
α1

, nothing has to be done at Steps 2 and 3.

– At Step 4, the algorithm works on D|S′

β1

, where S′
β1

= {x2, x1, x4, x16}. The sets Γ1(xi) and Γ2(xi)

(for D|S′

β1

) and the PQ-tree T ” of G2(D|S′

β1

) are represented in Figure 22. The PQ-tree T ” is not

transformed by the algorithm, and so T ′′ is (definitively) the PQ-tree of D|S′

β1

. The merging of T ′ with

T ′′ does not change T ′ which is thus the PQ-tree of D|S′
α1

. The merging of T with T ′ induces the

following transformations on T :

∗ α2 and α3 are transformed into the Q-node of Figure 23.

∗ α4 and α5 are transformed into the Q-node of Figure 24.
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Figure 21: The PQ-tree T ′ for D|S′

α1

after Step 1
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Figure 22: The sets Γ1(x) and Γ2(x) for D|S′
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Figure 24:

So, we obtain the PQ-tree of Figure 25 as a potential PQ-tree for D.
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Figure 25: The PQ-tree T after Step 4

• At step 5, the algorithm checks that one of the permutations represented by the PQ-tree of Figure 25 cor-
responds to a linear order. This is the case because, when {x1, x2, . . . , x19} is sorted along the permutation
(x2, x17, x9, x5, x19, x7, x8, x11, x13, x14, x3, x1, x4, x15, x18, x12, x6, x10, x16), the matrix D has all its rows and
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columns not decreasing from the diagonal:

D x2 x17 x9 x5 x19 x7 x8 x11 x13x14 x3 x1 x4 x15x18x12 x6 x10x16

x2 0 1 1 2 3 3 6 6 6 9 9 9 11 11 11 11 11 11 11
x17 0 1 2 3 3 5 5 6 9 9 9 11 11 11 11 11 11 11
x9 0 2 3 3 5 5 6 9 9 9 11 11 11 11 11 11 11
x5 0 1 2 4 4 4 6 6 6 11 11 11 11 11 11 11
x19 0 2 4 4 4 6 6 6 11 11 11 11 11 11 11
x7 0 4 4 4 6 6 6 11 11 11 11 11 11 11
x8 0 1 3 4 6 6 11 11 11 11 11 11 11
x11 0 2 4 6 6 11 11 11 11 11 11 11
x13 0 4 6 6 11 11 11 11 11 11 11
x14 0 1 5 11 11 11 11 11 11 11
x3 0 2 11 11 11 11 11 11 11
x1 0 11 11 11 11 11 11 11
x4 0 1 2 8 8 8 8
x15 0 1 2 6 7 7
x18 0 1 6 6 7
x12 0 5 5 5
x6 0 1 3
x10 0 2
x16 0

6 Some other applications

Let M be an n×k nonnegative matrix containing m nonzeros. The doubly lexical ordering problem consists to permute
the rows and the columns of M in such a way that both the row vectors and the column vectors are in nondecreasing
lexicographic order (see Lubiw 1985). There exists an O(m · log(n + k) + k) algorithm for this problem (see Paige
and Tarjan 1987). When M is a 0-1 matrix, the same problem can be solved in O(n · k) time (see Spinrad 1993).

We consider here a strict version of doubly lexical ordering: we say that M admits a 2D-ordering if it is possible
to permute the rows and the columns of M in such a way that all the rows and columns are in nondecreasing order.
We remark that, contrary to the doubly lexical ordering, some matrices do not admit a 2D-ordering (for instance
»

0 1
1 0

–

). Given an n× k positive matrix M , the following (n+ k)× (n+ k) dissimilarity DM is Robinsonian if and

only if M admits a 2D-ordering:

0 . . . . . . . . . . . . . . . . . .
0

M0

0

In addition, if DM is Robinsonian, since M is positive, for any compatible permutation, the first n entries are not
mixed with the last k ones. So, the permutations (on the n+k entries) compatible with this Robinsonian dissimilarity
are exactly the ones for which M is 2D-ordered.

So, our algorithm can be adapted to this problem:
Given an (n × k) non negative matrix M :

1. Check if the dissimilarity D(M) =

»

0 M + E

M t + E 0

–

is Robinsonian (E is the matrix defined by setting

E[i, j] = 1 for all i, j).

2. If D(M) is Robinsonian, then any compatible ordering of D(M) corresponds to a 2D-ordering of M . Otherwise,
a 2D-ordering of M does not exist.
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This algorithm solves the 2D-ordering problem in O((n + k)2), which is optimal in worst case (i.e. when M is dense
and n ≈ k).

An ultrametric is a distance D on a set S such that for any x, y and z in S, D(x, y) ≤ max{D(x, z), D(y, z)}.

Ultrametrics have many applications in classification because they are in one-to-one correspondence with hierarchies

(see Barthélemy and Guénoche 1991 and Critchley and Fichet 1994). Ultrametrics are a particular case of
Robinsonian dissimilarities. More precisely, they are the Robinsonian dissimilarities for which the PQ-tree
has only P-nodes (see Seston 2008b). Our algorithm can be adapted to ultrametrics recognition:
Given a dissimilarity D:

1. Check if D is Robinsonian.
2. If D is Robinsonian, verify that its PQ-tree has only P-nodes.

This algorithm runs in O(n2), where n is the number of elements of S, which is optimal.

Let D be a dissimilarity on an n-set S, and k an integer in [0, . . . , n− 1].
We define the dissimilarity Dk by:

Dk(x, y) = D(x, y) if D(x, y) is k-known (i.e. if x ∈ Γk(y) or y ∈ Γk(x)).
Dk(x, y) =∞ otherwise.

We say that D is k-Robinsonian if Dk is Robinsonian. Equivalently, D is k-Robinsonian if its graph Gk is
an interval graph. This generalizes Robinsonian dissimilarities, since (n − 1)-Robinsonian is equivalent to
Robinsonian. In addition, every dissimilarity is 0-Robinsonian and if a dissimilarity D is k-Robinsonian,
then D is (k − 1)-Robinsonian. So, with a dichotomic search, it is possible to determine, in O(n2 log n), the
greatest k such that D is k-Robinsonian.
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