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ABSTRACT
Web developers can (and do) include subresources such as scripts,
stylesheets and images in their webpages. Such subresources might
be stored on content delivery networks (CDNs). This practice cre-
ates security and privacy risks, should a subresource be corrupted.
The subresource integrity (SRI) recommendation, released in mid-
2016 by the W3C, enables developers to include digests in their
webpages in order for web browsers to verify the integrity of sub-
resources before loading them. In this paper, we conduct the �rst
large-scale longitudinal study of the use of SRI on the Web by ana-
lyzing massive crawls (≈3B URLs) of the Web over the last 3.5 years.
Our results show that the adoption of SRI is modest (≈3.40%), but
grows at an increasing rate and is highly in�uenced by the practices
of popular library developers (e.g., Bootstrap) and CDN operators
(e.g., jsDelivr). We complement our analysis about SRI with a survey
of web developers (𝑁=227): It shows that a substantial proportion
of developers know SRI and understand its basic functioning, but
most of them ignore important aspects of the recommendation.
The results of the survey also show that the integration of SRI by
developers is mostly manual – hence not scalable and error prone.
This calls for a better integration of SRI in build tools.

CCS CONCEPTS
• Security and privacy → Web protocol security; Hash functions
and message authentication codes.
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web security; subresource integrity; common crawl
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1 INTRODUCTION
The Web is a set of interlinked resources identi�ed by their URLs.
A signi�cant portion of these resources consists of HTML web-
pages that include navigable links and subresources, such as scripts,
stylesheets, images or videos. A change in a subresource can a�ect
the webpage that includes it.

With the advent of content delivery networks (CDNs), an increas-
ing number of subresources are hosted by third-party providers
(in this paper, we will refer to these as external subresources, also
called cross-domain subresources). The advantages provided by
such platforms include reduced costs and latency as well as in-
creased reliability. However, their usage comes at a security price:
A subresource can be altered (accidentally or not) upon transmis-
sion from these third-party providers or directly on them, as it was
the case for the British Airways in 2018 [14]. The consequences
can be dramatic, including the theft of user credentials (i.e., on
login pages) and credit card data (i.e., on payment pages), malware
injection, and website defacement (i.e., modi�cation of the content).
In general, when an external subresource is included in a webpage,
there is no guarantee that its content will remain the same.

The subresource integrity (SRI) recommendation [46], released
in mid-2016 by the W3C, addresses this issue by enabling web
developers/webmasters to include digests in order for web browsers
to verify the integrity of subresources before loading them. SRI is
implemented in the vast majority of desktop and mobile browsers.
Unfortunately, no in-depth analysis about the adoption and the
understanding of SRI (by web developers) has been performed so
far. Most existing works [25, 39] focus on modest-size datasets
of webpages, focus on one snapshot only, and only look at the
basic statistics, e.g., they do not study the main factors behind the
adoption/usage of SRI. Our work �lls this gap (i) by conducting the
�rst large-scale longitudinal study on the adoption/usage of SRI
on the Web, and (ii) by surveying web developers regarding their
understanding and usage of SRI.
Contributions. By relying on a massive dataset of about 3B URLs,
we �rst thoroughly analyze the use of the SRI recommendation on
the Web over the last 3.5 years. We began our analysis in May 2016,
right before the o�cial release of the SRI recommendation and took
a snapshot approximately every six months. Our analysis of the
3B webpages shows the following: �rst, we measure the extent of
the most typical threat, i.e., the use of external subresources, and
we �nd that more than 80% of the webpages include at least one
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external subresource; second, we study the adoption and usage of
SRI over time and observe an increasing, but still modest usage,
from less than 1% in October 2017 to 3.40% in September 2019. We
observe that the use of SRI is linked to a number of popular libraries
and CDN operators, including Bootstrap and jsDelivr, that provide
snippets of code that use SRI for including their subresources.

Given the results of our large-scale analysis of SRI adoption and
related security mechanisms, we evaluated the extent of knowledge
of web developers about SRI. To do so, we conducted an online
survey with 227 respondents asking if web developers are aware
of the risks, are aware of SRI, to what extent they understand the
implementation of SRI, and what their current practices are when
using SRI. Particular care was put in the survey instrument that
was designed and tested iteratively before deployment. Panelists
were recruited among the Wordpress and NPM package reposi-
tory contributors. Our results show that about two thirds of the
respondents could identify the main threats in subresource usage,
such as malicious code injection or cross-site scripting, but most of
them ignore some important aspects of SRI implementation, e.g.,
the cases where the digests used in SRI are malformed or multiple.
They also show that the integration of SRI by developers is mostly
manual – hence not scalable and error prone. This calls for a better
integration of SRI in build tools.

2 SYSTEM AND THREAT MODEL
We consider a webpage hosted on a given server (www.server.com).
The webpage includes a number of subresources such as scripts
(JavaScript, through a script element), stylesheets (CSS, through
a link), and images (through an img). The inclusion is done by
reference, i.e., the subresources are not copied in the webpage.
The subresources can be internal (stored on the same server
as the webpage, possibly in a di�erent volume or folder, e.g.,
scripts/) or external/cross-domain (stored on a di�erent server,
e.g., www.otherserver.com). Typical external subresources include
subresources found on another website or hosted on amirror or con-
tent delivery network for reliability and performance reasons (e.g.,
the jQuery library). This last case opens the door to cross-domain
script inclusion risks. When a user visits the webpage, the browser
�rst fetches the webpage from the server and then it fetches its
subresources. Finally, it renders the webpage to the user.

We consider the threat where the content of the subresource is
altered, meaning that it did not correspond to the initial content of
the subresource when it was included in the webpage (i.e., what the
web developer intended to include). Such a situation can occur in
multiple cases: (i) because the communication channel between the
client and the server was compromised by an adversary (e.g., an
Internet service provider), (ii) because the storage of the server was
compromised by an adversary (e.g., a hacker who broke into the
server or a malicious mirror operator), or (iii) simply because the
subresource was changed by its maintainer. A subresource integrity
threat can have important consequences. For instance, a corrupted
script can – among other things – compromise the visitors’ de-
vices (e.g., by redirecting them to a malicious website), steal their
private data (e.g., passwords and credit card information), track
them, or shock them (and compromise the reputation of the author)

!
http(s)://www.server.com/ http(s)://www.otherserver.com/

<script src=“https://www.server.com/scripts/script.js” />
<link src=“https://www.otherserver.com/style.css” />
<img src=“https://www.otherserver.com/image.png” />

Welcome
(2) Fetch subresources

!
- style.css
- image.png

+ scripts/
  - script.js
- index.html

(1) Fetch webpage

" "

"

Webpage

Figure 1: System and threat model for subresource integrity.

by changing the content of the webpage (i.e., defacing). Figure 1
depicts the system and threat model for subresource integrity.

3 THEW3C SRI RECOMMENDATION
SRI [46] enables web developers to specify an integrity attribute for
some types of subresources they include in their webpages, in such
a way that the user agent can verify their integrity before loading
them. This guarantees that the content of the subresources corre-
sponds to what the developers intended to include, speci�cally that
it has not changed. As of September 2019, SRI covers script (i.e.,
JavaScript) and link (i.e., CSS) elements and it is fully supported
by Chrome, Firefox, Opera, Safari, and partially by Edge. A typical
use of SRI is as follows (in the head section of the HTML page):
<script src="https ://www.server.com/script.js"

integrity="sha256 -47D...␣sha512 -8HB..." />

An integrity attribute contains one or multiple space-separated
hash expressions. Each hash expression is composed of the name of
a hashing algorithm (i.e., sha256, sha384 or sha512) and a base64-
encoded digest generated with the corresponding algorithm. The
content of a subresource is said to match a hash expression if the
digest of the subresource is equal to the digest speci�ed in the ex-
pression. When rendering the HTML snippet above, the browser
�rst fetches the subresource (i.e., script.js). The browser tries to
match the content of the subresource to the di�erent hash expres-
sions speci�ed in the integrity attribute and loads the subresource
according to the following rules: (1) When the attribute contains a
single hash expression, the subresource is loaded if it matches it;
(2) when the attribute containsmultiple expressions generated with
the same hash algorithm, the subresource is loaded if it matches one
of them; and (3) when the attribute contains multiple expressions
generated with di�erent hash algorithms, the subresource is loaded
if it matches one of the hash expressions with the strongest digest
(sha512 > sha384 > sha256). If the integrity attribute is empty or
malformed, the subresource is loaded nevertheless. Note that since
SRI “�xes” the content of the subresources, it is not appropriate for
subresources that can change (e.g., latest version of a library).

Content Security Policy (CSP) directives (speci�ed in HTML
meta elements or HTTP headers, e.g., Content-Security-Policy:
require-sri-for script;) can be used to force web developers to
specify a valid integrity attribute for each subresource. In this case,
subresources without an integrity attribute or with a malformed
one are not loaded. Such a mechanism enables the separation of
concerns between web developers and system administrators. More
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recently, these directives are being abandoned by Web browsers
and their removal from the recommendation is scheduled [8].

4 LARGE-SCALE ANALYSIS
In this section, we report on the large-scale analysis of the use of
SRI on the Web. We describe our data sources and methodology
and then report on the results.

4.1 Data sources
We rely on two main data sources: large-scale crawls of the web
and a popularity-based ranking of domains.

Web Crawl: Common Crawl. The Common Crawl (CC) dataset
is a collection of snapshots of the Web [12]. It contains one snap-
shot per month, since 2011-01. Each snapshot is available in the
WARC format, which contains the raw data of the webpages (HTTP
headers and HTML content but not the content of the subre-
sources). The latest snapshot of Common Crawl (2019-09) contains
2,954,836,069 URLs [13]. Note that the number of URLs for a given
website does not necessarily re�ect its number of webpages, rather
it depends on its architecture (i.e., single page vs. multi-page appli-
cations [29]). Each snapshot (in each of the format) is divided into
multiple archives so as to enable parallel and distributed processing
of the dataset. The CC dataset is publicly available on Amazon S3,
where it can be processed and analyzed using Amazon EMR.

Domain Name Ranking: Cisco Umbrella 1 Million (Top1m). The
Cisco Umbrella 1 Million dataset (Top1m) ranks popular domain
names based on statistics onDNS queries (≈100 billion requests/day)
and client IPs (≈65 million unique users) across 165 countries [20].

4.2 Methodology
To study the use of SRI, we parse the HTML content of the web-
pages and identify the subresources included in webpages. Parsing
the content of all the webpages contained in a snapshot of CC is
time consuming. As our analysis focuses mainly on the use of SRI,
we rely on a simple �lter to detect webpages that include subre-
sources with an integrity attribute. More speci�cally, we keep only
the webpages that contain the string “integrity=”. Note that this �l-
tering is done on the static (i.e., returned by the server, without any
client-side manipulation such as JavaScript execution) raw (i.e., in
the binary format, that is before decoding) content of the webpages;
this can lead to false negatives (i.e., �ltering out webpages that do
include subresources with an integrity attribute). We further detect
the encoding of the webpages and parse them by using the Python
beautifulsoup library (v4.7.1) with the lxml parser (v4.3.3). This
enables us to extract the subresources of the webpages (and their
attributes) and to �lter out the webpages that do not include any
subresource with an integrity attribute. Indeed, some webpages
might not have been �ltered out because they do contain the string
“integrity=”, but somewhere else in the webpage, e.g., in the text
of the webpage on SRI on the W3C website. This constitutes the
set of webpages on which we conduct our analysis, speci�cally
the “webpages that contain at least one SRI” set (CC-SRI ). For each
webpage in the CC-SRI dataset, we extract its URL, content security
policy (CSP) (from the HTTP header) and all its link and script
elements/subresources. In order to study not only the current use
of SRI but also its evolution over time, we process a total of 13 CC
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Figure 2: Evolution of the proportion of webpages served
over HTTPS (in CC).

snapshots from 2016-05 (i.e., before the release of the SRI speci-
�cation in late June 2016) to 2019-09 (more speci�cally 2016-05,
2016-10, 2017-02, 2017-05, 2017-08, 2017-11, 2018-02, 2018-05, 2018-
08, 2018-11, 2019-03, 2019-06, 2019-09). In order to study the use
of subresources on the web in general (not only for pages that do
use SRI), we also extract a sample (CC-all-1%) that contains 1% of
the latest snapshot (2019-09) of the CC dataset. For reproducibility
purposes, the source code of our analysis scripts is available online
at https://github.com/isplab-unil/cc-sri.

4.3 Results
We now present the results of our analysis of the use of SRI, based
on the CC dataset.

4.3.1 HTTPS Adoption. The TLS protocol used in HTTPS provides,
in addition to authentication, channel integrity. As such, it is related
and sometimes complementary to SRI that provides channel and
storage integrity (i.e., it also protects against adversaries who tam-
per with the content stored on the external server). Therefore, we
start by measuring the adoption of TLS/HTTPS, in the CC dataset.
We identify the protocol used (i.e., HTTP vs. HTTPS) based on the
URL of the webpage.

Figure 2 depicts the evolution of the proportion of webpages
served over HTTPS for the CC dataset and its subset (Top1m). It
also features the important milestones in the development and
deployment of HTTPS, including the release of Let’s encrypt
and of the ACME protocols v1 and v2 (which respectively automate
the generation/distribution of certi�cates and the deployment of
PKIs) as well as the introduction of security warnings for non-
HTTPS webpages in major web browsers.

In the latest CC snapshot (2019-09), 58.82% of the webpages
are served over HTTPS. The use of HTTPS is substantially higher
among the most popular webpages (87.43% in Top1m).

4.3.2 Extent of the Threat. We measure the extent of the most
typical threat to subresource integrity: the case where a webpage
includes an external subresource. To do so, we compute the pro-
portion of webpages that include at least one external subresource,
in the CC-all-1% dataset. A subresource is called external if the
host that serves it (in terms of its fully quali�ed domain name, e.g.,
www.otherserver.com) is di�erent than the host that serves the
webpage. Note that this is a heuristic: A same hostname can point
to di�erent servers (e.g., reverse proxy) and di�erent hostnames

https://github.com/isplab-unil/cc-sri
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can point to the same server. We found that 82.76% of webpages in-
clude at least one link or script external subresource1 and that these
webpages include on average 8.24 ± 14.71 such subresources. All
these webpages are potentially exposed to threats to subresource
integrity and can bene�t from SRI (some do, as explained below).
For images (i.e., img elements), which are common subresources
but not covered by SRI, the proportion of webpages including an
external image is 54.37%.

4.3.3 SRI Adoption. We measure the adoption of SRI by counting
the proportion of webpages that include at least one subresource
with an integrity attribute (i.e., the size of the CC-SRI dataset). We
further distinguish between the types of subresources: link and
script, which are the only covered by SRI. Figure 3 depicts the
evolution over time of the proportion of webpages containing at
least one element (link, script or any) with an integrity attribute.
It also features some important milestones in the development
and adoption of SRI; in particular, we include the dates at which
some popular libraries (e.g., Bootstrap) began to include integrity
attributes in the code snippets provided on their webpages, typi-
cally in the “Quick Start” section. Note that CDNs hosting popular
libraries (e.g., jsDelivr) also include such snippets.

It can be observed that some websites began to use SRI before the
recommendation was o�cially released. This can be explained by
the fact that the draft of the recommendation was available before
its release and, more importantly, some libraries (e.g., Bootstrap)
included integrity attributes in their code snippets as early as in late
2015 (see Table 1). Additionally, SRI was implemented in some web
browsers before its release, as early as 2015-09 for Chrome (v45) and
2015-12 for Firefox (v43), because developers from both Google and
Mozilla were involved in the edition of the SRI recommendation.

We �nd that the overall adoption of SRI is modest, with only
3.40% of all webpages in CC, but it grows at an increasing rate (the
increase in 2018 is twice as large as in 2017). The adoption of SRI is
highly in�uenced by the inclusion of the integrity attribute in code
snippets provided by library developers on their websites. Another
factor that could accelerate the adoption of SRI is the automatic
inclusion of integrity attributes by build tools; we discuss this in
Section 7. Although this cannot be directly concluded from Figure 3,
it becomes clear when analyzing the targets of the subresources

1We focus our analysis mainly on link and script elements as these are the only covered
by the SRI recommendation at the moment. We discuss this in Sections 5 and 7.

Rank Prop. Name Resources Type Snippet SRI Adoption
1 11.72% Google Syndication JS Add-on 3
2 6.39% jQuery JS/CSS Library 3 3 Mar.16
3 5.04% Wordpress JS/CSS Platform
4 2.62% Google APIs JS Add-on 3
5 2.40% Blogger JS/CSS Platform
6 2.21% FontAwesome CSS Library 3 3 Mar. 18
7 1.41% TripAdvisor CDN JS/CSS Platform
8 1.38% Twitter JS/CSS Add-on 3
9 1.29% SmugMug JS/CSS Platform
10 1.21% Squarespace JS/CSS Platform
11 1.21% Bootstrap JS/CSS Library 3 3 Oct.15
12 1.19% WIX JS/CSS Platform
13 1.13% Google Ad Services JS Add-on 3
14 0.94% Google Tag Services JS Add-on 3
15 0.94% jQueryUI JS/CSS Library 3 3 Mar.16

Table 1: Most popular subresources (in CC-all-1%).

with an integrity attribute (as explained below). As hosting subre-
sources on third-party servers comes with risks that major websites
are probably reluctant to take, the adoption of the SRI recommen-
dation by the Top1m websites is faster than for the rest of the Web.
As mentioned above, the adoption of SRI is in�uenced by library
developers and CDN operators (this is con�rmed by the results
of our survey of web developers, as a large fraction of develop-
ers report including integrity attributes by copy-pasting snippets;
see Section 5). In order to better understand this point, we analyze
(1) the main subresources (i.e., libraries, add-ons) used on the web
and whether the corresponding websites promote SRI and (2) the
main domains hosting subresources for which SRI is used.

Subresources. We compute the list of the most popular subre-
sources in the CC-all-1% dataset and check whether they include
code snippets and – if yes – whether these snippets use SRI (i.e.,
include an integrity attribute). For snippets that use SRI, we de-
termine the date at which they began to do so by relying on the
Wayback Machine, an online archive of the Web [21]. As the same
subresources (e.g., JQuery) can be hosted on multiple domains with
di�erent URL formats, we devised a heuristic to identify them. The
URL of the subresource is contained in the target attribute of the
element. We grouped the subresources by domains and selected
the top-100 domains (in terms of number of URLs); the top-100
covers 62.71% of the subresources present in CC-all-1%. For these
domains, we manually identify patterns and build regular expres-
sions to extract the names of the subresources from the URLs (e.g.,
“https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js”).

Table 1 lists the top-15 subresources (in terms of number of in-
clusions) found with our heuristic. It can be observed that a few
subresources account for a substantial portion of the subresources
in CC-all-1%, e.g., 11.72% for Google Syndication and 6.39% for
jQuery. Note that some popular subresources, such as those of the
Facebook ad network, do not appear in our results. This is because
these subresources are loaded asynchronously using JavaScript.
We observe that only a few subresources include snippets with
SRI. In particular, add-ons do not use SRI; this is because the corre-
sponding subresources are often transparently updated (i.e., without
changing the URL: http://pagead2.googlesyndication.com/pagead/
js/adsbygoogle.js) by the providers, as noted by Lauinger et al. [26].
SRI is not well suited for such subresources.

Domains.We compute, in each snapshot of the CC-SRI dataset,
the popularity of domains in terms of the number of subresources
with an integrity attribute that are hosted on the considered do-
main (e.g., based on the URL in the target attribute). Figure 4

https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js
http://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js
http://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js
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depicts the evolution over time of the top-10 domains found in the
CC-SRI dataset. The top-10 domains cover 94.23% of all the subre-
sources with an integrity attribute in CC-SRI . All the domains, ex-
cept Shopify, provide snippets with SRI on their websites. Shopify
does not because it is a platform, not a library included in other
websites; but it uses SRI for its platform, which is very popular.

4.3.4 SRI Usage. We analyze the current practices of web develop-
ers when they use SRI.

Number of Subresources. Even though a webpage uses SRI for
some of its subresources, it does not necessarily use SRI for all of
them. We compute the number of resources with and without an
integrity attribute in the snapshots of the CC-SRI dataset. Figure 5
depicts the number (mean and standard deviation) of subresources
per webpage with the integrity attribute and the total number of
subresources per webpage (w/ or w/o an integrity attribute). In the
latest snapshot, webpages contain an average of 41.61 subresources
and the number of subresources varies highly across webpages. The
average number of subresources per webpage with the integrity
attribute is much lower at 1.79.

Hash Algorithms. We compute the distribution of the hash algo-
rithms (e.g., sha384) and of the number of hash expressions (i.e.,
digests) used in integrity attributes (for link and scripts elements,
without distinctions), in the latest snapshot. To do so, we parse all
the integrity attributes according to the format speci�ed in the SRI
recommendation. If the parsing fails, the attribute is considered
malformed. In our analysis, we distinguish between malformed
and empty attributes even though in practice, both are loaded by

the browser (unless a CSP directive speci�es otherwise). For the
well-formed attributes, we extract the hash algorithm and label the
attribute accordingly. When an integrity attribute contains multiple
digests, e.g., sha256 and sha384, we label it with the di�erent algo-
rithms sorted by increasing strength (e.g., “sha256+384”): We use
di�erent labels for the di�erent combinations of hash algorithms.
Because a large proportion of web developers simply copy-paste
snippets from websites (e.g., libraries and CDNs), the observations
on the usage of SRI apply to a large extent to the developers of the
included libraries and to the operators of the CDNs.

Figure 6 depicts the distribution of the hash algorithms across
all the subresources with an integrity attribute. Most integrity at-
tributes contain a single digest, and the most popular algorithms
are sha384, sha256 and sha512 (in that order). Only 1.16% of the
integrity attributes contain more than one digest with di�erent
hash algorithm. Note that, as browsers consider only the digests
generated with the strongest hash algorithms and as the browsers
that support SRI all support all the hash algorithms, such a practice
does not make sense in practice. A possible explanation is that some
web developers misunderstood how the case of multiple digests is
handled by browsers (this is con�rmed by the results of our survey;
see Section 5): They might have (erroneously) thought that having
more than one digest increases the security of the integrity veri�ca-
tion. We observed even fewer (0.0004%; they are part of the “other”
bar of the histogram) integrity attributes that contain more than
one digest with the same hash algorithm (e.g., two sha256 digests).
Such a practice enables developers to support multiple versions of a
subresource by including the digest of each version (with the same
hash algorithm); though convenient, this practice is very marginal.

For the malformed integrity attributes (1.41%), we manually
investigate them; the causes include: missing hash algorithms, un-
supported hash algorithms (i.e., “md5”), mistyped hash algorithms
(e.g., “ha256”), and (possibly failed) injection through templates (e.g.
“{{CHECKSUM}}”). This last example might be valid if the value of
the attribute is correct and indeed inserted at the client before the
veri�cation is made by the browser. Yet, we manually tested these
templates and none of them was properly rendered.

Finally, we looked at the distribution of hash algorithms for two
popular libraries for which the snippets of code provided on their
websites use di�erent hash algorithms: sha-256 for JQuery and sha-
384 for Bootstrap. In the CC-SRI dataset, 86.21% of the integrity
attributes for the jQuery library (hosted on the jQuery CDN) use
sha-256 and 98.14% of the integrity attributes for the Bootstrap
library (hosted on the bootstrap CDN) use sha-384. This suggests
that the snippets of code are often simply copy-pasted.

Protocols and Paths. Webpages that include subresources can
be exposed to di�erent adversaries and associated threats. More
speci�cally there are four possible threats: Alteration of the web-
page/subresource on the server/communication channel (see Sec-
tion 2). Depending on the considered setting and adversary, SRI
and TLS (i.e., HTTPS) can o�er protection to the security of the
webpage. We categorize the di�erent settings using three criteria:
whether the webpage is served using TLS (i.e., HTTP vs. HTTPS),
whether the subresource is served using TLS, and whether the path
to the subresource is local or external (i.e., “scripts/script.js” vs.
“https://www.cdn.com/script.js”). Note that the protocol is some-
times omitted (e.g., “//server.com/script.js”), thus inherited: If TLS
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Figure 6: Distribution of the hash algorithms used in the in-
tegrity attributes (in latest snapshot ofCC-SRI ). An integrity
attribute can contain more than one digest.

is used for serving the webpage, it is used for serving the subre-
source, otherwise, it is not used either for the subresource. We build
the complete path of the subresources (by combining the URL of
the webpage with that of the target of the subresource by using
urljoin from Python’s standard library) and analyze the break-
down between the di�erent aforementioned settings, in the latest
snapshot of CC-SRI . We also observed that protocol inheritance
(i.e., //) is substantially used, especially in webpages served over
TLS: 27.61% of the subresources served over TLS and included in
webpages served over TLS are speci�ed with protocol inheritance.

We observed that most of the subresources use absolute URLs
(i.e., http://, https://, and //) for specifying the path in the target
attribute, which are usually used for external subresources. Fig-
ure 7 depicts the breakdown in the form of a tree; the levels of
the tree correspond to the following criteria: (1) webpage protocol,
(2) subresource protocol, and (3) locality. The typical use case (i.e.,
HTTPS/HTTPS/external) is the most frequent. SRI is particularly
meaningful when the webpage is served over TLS as the integrity
attribute of its subresources is protected upon transmission. This
represents 85.84% of the settings. In this setting, it makes even more
sense when subresources are served without TLS, as SRI protects
against corruption on the server and on the channel (i.e., 0.01%
of the settings). Yet, such a practice (i.e., including a subresource
served without TLS in a webpage served with TLS) is not allowed by
browsers (i.e.,mixed content error) – for valid security reasons – and
the subresource will therefore not be loaded. Yet, this is marginal.
When the webpage is served without TLS (14.16% of the settings),
the integrity attributes of the subresources are not protected upon
transmission and the security of the webpage is not guaranteed. Yet,
assuming that the host and the channel for serving the webpage
are not compromised, SRI provides protection against corruption
on the server and/or channel serving the subresources.

Although SRI is meant primarily for securing the integrity of
external subresources, its use for local subresources still makes
sense (i.e., if the subresource is hosted on another server through a
reverse proxy or if only some �les on the server could be corrupted
by the adversary) and should not be interpreted as erroneous or
meaningless (Salvador et al. [37] discuss this point in detail). It
could be the result of build tools that automatically compute and
insert integrity attributes even for local subresources.

4.3.5 Use of the require-sri-for Directive. We compute, in the latest
snapshot of CC-SRI , the proportion of webpages for which the

Level 1:
webpage protocol

Level 2:
subresource protocol

Level 3:
host locality

100.00%

85.84%

85.83%
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0.01%
0.01%e (99.03%)

0.00%l (0.97%)
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Figure 7: Categorization of subresources w/ an integrity
attribute (in latest snapshot of CC-SRI ) per webpage pro-
tocol (HTTP or HTTPS), subresource protocol (HTTP or
HTTPS) and host locality (local, external). Frequent settings
are framed. Secure settings are depicted with solid green
lines; partially secure settings with dashed orange lines and
problematic settings with red dotted lines.

require-sri-for CSP directive is speci�ed in their HTTP headers:
It is the case for only 0.02% of the webpages. We manually tested a
small sample of webpages with this directive hosted on di�erent
domains: 8% of the subresources were blocked. It is marginal and its
(scheduled) removal from the SRI recommendation will a�ect only
a tiny fraction of the Web. Yet, we believe it should be maintained
as it enables system administrators to enforce security policies.

5 WEB DEVELOPER EXPERIENCE
Given the results reported in the previous section, we decided to
study the level of awareness and understanding of web develop-
ers regarding the SRI recommendation. Therefore, we posed the
following research questions:

• RQ1. Are the web developers aware of the risks associated
with (external) subresources?

• RQ2. Are web developers aware of SRI?
• RQ3. To what extent do web developers understand the im-
plementation of SRI (general and speci�c behaviors)?

• RQ4. What are the current practices of developers when using
SRI? (i.e., are they coherent with the recommendation?)

To answer these questions, we conducted an online survey of web
developers.We adapted ourmethodology from similar surveys [1, 6].
The panelists were recruited via e-mail then went through quality
controls. Panelists that completed the survey participated in a ra�e
for USD 100 Amazon vouchers. Next, we describe the method used
to design the survey instrument, recruit participants, analyze the
data as well as the deployment strategies we adopted to distribute
the survey. The study was approved by our IRB.

5.1 Design of the Survey Instrument
The questionnaire contained 32 items, organized into four sections.2
(i) The �rst section contained two screening questions to make sure

2The full questionnaire is available online: https://osf.io/yshrx/.

https://osf.io/yshrx/
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the respondent was comfortable reading and writing in English (the
language of the questionnaire) and that the respondent was indeed
an active web developer. (ii) The second section focused on the
respondent’s awareness of the threat model described in this paper
(providing data for RQ1) and the SRI recommendation (cf. RQ2).
This section had a skip logic: Respondents with no knowledge
of SRI were brought to the fourth section. (iii) The third section
contained 4 quiz questions designed to assess the respondent’s
understanding of the SRI recommendation (cf. RQ3) (note that all
major browsers – i.e., Chrome/Firefox/Safari/Opera/Edge – strictly
follow the recommendation for these quiz questions) and questions
to understand how they used SRI in their work (cf. RQ4). (iv) The
last section contained questions about the company the respondent
works for and their demographic information.

On the last page of the questionnaire, we asked the respondents
whether they wanted to receive a summary of the results of the
research; 85.4% of respondents opted in to receive a follow-up,
thus revealing the general interest in this topic. Furthermore, we
clari�ed the goal of the research and provided a reference to the
SRI recommendation, in case respondents were interested to learn
more. It took about 10 minutes to complete the questionnaire.

To eliminate possible presentation e�ects, the answer options of
multiple-choice questions were randomized. Before deploying the
questionnaire, we conducted four pre-tests that involved individuals
at our institution (including some native English speakers). One of
the authors sat with the participants and, for each question, asked
the participant to re-state, in their own words, what the question
asked and how they would answer. Feedback provided at this stage
was used to adjust wording and provide additional context.

5.2 Data Reliability and Coding Process
To ensure high data reliability, several quality-assurance (QA) pro-
cesses were followed when administering the survey instrument:
speeders and straightliners were removed before the analysis. One of
the authors went through the open-ended responses and removed
respondents that provided answers to open-ended questions that
were nonsensical. For open-ended questions, we opted for collabo-
rative coding on the qualitative responses [36]. For each question, a
codebook was developed iteratively by a lead coder who analyzed
an initial set of answers (i.e., ≈100). For the next step, a second
coder independently coded the data again using the same codebook.
Cohen’s kappa (or 𝜅) was used to measure inter-coder agreement to
each open-ended question. The average 𝜅 value was 0.83 (std 0.18),
which was judged su�cient to proceed further with the analy-
sis. Next, the cases of disagreement between the two coders were
resolved through discussion [28].

5.3 Deployment Strategies
To reach to the web development community, the questionnaire
was disseminated to e-mail addresses obtained as follows:
(1) Wordpress plugin/theme authors.Wordpress is a web content

management system (CMS) based on PHP, JavaScript, HTML
and CSS. Any developer can create plugins/themes for Word-
press. The “readme” �le of Wordpress plugins/themes often
contains the e-mail of the authors. We considered a sample of
𝑁≈9500 e-mails from Wordpress.

(2) NPM package authors. NPM is a repository for JavaScript pack-
ages. These packages were developed to be used in web appli-
cations or websites. Each package contains a package.json �le
that optionally provides the e-mail of the package developer.
We considered a sample of 𝑁≈19,000 e-mails from NPM.

Selected web developers were sent an e-mail invitation to �ll out
the survey. The e-mail contained the following information: the
academic research goal of the questionnaire (described as “under-
standing web development practices” in order to not prime the
respondents towards security), the conditions for participation, the
incentive, information about data management and anonymity of
the responses, contact information of the researchers, and the link
to the survey. As our e-mails were unsolicited, we gave them the
opportunity to opt out, and we did not send any form of reminders.
We did not collect any respondent personal identi�able information
and did not link their responses to their e-mail. We sent a total of
28,500 e-mails (in 2 batches) and received a total of 477 responses in
Sep. 2019. After applying the QA processes described in Section 5.2
and removing incomplete answers, we were left with 227 valid
responses. The results reported in the rest of the paper are based
only on the valid responses.

5.4 Demographics and General Statistics
We received answers from professionals in various age ranges:
17.6% of respondents (or 40) were between 18 and 24 years old; the
majority, or 42.3% (or 96) were between 25 and 34; 27.8% (or 63)
between 35 and 44; and 11.9% (or 27) were older than 44 years. One
respondent preferred not to disclose their age. Most respondents
were employed full-time (i.e., 141 or 62.1%). 26% of respondents (or
59) were independent contractors, freelancers, or self-employed.
The remaining respondents worked part-time (5.7% or 13), were
unemployed (2.2% or 5), were retired (0.9% or 2) or had other work
arrangements (3.1% or 7). Of the 213 respondents in the workforce,
46% worked for small companies, either startups or individually
owned companies (or 98). A fourth worked for SMEs (24.4% or 52)
and �nally 29.6% (or 63) worked for large corporations. This shows
that the sample was well balanced across di�erent types of compa-
nies. About half of the sample declared to possess prior education
on IT security (44.9% or 102). The remaining respondents did not
have any prior education in IT security (48.5% or 110) and 6.6%
(15) answered ‘Other’, which is worrisome given that we adver-
tised among Wordpress and NPM plug-in developers, who produce
popular software.

5.5 Results
RQ1. Are the web developers aware of risks associated with (external)
subresources? In the second section of the survey, we asked respon-
dents to discuss potential threats that could a�ect a website if some
subresources (e.g., scripts, stylesheets, images, videos) were hosted
in a server separate from the server where the main website was
hosted. In the rest of this section, we will refer to the described
con�guration as the scenario. The majority of respondents could
identify the main threats of the scenario we provided, namely ma-
licious code injection, cross-site scripting, etc. (56.8% or 129). A
smaller group of participants (13.2% or 30) described secondary ef-
fects that could be produced if the main attacks could be completed:
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Figure 8: Response statistics for the questions related to the functioning and implementation of SRI.

compromised users’ privacy, key-logging, redirection to fake web-
sites, DDoS attacks, etc. Finally, about a third of participants (30% or
68) provided generic answers, non-applicable responses, or simply
had no idea about possible risks.

RQ2. Are web developers aware of SRI? In a follow-up question, we
asked the respondents to list possible solutions to protect the web-
site, in the considered scenario, against the threats they reported.
The respondents could list multiple solutions. More than half of
the respondents (50.7% or 115) provided answers that were not
applicable, or described solutions that would introduce additional
problems without providing a de�nitive solution to the threat (e.g.,
“do not use CDNs”). The other large portion of respondents (30.8%,
or 70) provided the right answers, essentially naming SRI or using
a descriptive explanation in case they were not familiar with the
name of the recommendation (e.g., “content validation with MD5
checksum”). Finally, 18.5% (or 42) of the respondents described a
technique or technology that would not ensure protection from the
attacks (e.g., “https”, “two factor authentication”). When we asked
whether respondents had knowledge of the SRI recommendation
(i.e., recognition over recall), we found that 41% (or 93) of the respon-
dents had basic knowledge, and 24.6% (or 56) used SRI as part of
their web development practices. About a third of the respondents
(34.4% or 78) had no knowledge about SRI. Therefore, comparing
the results to these two questions, we conclude that although two
thirds of respondents declared to know or use SRI, only about 31%
of the respondents could match the scenario with the solution pro-
vided with SRI. Hence, the di�erence (i.e., ≈ 30%) could be due
to respondents who heard the acronym (or saw a snippet of code
referring to SRI) but had no concrete idea of its purpose.

RQ3. To what extent do web developers understand the implemen-
tation of SRI? To those respondents who reported knowing or using
SRI (149 or 65.6%), we asked them to describe in their own words
how SRI could be used on a website and for what purpose. Most
respondents described correctly the purpose and implementation
of SRI (88.6% or 132). However, 11.4% (or 17) respondents could
not. Next, we asked respondents 4 questions designed to assess the
actual level of understanding of the recommendation. We manu-
ally investigated the “Other (please specify)” responses and edited
them to the closest option whenever appropriate (otherwise we
kept them as “Other” and considered them as incorrect). In total,
we edited 3 responses, all for the second question and for the same
reason (detailed below). The raw results are depicted in Figure 8.

The �rst question looked at whether it was meaningful to use SRI
in combination with HTTPS (for subresources). For this question,
86.5% (or 129) answered ’Yes’ (i.e., the rest answered ‘No’ or ‘Not
Sure’). Then, we asked respondents what would happen if the in-
tegrity attribute would contain multiple (i.e., >1) valid hash values
generated with di�erent algorithms. Unfortunately, only 21.5% (or
32) identi�ed the correct response, speci�cally that the browser
would load the resource only if the digest created with the strongest
hashing algorithm matches that of the resource. Three participants
selected “Other” and speci�ed that it is in fact the strongest algo-
rithm supported by the browser. This is a valid point; but in practice,
both responses are equivalent, as all browsers support all hashing
algorithms. We edited them to the correct responses. The follow-
ing question was similar to the previous, but this time the two
hash values were created with the same algorithm. Slightly more
respondents found the correct answer (28.2% or 42), namely that
the browser would load the resource only if any digest in the list
matches that of the resource. For the following question, we asked
respondents what would happen if the digest in an integrity at-
tribute would be malformed. To this question only 6.7% (or 10) of
respondents found the correct answer. This shows that the rec-
ommendation is somewhat counterintuitive, assuming that the
respondents did not know the recommendation on this particular
point and tried to answer this question based on common sense.
This choice was probably in line with the best-e�ort strategy im-
plemented in browsers for rendering webpages. We believe that the
default behavior should be to not load resources with malformed in-
tegrity attribute. It should be noted that for the last three questions,
the proportion of respondents who were not sure is substantial; it
is worrisome to observe that many web developers doubt about the
behavior of browsers regarding some security features they use.

Figure 9 presents the number of correct responses identi�ed by
the respondents. Only 0.7% (or 1) of respondents correctly answered
all the 4 questions, thus revealing the small proportion of web
developers who have a deep understanding of SRI implementation.
We observe that the respondents who reported using SRI (i.e., 24.6%
or 56) have a slightly better understanding than the average.

RQ4. What are the current practices of developers when using SRI?
We asked respondents to select from a list of options about how
they typically include SRI in their development practices. We wrote
the list of options based on a number of practices we identi�ed
while performing the literature review and speculated from the
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Figure 9: Number of correct responses for each of the 4 ques-
tions testing the respondents’ understanding of SRI.

result of the CommonCrawl analysis. We provided respondents
the ability to select multiple practices from the list and to specify
additional practices via a free text �eld. Most respondents reported
to copy-paste snippets with examples of code using SRI from o�cial
documentations (45%, or 67). This strategy is not optimal because it
might work for popular libraries but might not be available for all
external subresources (e.g., specialized or custom libraries). Also, it
is not automated (i.e., it requires human intervention) and it is thus
not scalable and error prone (e.g., miss the last or �rst digits upon
copy-paste as we observed in our CC analysis). The second most
frequent option reported by the respondents was to con�gure the
build tools to compute and to include the checksums automatically
(38.9%, or 58). This is the most secure and scalable approach to
implement the SRI recommendation. The third largest group of re-
spondents reported to compute the checksums of the subresources
themselves and include these manually in the code (19.5% or 29).
This strategy is secure but, again, not automated hence not scalable
and error prone. Every time the external subresources are updated,
the developers must download the updated version of the �les, com-
pute the new digests and update the code on their website. A fourth
group of respondents declared to copy-paste snippets from online
communities (10.1%, or 15). This is the most dangerous strategy
because developers basically trust other random contributors. A
community developer could be malicious and publish code crafted
to create harm. Finally, the remaining respondents were either not
sure (9.4%, or 14) or had not used SRI yet (12.1%, or 18).

To the participants who had knowledge or used SRI, we asked
whether they thought SRI should be extended to additional types
of subresources (beyond stylesheets and scripts). Majority of de-
velopers (66.4% or 99) answered “Yes”. In the follow-up questions,
the respondents selected the following types from a pre-de�ned
list: images (83.8% or 83), videos (79.8% or 79), sounds (73.7% or 73),
and downloads (i.e., <a> elements pointing to a �le not rendered in
the browser)–as suggested by Cherubini et al. [10]–(67.7% or 67).

6 RELATEDWORK
Our work relates to the literature on the use of web security mech-
anisms, including SRI and its alternatives, and on web developer
security practices.
Analysis of the use of security mechanisms on the web.A large body of
work focuses on the use of HTTPS on the Web and on the e�ect on
users of browser warnings [2, 15–17, 22, 30, 34]. Felt et al. [18] study
the adoption of HTTPS from a browser perspective. Lavrenovs and
Melón [27] study theHTTP security headers of the 1Mmost popular
websites. In particular, they analyze the prevalence of the most

important response headers related to web security aspects, such
as Content-Security-Policy. They notably show that HTTPS
websites are more inclined to implement web security policies. Stark
et al. [43] study the adoption of the certi�cate transparency (CT),
which �xes several structural �aws in the TLS certi�cate system and
measure the error rates users experience. They show that CT has
been widely adopted with minimal amount of warning displayed to
the users. Another body of work focuses on the issues related to the
inclusion of third-party subresources and trackers in webpages [4, 7,
31, 32, 35, 41]. Arshad et al. [5] perform the �rst large-scale analysis
of scriptless CSS injection. They show that around 9% of 10k most
popular websites contain at least one vulnerable page, out of which
more than one third can be exploited. Anis et al. [3] argue that
many web applications contain vulnerabilities and promote various
security mechanisms, including SRI. Van Acker et al. [45] assess the
security of 50k+ login webpages and show that very few of them
deploy security measures; e.g., only 98 use SRI.

Closer to our work, Shah and Patil [40] present existing attacks
and describe how SRI improves the current situation. In a follow-up
work, they perform a preliminary analysis of the use of SRI in the
1M most popular websites in 2017 [39]. Their analysis shows that
only 7k websites (i.e., 0.7%) implement SRI, and that less than 1% of
those enforce SRI on all external subresources. This is consistent
with our results. Kumar et al. [25] also study security issues in
the 1M most popular websites and �nd that less than 1% rely on
SRI, which corroborates the �ndings of Shah and Patil [39] and
ours. Lauinger et al. [26] conduct a large-scale study on client-side
JavaScript library over 133k websites and show that 37% include at
least one library with a known vulnerability. They mention SRI as
one possible solution but stress the fact that SRI is misaligned with
the objective of libraries to be transparently updated by third-party
storage providers such as CDNs. Soni et al. [42] argue (prior to the
publication of SRI) that SRI applies only to websites that remain
mostly static and evaluate, on the 500 most popular websites, the
proportion of those that rely on static or changing scripts. Based
on their 3-month longitudinal study, they identify 33k scripts, of
which about 2300 change over time, which implies that SRI could
be applied to 93% of the scripts without a�ecting website usability.
However, they also �nd that only 69 out of 500 websites have
all their scripts that remain static. They develop a multi-layered
solution for whitelisting scripts that can tolerate changes without
sacri�cing security. Recently, a scanner for monitoring and alerting
on accidental/intentional modi�cations to external subresources
has been developed and open-sourced by CISCO [11].

Unlike in prior studies, in this work, we consider a much larger
set of webpages (≈3B URLs/snapshot), we study the evolution of the
use of SRI over time (for more than three years), and we perform
an in-depth analysis of how SRI is used. In addition, we study the
main factors behind the development, adoption and usage of SRI.

Another, less related, body of works studies the limitations of
integrity veri�cation mechanisms (including SRI) and proposes
solutions and alternatives. Salvador et al. [37] highlight the risks
when the server that hosts the webpages is compromised. They
address this issue by developing wraudit, a tool that transparently
monitors the integrity of the published code based on a trusted
and user-input baseline. Cap and Leiding [9] address this issue
with openly accessible code reviews of static code �les combined
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with blockchain technology. West [47] addresses the restriction
of SRI to static content by enabling SRI to validate the integrity
of subresources based a public key signatures instead of digests,
thus enabling the inclusion of changing scripts published by the
same (trusted) entity. Yet, this would open the door to downgrade
attacks, i.e., replacing a recent version of a library with an old one
with known and exploitable vulnerabilities. Kerschbaumer [23] pro-
poses to enforce content security by default. In the background,
he mentions SRI as one important speci�cation for ensuring con-
tent security. Cherubini et al. [10] study the use of checksums for
verifying the integrity of web downloads and, via a 40-participant
in situ experiment, show that checksums su�er serious usability
issues that negatively impact their e�ectiveness as a security mecha-
nism. They develop a Chrome extension for automatically verifying
checksums of downloaded �les, whenever available.
Analysis of developer practices on (Web) security mechanisms. Al-
though security practices of (web) developers have been extensively
studied, to the best of our knowledge, there are no such studies
related to SRI. Krombholz et al. [24] present a qualitative study of
the mental models associated with HTTPS and highlight knowl-
edge gaps that a�ect experts. By interviewing 18 end-users and 12
experienced administrators, they �nd that “non-experts” underesti-
mate the protection o�ered by HTTPS and that even “experts” have
very little knowledge of how HTTPS works. Acar et al. [1] system-
atically study how the use of various information sources a�ects
the security of mobile applications. By surveying 295 developers
with apps listed in the Google Play Store, they observe that most
developers use search engines and Stack Over�ow to �nd write
security-related code. Their lab study with 54 Android developers
shows that developers who use Stack Over�ow are more likely to
write functionally correct code, but less likely to come up with a
secure solution. In order to better understand the context in which
developers produce security-relevant code, Tahaei and Vaniea [44]
survey 49 research papers at the intersection between usable se-
curity and software development. They provide an overview of
existing works on developer-centered security and show that se-
curity is often being ignored because it is considered a secondary
requirement. Balebako et al. [6] study the security-related decision
of app developers with a two-phase approach. First, they conduct
interviews with 13 developers to better understand what decisions
they make and what resource they use to make them. Second, they
perform an online survey with 228 developers. They �nd that many
developers lack awareness about security measures.

7 DISCUSSION AND CONCLUSION
In this article, we have provided the �rst comprehensive study on
the use of the SRI recommendation. Our study, based on a longitu-
dinal analysis of the CommonCrawl datasets over the last 3.5 years
sheds light on the current adoption and usage of SRI: The adoption
rate is modest (currently at ≈3.40%) but growing, and it is in�u-
enced by library developers and CDN providers who make code
snippets that include integrity attributes available to developers.
As pointed out in prior work [42], the fact that SRI is suited only
for subresources that do not change might impede its adoption.
Our complementary survey of web developers has shown a good
awareness and knowledge of SRI among developers but also some

worrisome misunderstandings regarding its functioning in some
situations. It has also revealed that the use of SRI by developers is
mostly manual hence is not scalable and error prone, thus calling
for a better integration of SRI by build tools.

Our study has some limitations, mainly due to our data sources.
CommonCrawl might not be representative of the entire web.
Also, it gives substantially more weight to multiple-page web-
sites (counted as distinct URLs) compared to single page websites
(counted as a single URL) [29]. Finally, the webpages consist of raw
HTML code (i.e., not rendered), before the execution of scripts at
the client side. Our questionnaire data is of modest size (i.e., 227
valid answers in total, 149 for the quiz) and the respondents might
not be representative of web developers in general (i.e., “power
developers”, English-speaking, from speci�c ecosystems–i.e., NPM
and WordPress). In addition, our results are based on self-reported
behaviors, which might di�er from actual (observed) behaviors.

The recent advances in the web development community are
quite encouraging: More and more major libraries and CDN
providers provide snippets with SRI (Bootstrap, jsdelivr). And ma-
jor build tools, including Ruby on Rails [33], Webpack [38], and
Grunt [19], now integrate SRI, mostly through plug-ins. The native
integration of SRI in build tools, but also in CMS such as WordPress
and Drupal, would substantially increase the adoption of SRI. Note
that plug-ins are available for WordPress and the integration of SRI
in Drupal (core) is being discussed. Finally, the extension of SRI
to signature-based veri�cation (i.e., with a public key as integrity
attribute) [47] instead of digest-based veri�cation, discussed in the
WebAppSec group, would make SRI more suitable for subresources
that are transparently updated, thus increasing its adoption.

We intend to improve the awareness and understanding of SRI
and to promote its use through a dedicated website that would
contain a brief description and illustration of SRI, including its
functioning in speci�c scenarios that are not well understood by
developers, as well as the statistics provided in this article, updated
periodically based on the CommonCrawl datasets. We intend to
investigate the adoption of SRI in di�erent categories of websites
(e.g., popular, banking, e-commerce). We also intend to push (or par-
ticipate in) the revision of the recommandation to extend it to other
resources such as images and videos, because this would thwart
the risks of media-based web defacement (a majority of developers
reported being interested in such an extension). Extending SRI to
downloads would also favorably replace checksums displayed in
webpages, as they su�er from serious usability issues. Finally, we
also intend to extend our survey to a larger population of web
developers, but also to further study developers’ perception of SRI
– through interviews – in order to gain a deeper understanding of
their mental models on SRI, as recently done by Krombholz et al.
[24] for HTTPS or by Acar et al. [1] for the security of mobile apps.
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A SURVEY ABOUT SECURITY ON THEWEB
Introductory Text Block
The ISPLab (https://www.isplab.unil.ch) at the University of Lau-
sanne (Switzerland) is currently researching web development prac-
tices. By �lling this survey, you will contribute to the research and
can enter a ra�e draw to win a $100 Amazon voucher. This sur-
vey takes approximately 5-10 minutes to complete. The answers
you provide will be treated anonymously and will not be linked to
your identity. The data we collect will be used solely for academic
research (non-pro�t). If you have questions about this research,
feel free to e-mail us at isplab-survey@unil.ch. The survey will run
until 15th September 2019, and the questionnaire is best viewed
with Mozilla Firefox and Google Chrome.
Note:

(1) The survey is meant for web developers that are 18 years
old or older.

(2) Participants younger than 18 years old or who do not disclose
their age group will not be able to participate in the ra�e
draw.

(3) Data from participants younger than 18 years or who do not
disclose their age will be deleted and not analyzed.

Coding rules (not visible to respondents):
• Questionnaire does not allow to go back to previous ques-
tions

• Unless speci�ed, one question per page
• All questions mandatory, unless speci�ed as optional

A.1 Screening Block
(1) The questionnaire is in English. Are you comfortable read-

ing/writing in English?
© Yes, I am comfortable taking the questionnaire in English
© No, I can read, but I am not comfortable writing in English
[terminate]

© No, I am not comfortable taking the questionnaire in Eng-
lish [terminate]

(2) Are you an active web developer?
© Yes, I do web development on my free time
© Yes, I work as a web developer
© No, I am not directly involved with web development
[terminate]

A.2 Awareness of SRI
Introductory text.
For the following question let’s imagine there are some resources
(such as stylesheets, scripts, etc.) that are used by a website and
that are stored in a server separate from the server where the main
site is hosted.

(1) Please describe possible security threats caused by exter-
nal resources included in a website, given the hypothetical
situation described above. [free text]

(2) If you described security threats in the previous question,
please explain possible ways in which the website in the hy-
pothetical scenario could be protected against these threats.
[free text]

(3) Please rate how much you know about the subresource in-
tegrity (SRI) recommendation of the W3C

Example:
<script src="https://cdn.com/js/page.js"
integrity="sha384-ggOyR0i..."> </script>
© No knowledge [skip to demographic section]
© Little knowledge (I heard the term)
© Some knowledge (I know the basics)
© Moderate knowledge (I used SRI)
© Extensive knowledge (I use it often)

A.3 Knowledge of SRI
(1) Please describe in your own words how you can use subre-

source integrity (SRI) on a website as well as the purpose of
SRI. [free text]

(2) In your opinion, is it meaningful to use subresource integrity
(SRI) if the target is served through HTTPS?
Example:
Source: https://www.website.com
Target: https://cdn.com/js/page.js
<script src="https://cdn.com/js/page.js"
integrity="sha384-ggOyR0i...> </script>
© Yes
© No
© I am not sure

(3) Please explain why you answered Yes/No to this question.
[subquestion appears only if Yes/No is selected in previous
question]

(4) In your opinion, is it meaningful to use subresource integrity
(SRI) if the website uses HTTP?
Example:
Source: http://www.website.com
Target: https://cdn.com/js/page.js
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i..."></script>

© Yes
© No
© I am not sure

(5) Please explain why you answered Yes/No to this question.
[subquestion appears only if “Yes”/“No” is selected in previ-
ous question]

(6) In your opinion, what happens when an integrity attribute
has 2 or more valid hash values (i.e., digests) created with
di�erent algorithms?
Example:
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i... sha256-ivzZrY...">

</script>

© The user-agent loads the resource only if the digest created
with the strongest hashing algorithm matches that of the
resource

© The user-agent loads the resource only if the �rst digest
in the list matches that of the resource

© The user-agent loads the resource only if any digest in the
list matches that of the resource

© The user-agent does not load the resource at all
© The user-agent loads the resource in any case
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© I am not sure
© Other (please specify)

(7) In your opinion, what happens when an integrity attribute
has 2 or more valid digests generated with the same
algorithm?
Example:
<script src="https://cdn.com/js/page.js"

integrity="sha384-ggOyR0i... sha384-eYWSGB...">

</script>

© The user-agent loads the resource only if the �rst digest
in the list matches that of the resource

© The user-agent loads the resource only if any digest in the
list matches that of the resource

© The user-agent does not load the resource at all
© The user-agent loads the resource in any case
© I am not sure
© Other (please specify)

(8) In your opinion, what happens if the digest in an integrity
attribute is malformed (i.e., generated with an unsupported
algorithm, composed of non-base64 characters, etc.)? Exam-
ple:
<script src="https://cdn.com/js/page.js"

integrity="malformed!"> </script>

© The user-agent does not load the resource at all
© The user-agent loads the resource in any case
© I am not sure
© Other (please specify)

(9) How do you typically include Subresource Integrity (SRI) in
development? (Select all that apply)
� Copy-paste snippets from the o�cial documentation
� Copy-paste snippets from online communities
� Compute the checksums of the subresources and include
them myself

� Con�gure my build tool to compute and include the check-
sums automatically

� I am not sure
� Other (please specify)

(10) Do you think the SRI recommendation should be extended
to subresources other than the stylesheets <link> and the
scripts <script>?
© Yes
© No
© I am not sure

(11) Which of the following subresources would you like to see
the SRI recommendation extended to? (select all that apply)
[subquestion appears only if Yes is selected in previous ques-
tion]
� Images <img>
� Videos <video>
� Sounds <audio>
� Downloads <a>
� Other (please specify)

A.4 Demographics
(1) What is your age group?

© Under 18 [terminate and delete data]

© 18 - 24
© 25 - 34
© 35 - 44
© 45 - 54
© 55 - 64
© 65+
© Prefer not to disclose

(2) Which statement best describes your current employment
status?
© Employed full-time
© Employed part-time
© Independent contractor, freelancer, or self-employed
© Not employed, but looking for work
© Not employed, and not looking for work
© Retired
© Other (please specify):

(3) What is the size of your company where you work (or own)?
[only showed if respondent is working]
© Individually owned company
© Startup
© Small and medium-sized enterprises (SME)
© Large corporation
© Other (please specify)

(4) Do you have an IT security background?
© Yes, I have a diploma in IT security
© Yes, I studied IT security in a college/university without
earning a degree

© Yes, I took some courses in IT security but did not spe-
cialise in it

© Yes, I have a university degree or equivalent in IT security
© Yes, I had some training sponsored by the company where
I work

© No, I do not have any IT security background
© Other (please specify)

A.5 Communication
(1) Do you wish to participate in the ra�e draw for a $100

Amazon gift card?
© Yes
© No

(2) Do you wish to receive the cumulative results of the survey?
© Yes
© No

(3) Please provide your e-mail address. [free text]
[only showed if answered “Yes” to one of the two questions
above]

A.6 Last page
Your answers have been recorded. Thanks for your help.
This questionnaire focused on Subresource Integrity, a standard
de�ned by W3C that de�nes a mechanism by which user agents may
verify that a fetched resource has been delivered without unexpected
manipulation. If you want to know more, you can visit this page:
https://www.w3.org/TR/SRI/.
If you have questions about this research feel free to email us at
isplab-survey@unil.ch.
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