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Revisitation of a Tartar's result on a semilinear hyperbolic system with null condition

We revisit a method introduced by Tartar for proving global well-posedness of a semilinear hyperbolic system with null quadratic source in one space dimension. A remarkable point is that, since no dispersion effect is available for 1D hyperbolic systems, Tartar's approach is entirely based on spatial localization and finite speed of propagation.

Introduction

We consider the semilinear hyperbolic system with quadratic source term:

∂ t u i + c i ∂ x u i + j,k A i jk u j u k = 0, u i (x, 0) = φ i (x), (1) 
x ∈ R, t ∈ I, i = 1, • • • , p, where the coefficients A i j = A ji are symmetric, and satisfy the following condition:

(A) A i jk = 0 if c j = c k for all i = 1, • • • , p.
We now make a connection of Assumption (A) with the null condition for the semilinear wave equation, which is presented in [START_REF]The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics[END_REF] and will be discussed later on. To this end, looking at the simplest 2 × 2 case,

∂ t u 1 + c 1 ∂ x u 1 = αu 1 u 2 , ∂ t u 2 + c 2 ∂ x u 2 = βu 1 u 2 , (2) 
we establish a change of variables by defining w such that

u 1 = ∂ t w -c 1 ∂ x w, u 2 = ∂ t w -c 2 ∂ x w, (3) 
where u 1 , u 2 are solutions to [START_REF]Global solutions of nonlinear hyperbolic equations for small initial data[END_REF]. In terms of the new variable w, system (2) rewrites as follows:

∂ tt w -c 2 1 ∂ xx w = α(∂ t w -c 1 ∂ x w)(∂ t w -c 2 ∂ x w), ∂ tt w -c 2 2 ∂ xx w = β(∂ t w -c 1 ∂ x w)(∂ t w -c 2 ∂ x w).
Discarding the trivial solution, we end up with the compatibility condition

(C) c 2 1 = c 2 2 , α = β.
Combining (C) with (A), we are left with c 1 = -c 2 and α = β. By a simple rescaling, this yields a classical example of semilinear wave equation with null condition

∂ tt w -∂ xx w = (∂ t w) 2 -(∂ x w) 2 , (4) 
first introduced by John in [START_REF]Blow-up for quasi-linear wave equations in three space dimensions[END_REF]. As an important research program in nonlinear partial differential equations, the investigation on the long-time behavior of smooth solutions to dispersive equations started in the Eighties with the seminal papers by Klainerman [START_REF]The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics[END_REF] and Christodoulou [START_REF]Global solutions of nonlinear hyperbolic equations for small initial data[END_REF]. A deep historical and mathematical survey on the topic can be found in [START_REF] Séminaire | ème année[END_REF]. A general feature is that the linear dispersive terms of the equation tend to force the solution to spread and to decay, but the contribution of the nonlinear terms is very different. Since dispersion increases with space dimension, a first class of global existence results has been obtained in dimension d = 4 by Klainerman [START_REF]Global Existence for Nonlinear Wave Equations[END_REF]. As showed by John, [START_REF]Blow-up for quasi-linear wave equations in three space dimensions[END_REF], in lower space dimensions the nonlinearity can lead to blow up in finite time for arbitrarily small data. In this case, a precise structure of the nonlinearity, the so-called null form, introduced by Klainermann [START_REF]The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics[END_REF] and Christodoulou [START_REF]Global solutions of nonlinear hyperbolic equations for small initial data[END_REF], prevents the formation of singularities.

Later, an important contribution to extend the notion of null forms was given by Germain, Masmoudi, Shatah, see [START_REF]Global existence for the Euler-Maxwell system[END_REF][START_REF]Global solutions for the gravity water waves equation in dimension 3[END_REF]. The main idea of this approach is to couple spatial localization via the space-time resonance method, using space-weighted estimates, with time oscillations, using normal forms. We refer to a recent paper by Pusateri and Shatah, [START_REF]Space-Time Resonances and the Null Condition for First-Order Systems of Wave Equations[END_REF], for a result on the semilinear wave equation with nonresonant bilinear forms.

In the more general case of systems, quadratic source terms satisfying the null condition for the wave equation are actually equivalent to the compatible forms for hyperbolic systems, [START_REF]Applications bilinéaires compatibles avec un opérateur hyperbolique[END_REF], which are the ones having the weakly sequential continuity described by compensated compactness, [START_REF]Compensated compactness and applications to partial differential equations[END_REF]. An analogous result for hyperbolic systems is indeed proved in [START_REF]Decay estimates for hyperbolic systems[END_REF] in the linear case. Actually, the first contribution in the general case of hyperbolic systems of semilinear equations is due to an unpublished paper by Tartar [START_REF]Some existence theorems for semilinear hyperbolic systems in one space variable[END_REF]. In [START_REF]Some existence theorems for semilinear hyperbolic systems in one space variable[END_REF], the author provides results on well-posedness and long-time behavior for a semilinear hyperbolic system with quadratic source term, satisfying a non-crossing condition for the charactericts (Assumption (A)), which is actually equivalent to the null condition for the semilinear wave equation, as showed in [START_REF]Applications bilinéaires compatibles avec un opérateur hyperbolique[END_REF]. The approach developed by Tartar is completely different from both the vector-field method [START_REF]The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics[END_REF] and normal forms techniques [START_REF]Global existence for the Euler-Maxwell system[END_REF]. In one space dimension, there is indeed no dispersion effect neither for the wave equation, nor for the semilinear hyperbolic system in (1). Tartar's idea is then based on spatial localization and finite speed of propagation: since the characteristic velocities of the interacting waves are different (Assumption (A)), then these waves interact only for a finite time before the separation of the cones of dependency. A similar approach was used by Bianchini and Bressan in [START_REF] Staffilani | BV Solutions for a Class of Viscous Hyperbolic Systems[END_REF].

We point out that even in the simplest 2 × 2 case, system (2) reduces to the semilinear wave equation ( 4) only in the special case of c 1 = -c 2 = 1, α = β. Therefore, besides the lack of dispersion, techiques which are built ad hoc for the wave equation do not apply to systems (1)-( 2) for generic constants c i , A i jk , and new ideas are needed in that case. The approach developed in [START_REF]Some existence theorems for semilinear hyperbolic systems in one space variable[END_REF] will be presented here. This work is indeed a revisitation of the arguments in [START_REF]Some existence theorems for semilinear hyperbolic systems in one space variable[END_REF], where we attempted to fix the notation, prove some intermediate results, as well as provide an explicit description of the objects and tools. The main result, which is due to Tartar, is stated here.

Theorem 1 (Global existence for small L 1 data) Assume condition (A) on system [START_REF] Staffilani | BV Solutions for a Class of Viscous Hyperbolic Systems[END_REF]. Then, there exists

E 0 > 0, k 1 > 0, k 2 > 1 such that, if the initial data φ i , i = 1, • • • , p satisfy φ i ∈ L 1 (R), i φ i L 1 (R) = i ε i ≤ E 0 , then system (1) admits a unique solution, which, ∀i = 1, • • • , p, satisfies i ∂ t u i + c i ∂ x u i L 1 (R + ×R) ≤ k 1 i φ i L 1 (R) . Moreover, let φi ∈ L 1 (R) with i φi L 1 (R) < E 0 ,
and let ūi be the solution to [START_REF] Staffilani | BV Solutions for a Class of Viscous Hyperbolic Systems[END_REF] with initial data φi . Then

sup t ∈R + i u i -ūi L 1 (R) ≤ k 2 i φ i -φi L 1 (R) .

Proof of the theorem

In this section, we revisit step by step the argument developed by Tartar in [START_REF]Some existence theorems for semilinear hyperbolic systems in one space variable[END_REF] for proving Theorem 1. For the sake of clarity, we consider the case of compactly supported initial data φ i (x), i = 1, • • • , p, whose support is contained in an interval J = [a, b] of the real line. However, the same proof applies to the case of more general initial conditions satisfying the assumptions of Theorem 1, as showed at the end of this work. The proof will be split in different steps.

Step

-Definition of the main tools

We start by defining

D := {(x, t) | x -c i t ∈ J = [a, b], for i = 1, • • • , p}. (5) 
Consider now the transport equation

∂ t v i + c i ∂ x v i = f i (x, t), (x, t) ∈ D, v i (x, 0) = φ i (x), x ∈ J, (6) 
for i = 1, • • • , p, and f i smooth enough functions on a space-time domain D. The explicit solution is given by

v i (x, t) = φ i (x -c i t) + ∫ t 0 f i (x -c i (t -s), s) ds (x, t) ∈ D. (7) 
For later purposes, we define the following space

V i := {v i solution to (6) defined on D, with f i ∈ L 1 (D), φ i ∈ L 1 (J)}, (8) 
equipped with norm

|||v i ||| V i = f i L 1 (D) + φ i L 1 (J) . (9) 
Without loss of generality, assume now that all the speeds are positive constant values

c k > 0, k = 1, • • • , p.
According to the definition in (5), the effective domain D corresponds to the region of the space-time between the lines

x = a + ct, x = b + ct, intersecting at time T * = b -a c -c
, where

c := max k c k , c := min k c k .
More precisely, as in Figure 1. Now, for any y ∈ J = [a, b] fixed, consider the following set,

D = {(x, t) | t ∈ [0,T * ], b + ct ≤ x ≤ a + ct}, (10) 
K y i := {τ ∈ I | (y + c i τ, τ) ∈ D}, (11) 
as in Figure 2. For t < T * , we can also define the subset (Figure 3)

K y i t := {τ ∈ I | (y + c i τ, τ) ∈ D} ∩ {0 ≤ τ ≤ t}. (12) 
Defining the new variable y = xc i t, formula (7) exactly reads

v i (y) = φ i (y) + ∫ K y i t f i (y + c i s, s) ds, y ∈ J,
and then One has the following.

|||v i ||| V i = ∫ b a |φ i (y)| dy + ∫ b a ∫ K y i | f i (y + c i s, s)| ds dy = ∫ b a |φ i (y)| dy + ∫ b a ∫ min{ y-a c-c i , b-y c i -c } 0 | f i (y + c i s, s)| ds dy. (13 
Lemma 1 Consider equation ( 6),whose solution is [START_REF]Applications bilinéaires compatibles avec un opérateur hyperbolique[END_REF]. Then:

v i L 1 (D) ≤ c(T * )|||v i ||| V i , where T * = b -a c -c . ( 14 
) Proof ∫ D |v i (x, t)| dx dt ≤ ∫ D |φ i (x -c i t)| dx dt + ∫ D ∫ t 0 | f i (x -c i (t -s), s)| ds dt dx ≤ ∫ b-a c-c 0 ∫ b+ct a+ct |φ i (x -c i t)| dx dt + ∫ b-a c-c 0 ∫ b+ct a+ct ∫ t 0 | f i (x -c i t + c i s, s)| ds dx dt = ∫ b-a c-c 0 ∫ b+(c-c i )t a+(c-c i )t |φ i (y)| dy dt + ∫ b-a c-c 0 ∫ b+(c-c i )t a+(c-c i )t ∫ K y i t | f i (y + c i s, s)| ds dy dt ≤ T * ∫ J |φ i (y)| dy + ∫ b-a c-c 0 dt ∫ b a ∫ K y i | f i (y + c i s, s)| ds dy ≤ T * |||v i ||| V i ,
where the last inequality follows from (13).

Step

-A Fubini-type theorem

We now perform the same computation for

∫ D |v i v j | dx dt.
We will see that space and time play somehow the same role when considering the interactions between waves with different velocities c i c j , and there will be no dependency on T * as in inequality [START_REF]Some existence theorems for semilinear hyperbolic systems in one space variable[END_REF].

Proposition 1 If v j ∈ V j and v k ∈ V k with c j c k then v j v k ∈ L 1 (D) and v j v k L 1 (D) ≤ 1 |c k -c j | |||v j ||| V j |||v k ||| V k . ( 15 
)
Proof Notice that the maximal time t j such that z + c j t ∈ D for t ≤ t j is determined by the system

z + c i t = a + ct, i.e. t = z -a c -c j , z + c i t = b + ct, i.e. t = b -z c j -c .
This way, using formula [START_REF]Compensated compactness and applications to partial differential equations[END_REF], one gets

∫ D |v i (x, t)v j (x, t)| dx dt ≤ 1 |c i -c j | ∫ J×J |φ i (y)φ j (z)| dy dz + 1 |c i -c j | ∫ J |φ i (y)| dy ∫ J ∫ min{ z-a c-c j , b-z c j -c } 0 | f j (z + c j s, s)| ds dz + 1 |c i -c j | ∫ J |φ j (z)| dz ∫ J ∫ min{ y-a c-c i , b-y c i -c } 0 | f i (y + c i s, s)| ds dy + 1 |c i -c j | ∫ J×J dy dz ∫ min{ y-a c-c i , b-y c i -c } 0 ∫ min{ z-a c-c j , b-z c j -c } 0 | f i (y + c i s, s)|| f j (z + c j τ, τ)| ds dτ ≤ 1 |c i -c j | ∫ J×J |φ i (y)φ j (z)| dy dz + 1 |c i -c j | ∫ J |φ i (y)| dy ∫ J ∫ K z j | f j (z + c j s, s)| ds dz + 1 |c i -c j | ∫ J |φ j (z)| dz ∫ J ∫ K y i | f i (y + c i s, s)| ds dy + 1 |c i -c j | ∫ J dy ∫ K z j | f i (y + c i s, s)| ds ∫ J dz ∫ K y i | f j (z + c j τ, τ)| dτ,
which ends the proof again from [START_REF]Compensated compactness and applications to partial differential equations[END_REF]. The following lemma comes directly from ( 6) and ( 9). Lemma 2 Let v i be the solution to [START_REF]Global solutions for the gravity water waves equation in dimension 3[END_REF] and recall the definition of the norm in [START_REF]Global Existence for Nonlinear Wave Equations[END_REF]. If φ i L 1 (J) ≤ ε, for some positive constant ε small enough, then the following holds:

|||v i ||| V i -ε ≤ ∂ t v i + c i ∂ x v i L 1 (D) ≤ |||v i ||| V i . (16) 
The fixed point scheme

We come back to the proof of the theorem defining the iterative scheme

∂ t v m i + c i ∂ x v m i + j,k A i jk v m-1 j v m-1 k = 0, v m i (x, 0) = φ i (x), (17) 
for m ≥ 1 and i = 1, • • • , p, where:

• φ i ∈ L 1 (J)
are the initial data associated with the Cauchy problem in (1);

• at the first iteration m = 1,

v m-1 i = u 0 i := φ i (x -c i t),
i.e. the solution to the linear Cauchy problem:

∂ t u 0 i + c i ∂ x u 0 i = 0, u 0 i (x, 0) = φ i (x).
Notice that, by definition, v i ∈ V i in (8) at each iteration. We now prove that this iteration model has a fixed point. Denoting by

α m i := ∂ t v m i + c i ∂ x v m i L 1 (D) ,
by applying Proposition 1 to system (17), one gets:

α m i ≤ j,k | A i jk | |c j -c k | |||v m-1 j ||| V j |||v m-1 k ||| V k .
On the other hand, from Lemma 2,

α m i ≤ j,k | A i jk | |c j -c k | (α m-1 j + ε j )(α m-1 k + ε k ),
where

ε i := φ i L 1 (J) .
Define γ := max j,k i

| A i jk | |c j -c k | . Therefore, summing up i = 1, • • • , p, i α m i ≤ γ i ε i + i α m-1 i 2 ,
and if we denote

r m := i α m i , E 0 = i ε i , one gets r m ≤ γ(E 0 + r m-1 ) 2 ,
i.e. the iterative scheme maps the closed set

B r m-1 := {u ∈ V i , i = 1, • • • , p, | u(x, 0) = φ i (x), ∂ t u + c i ∂ x u L 1 (D) ≤ r m-1 } into B r m , with r m = γ(E 0 + r m-1 ) 2 .
In order to apply the fixed point theorem, we then require that

r m = γ(E 0 + r m-1 ) 2 ≤ r m-1 .

This yields

r := r m-1 ≤ 1 -2γE 0 + 1 -4γE 0 2γ , 4γE 0 < 1. (18) 
We need to check that the iterative scheme defines a strict contraction. We compute

∂ t (v m i -v m-1 i ) + c i ∂ x (v m i -v m-1 i ) L 1 (D) ≤ j,k | A i jk | v m-1 j v m-1 k -v m-2 j v m-2 k L 1 (D) ≤ j,k | A i jk | v m-1 j (v m-1 k -v m-2 k ) L 1 (D) + (v m-1 j -v m-2 j )v m-2 k L 1 (D) ≤ j,k | A i jk | |c i -c j | |||v m-1 j ||| V j |||v m-1 k -v m-2 k ||| V k + |||v m-2 k ||| V k |||v m-1 j -v m-2 j ||| V j ≤ k | A i jk | |c i -c j | (r + E 0 )|||v m-1 k -v m-2 k ||| V k + j | A i jk | |c i -c j | (r + E 0 )|||v m-1 j -v m-2 j ||| V j = 2(r + E 0 ) j | A i jk | |c i -c j | |||v m-1 j -v m-2 j ||| V j . Therefore Lemma 2 yields i |||v m i -v m-1 i ||| V i ≤ 2γ(r + E 0 ) j |||v m-1 j -v m-2 j ||| V j .
Choosing r = E 0 (in accordance with (18)), the Lipschitz constant is 4γE 0 and the iterative scheme defines a strict contraction on B r provided that 4γE 0 < 1.

Uniqueness

Now let u m i , ūm i be two outputs of the iterative scheme, with initial data φ i , φ i respectively. We use the following notation:

φ i L 1 (J) = ε i , i ε i = E 0 ; φ i L 1 (J) = ε i , i ε i = Ē0 < E 0 .
Taking the difference, one has

i |||u m i -ūm i ||| V i ≤ γ j,k (α j + ε j )|||u m-1 k -ūm-1 k ||| V k + (α k + ε k )|||u m-1 j -ūm-1 j ||| V j ≤ γ(2r + E 0 + Ē0 ) k |||u m-1 k -ūm-1 k ||| V k ≤ 4γE 0 k |||u m-1 k -ūm-1 k ||| V k ≤ • • • ≤ (4γE 0 ) m k φ i -φ i L 1 (J) ,
which yields the proof of uniqueness, since 4γE 0 < 1.

L 1 initial data

In the case of more general initial data φ i ∈ L 1 (J), we consider a partition of the real line R = ∪ h J h , where J h are closed connected intervals with h φ h L 1 (J h ) ≤ E 0 . Let D h , defined as ( 5), be the domain of the solution u h i related to the interval J h . When J h 1 ∩ J h 2 ∅, the two solutions u h 1 i , u h 2 i coincide thanks to uniqueness proved above. Therefore we can glue the u h i together to get our solution.
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 23 Fig.2Representation of K y i . In this picture, the triangle D = ∪ y∈J K y i .
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