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ABSTRACT: This work highlights for the first time the pho-
toluminescence (PL) properties of two new [Ln(Mo8O26)2]

5-
 

(Ln = Eu, Sm) lanthanide-containing polyoxometalates. Sta-
ble crystals of the tetrabutylammonium salts 
(TBA)5[Ln(Mo8O26)2] were synthesized, and their structures 
were confirmed by single-crystal X-ray diffraction. The ro-
bustness of the [Ln(Mo8O26)2]

5-
 complexes in acetonitrile 

solution has been evidenced by FT-Raman and PL spectros-
copies. Then, the tetraphenylphosphonium 
(TPP)5[Ln(Mo8O26)2] derivatives were obtained by a salt  
metathesis reaction. The two series exhibit a high 
thermal stability in air  and are efficient solid-state 
phosphors at room temperature. 

Polyoxometalates incorporating Ln
3+

 lanthanide ions (Ln-
POMs) form a fascinating class of nanosized metal-oxide 
clusters of early transition metals (M = Mo, W, V).

1
 They are 

currently the focus of intense researches owing to their 
promising applications in the fields of single molecule mag-
nets (SMMs),

2
 catalysis,

3
 and especially photoluminescence 

(PL).
4
 Na9[EuW10O36]xH2O (EuW10) has been extensively 

investigated due to its remarkable PL properties
5
 which were 

recently used to elaborate chemical probes for biology,
6
 

photocatalysts
7
 and luminescent thermometers.

8
 In the 

Weakley-type [Eu(W5O18)2]
9-

 complex, the POM ligands 
act as sensitizers to exalt the luminescence of the Eu

3+
 ion 

via an antenna effect.
5
 [Eu(W5O18)2]

9-
 has been a l s o  

ionically incorporated into organic polymers,
9
 vesicles,

10
 

surfactants,
11
 ionic liquids,

12
 and metal-organic frameworks

8
 

to design hybrid organic-inorganic photoactive composites. 
However, because of its huge negative charge and the insol-
ubility of EuW10 in most of non-aqueous solutions, the as-
sembly of [Eu(W5O18)2]

9-
 with organic cations into crystal-

lized supramolecular frameworks is more critical and was 
very rarely reported.

13
 Other Eu-POMs were since de-

signed,
4c,5,14

 but they are less efficient emitters than EuW10 
because i) they contain corner-shared MO6 octahedra that 
favor the electron-to-hole recombination into the POM lig-
ands instead of POM-to-Eu

3+
 energy transfers, ii) the Ln

3+
 

ions are too close to each other leading to PL concentration 
quenching effects or iii) water molecules link the Eu

3+
 ions 

and promote non-radiative deactivation from its 
5
D0 emitting 

level.
15

 In addition, most of these compounds are hydrated 
alkali salts which exhibit a limited thermal stability. Thus, 
the discovery of Ln-POMs with lower charges, and soluble in 
non-aqueous solvents is still highly challenging. In 1997, 
Kitamura et al. reported tetrabutylammonium (TBA) salts of 
the [Ln(Mo8O26)2]

5-
 complex (Ln = La, Y, Ce Pr, Nd, Gd, Yb) 

(Figure 1a).
16

 Other Ln-derivatives (Tb, Dy, Ho, Er,  Tm) 

were recently obtained which exhibit interesting SMM 
properties.

17
 However, crystals of these efflorescent acetoni-

trile solvates degrade rapidly in air, leading to structurally 
uncharacterized powders. In addition, the photophysical 
properties of these Ln-POMs have never been investigated, 
and their Eu and Sm counterparts have not been designed 
yet.  

We report herein the synthesis a n d  s t r u c t u r a l  c h a r -
a c t e r i z a t i o n  of two new thermally robust 
(TBA)5[Ln(Mo8O26)2] compounds (TBA-EuMo16 and TBA-
SmMo16), and their Y

3+
-counterpart (TBA-YMo16). Their  

tetraphenylphosphonium (TPP) derivatives 
(TPP)5[Ln(Mo8O26)2] (TPP-LnMo16) were also prepared in 
acetonitrile by a salt metathesis reaction . The 
photophysical properties of these phosphors were 
thoroughly investigated and discussed. 

 

Figure 1. a) Structure of the [Eu(Mo8O26)2]
5- complex. b) 

Supramolecular {(TBA)2[Eu(Mo8O26)2]}
3- ribbon. c) Crystal packing in 

TBA-EuMo16. Green arrows indicate the EuEu distances (blue 
octahedra = MoO6, gold sphere: oxygen, pink sphere: europium, 
green sphere: nitrogen, grey sphere: carbon. H-atoms are omitted). 

The syntheses of the six compounds are described in the 
Supporting Information. T h e  T B A - L n M o 1 6  s y s t e m s  
w e r e obtained as colorless crystals by slightly modifying the 
synthesis route developed for other Ln-derivatives.

17 
Our 

synthetic procedure also differs from that previously report-
ed for TBA-YMo16.

16
 FT-IR spectroscopy (Figure S1), TGA 

measurements (Figure S2) along with elemental analyses 
confirm the c h e m i c a l  c o m p o s i t i o n  
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( T B A ) 5 [Ln(Mo8O26)2]. Noticeably, crystals are stable in air, 
and no efflorescence appears even after several months. 
Powder X-Ray diffraction (PXRD) analysis shows that the 
three compounds are isostructural (Figure S3). The structures 
of TBA-EuMo16 and TBA-SmMo16 were resolved by single-
crystal X-ray diffraction (Table S1), and that of TBA-EuMo16 

is described below. In [Eu(Mo8O26)2]
5-

, two -[Mo8O26]
4-

 
units connect a central Eu

3+
 ion (Figure 1a) which is located 

into a distorted square antiprismatic site. Supramolecular 
{(TBA)2[Eu(Mo8O26)2]}

3-
 ribbons run along the a axis (Figure 

1b) with long intermolecular EuEu distances of 12.1 Å and 
13.4 Å. Ribbons are separated by TBA units (Figure 1c) with 
the shortest inter-ribbon EuEu distance of 17.2 Å. As sus-
pected, the structures do not show any crystallized acetoni-
trile molecules. This is consistent with the absence in the 

Raman spectra of the int en se  (CN) stretching mode 
around 2260 cm

-1
 (Figure S4).

18
 In addition, TGA measure-

ments (Figure S2) confirm the stability of compounds in air 
up to 275°C.  

FT-Raman spectroscopy is a powerful tool to characterize 
POMs in solution and in the solid state.

19
 Figure S5 displays 

the Raman spectra of TBA-EuMo16 in acetonitrile solutions 
at three concentrations i.e., 2 .10

-2
 M, 10

-2
 M, and 5 .10

-3
 M. In 

the 150-1000 cm
-1
 range, the Raman peaks characteristic of 

[Eu(Mo8O26)2]
5-

 match with those recorded for the TBA-
EuMo16 solid phase. In this concentration range, no addi-
tional signals that could indicate its partial degradation are 
observed. Moreover, the intensity of the main line at 977 cm

-1
 

attributed to the terminal Mo=O bonds increases linearly 
with the Eu-POM concentration (Figure S6). In addition, a 
statistical analysis by “separation curve method” reveals that 
the spectra recorded in solution are perfectly similar to the 
solid one. This quantitatively confirms the integrity of the 
Ln-POM complex in solution. Then, by exchanging TBA 
cations by TPP ones, TPP-LnMo16 (Ln = Eu, Sm) and their 
Y

3+
 counterpart were prepared as microcrystalline powders. 

Attempts to isolate single-crystals were unsuccessful. How-
ever, PXRD analyses show that they are isostructural (Figure 
S3). Finally, FT-IR (Figure S1) and FT-Raman (Figure S7) 
spectroscopies, elemental analyses, and TGA measurements 
(Figure S2) i n d i c a t e  a  T P P : Ln-POM ratio of 5 : 1, and 
show that the compounds are thermally stable in air up to 
355°C.  

The solid-state absorption spectra of the TBA-LnMo16 series 
(Figure S8) show two broad bands at 270 and 305 nm, 
which are assigned to mixed OMo and OEu ligand-to-
metal charge-transfer (LMCT) transitions. Similar bands are 
observed for the TPP-LnMo16 series, with a more intense 
transition at 270 nm, because the cation absorbs at this 
wavelength. The six compounds have an optical band gap of 
370 nm. In addition, room-temperature time-resolved PL 
spectroscopy has been performed to characterize the intrin-
sic luminescence of the POM ligands. Upon photoexcitation 
into the OMo LMCT band, the Ln-free reference TBA-
YMo16 shows a broad emission band centered at 385 nm 

(Figure S9) with a short mean luminescence lifetime of  = 

0.382 s (Table S2). This band can be decomposed into two 
contributions at 364 (27473 cm

-1
) and 418 nm (23923 cm

-1
) 

(Table S2). Comparable emissions are also observed for the 
TBA-LnMo16 (Ln = Eu, Sm) compounds and their TPP coun-
terparts (Figure S9), with similar decay times (Table S2). 
Based on earlier studies,

1c,4c
 these bands have been assigned 

to the 
3
T1u

1
A1g transitions originating from the two OMo 

LMCT emitting triplet states of the POM ligands. 

 

Figure 2. a) Excitation spectrum (blue line) monitored at 594 nm 
and emission spectrum (black line) monitored at 286 nm of TBA-
EuMo16. Inset: Photograph of the powder of TBA-EuMo16 upon 
irradiation at 254 nm. b) Excitation spectrum (blue line) monitored 
at 600 nm and emission spectrum (black line) monitored at 286 nm 
of TBA-SmMo16. Inset: Photograph of the powder of TBA-SmMo16 
upon irradiation at 254 nm. 

The room-temperature steady-state photoluminescence 
excitation (PLE) and emission spectra of TBA-EuMo16 and 
TBA-SmMo16 are depicted in Figure 2. Upon irradiation at 
254 nm with a standard UV lamp, TBA-EuMo16 exhibits a 
strong orange-red emission (Figure 2a). Its PLE spectrum 
monitored at 594 nm shows a broad intense band at 286 nm 
(34965 cm

-1
) which corresponds to the charge-transfer states 

(CTS), mainly dominated by the 
1
A1g

1
T1u transition of the 

OMo LMCT photoexcitation.
4c

 Several sharp lines are also 
observed which are characteristic of the intra-configurational 
f-f transitions of Eu

3+
 i.e., 

7
F0

5
L6 (395 nm) and 

7
F0

5
D2 (464 

nm). Noticeably, the f-f transitions got a very weak intensity 
which indicates that the most efficient excitation process 

corresponds to the CTS. Thus, the -[Mo8O26]
4-

 ligands are 
effective light-harvesting antennae to sensitize the Eu

3+
 ion 

through an intramolecular energy transfer from the 
3
T1u 

excited levels to the emitting 
5
D0 level, lying at a lower ener-

gy (Figure S10). Upon photoexcitation into the CTS band, the 
PL spectrum of TBA-EuMo16 consists in a multi-band emis-
sion characteristic of the 

5
D0

7
FJ (J = 0-4) transitions of an 

Eu
3+

 ion occupying an asymmetric site with approximate D4d 
symmetry.

20
 Indeed, the symmetry-forbidden 

5
D0

7
F0 elec-

tric-dipole transition is absent. The strongest 
5
D0

7
F1 mag-

netic-dipole transition is split into two Stark components at 



 

590 and 594 nm. The 
5
D0

7
F2 electric-dipole transition (611-

630 nm), which is highly sensitive to the chemical surround-
ing at the vicinity of Eu

3+
 and the 

5
D0

7
F3 transition (648-661 

nm) got weak intensities. In contrast, the 
5
D0

7
F4 split-band 

(692 and 701 nm) is intense. Thus, the emission of TBA-
EuMo16 is characterized by CIE chromaticity coordinates of 
(0.6255, 0.3681) (Figure S11). The 

5
D0

7
F1 transition exhibits a 

long luminescence lifetime of 5.24 ± 0.03 ms (Figure S12). 
Noticeably, the emission spectrum of TBA-EuMo16 shows the 
same feature than that of EuW10 and their PL performances 
are close.

5
 This can be explained considering that 

[Eu(Mo8O26)2]
5-

 and [Eu(W5O18)2]
9-

 have some structural 
similarities. Indeed, they contain POM ligands only built 
upon edge-shared MO6 octahedra that discriminates against 
thermally activated hopping of d

1
 electrons and limits the 

MO non-radiative deactivation processes.
22,4c

 They also 
exhibit low average M-O-Eu bond angle values (131.3° and 
130.17° for TBA-EuMo16 and EuW10,

21
 respectively). This con-

tributes to prevent the PL quenching of Eu
3+

 due to d
1
 elec-

tron hopping through f-p-d orbital mixing, which is ra-
ther favored for higher bond angle values.

4b,c
 Moreover, the 

Eu
3+

 ion occupies a similar distorted square antiprismatic site 
without coordinated water molecules likely to quench its 
luminescence.

22
 Finally, the long EuEu distances, higher 

than 12 Å, may suggest that side PL concentration quenching 
effects should be strongly minimized. The orange emission of 
TBA-SmMo16 at room temperature is less intense than that of 
TBA-EuMo16

 
(Figure 2b). The PLE spectrum contains the CTS 

band (286 nm) and sharp lines associated to the f-f transi-
tions of Sm

3+
, i.e. 

6
H5/2

4
K11/2, 

6
P3/2,

 4
F7/2, 

4
P13/2 (404 nm), 

6
H5/2

4
M19/2, 

6
P5/2 (418 nm), 

6
H5/2

4
I15/2,

 4
G9/2, 

4
M17/2 (440-452 

nm), 
6
H5/2

4
I13/2 (466 nm), 

6
H5/2

4
I9/2 (480 nm).

23
 They are 

more intense than the CTS band, which indicates that the 
emission process can be stimulated upon photoexcitation 
into the CTS band or directly into the f-f transitions of Sm

3+
. 

The emission spectrum of TBA-SmMo16 (ex = 286 nm) con-
sists in characteristic emission peaks of the Sm

3+
 ion at 564 

nm (
4
G5/2

6
H5/2), 599 and 607 nm (

4
G5/2

6
H7/2), 650 nm 

(
4
G5/2

6
H9/2), and 707 nm (

4
G5/2

6
H11/2).

23
 Its emission color 

is more orange than for TBA-EuMo16 with CIE chromaticity 
coordinates of (0.5841, 0.4065) (Figure S11). The decay time of 

the 
4
G5/2

5
H7/2 emission (exc = 286 nm) is 0.28 ± 0.01 ms 

(Figure S12). 

TBA-EuMo16 and TBA-SmMo16 dissolved in acetonitrile 
exhibit an orange luminescence at room temperature (Figure 
S13). The PL spectrum of [Sm(Mo8O26)2]

5-
 is similar to that of 

TBA-SmMo16, confirming the robustness of the Sm-POM. 
The PL spectrum of [Eu(Mo8O26)2]

5-
 in solution shows slight 

changes compared to that monitored in the solid state. In 
particular, the weakly intense 

5
D0

7
F0 transition (576 nm) is 

distinguishable. In addition, the 
5
D0

7
F2/

5
D0

7
F1 intensity 

ratio is increased (0.64 vs 0.38 for TBA-EuMo16). This indi-
cates that the site symmetry of the Eu

3+
 ion decreases.

12
 Nev-

ertheless, as no change is detectable in the Raman spectrum 
(Figure S5), this symmetry reduction should be limited, and 
anyway much less pronounced than for EuW10 which shows 
a strong inversion of the 

5
D0

7
F2/

5
D0

7
F1 intensity ratio in 

water.
8
 

TPP-EuMo16 has an intense orange-red solid-state emission 
at room temperature (Figure S14), with CIE chromaticity 
coordinates of (0.6281, 0.3666) very close to those of TBA-
EuMo16. Their PLE and PL spectra (Figure S15) are compara-

ble excepted for the 
5
D0

7
F2/

5
D0

7
F1 intensity ratio which is 

increased to 0.5 for TPP-EuMo16. Upon photoexcitation at 
286 nm, the decay time of the 

5
D0

7
F1 transition is 5.30 ± 

0.03 ms (Figure S12), similarly as observed for its TBA-
counterpart. This evidences that the substitution of flexible 
TBA cations by more rigid TPP ones does not significantly 
impact the high PL performances of [Eu(Mo8O26)2]

5-
 in the 

solid state. In contrast, the orange emission of TTP-SmMo16, 
which is characterized by CIE chromaticity coordinates of 
(0.5757, 0.4054), is more intense than that of TBA-SmMo16 
(Figure S14), and the decay time of the 

4
G5/2 

5
H7/2 transition 

(exc = 286 nm) reaches 0.66 ± 0.01 ms. This is consistent with 
the change in the PLE spectrum profile in which the CTS 
band has the same intensity than the f-f transitions of Sm

3+
 

(Figure S16), suggesting a better POM-to-Sm
3+

 energy trans-
fer.  

In summary, the [Ln(Mo8O26)2]
5- 

(Ln = Eu, Sm) complex-
es are new luminescent Ln-POMs both in solution and 
in the solid state. The nonsolvated TBA-LnMo16 com-
pounds have been well structurally characterized. They 
show a high thermal stability in air and an efficient 
emission at room temperature. Noticeably, the PL per-
formances of TBA-EuMo16 are close to those of the 
EuW10 reference, owing to structural similarities be-
tween [Eu(Mo8O26)2]

5-
 and [Eu(W5O18)2]

9-
. This makes 

TBA-EuMo16 a promising alternative Ln-POM emitter 
which is furthermore easily soluble in polar non-
aqueous solvents. Both FT-Raman and PL spectroscopies 
confirmed the integrity of the [Ln(Mo8O26)2]

5-
 complexes 

in acetonitrile. The TPP-derivatives were obtained by a 
cation metathesis reaction. They are also thermally ro-
bust and efficient phosphors. To go further, this work 
evidences the possibility to design crystallized su-
pramolecular assemblies by combining the luminescent 
[Ln(Mo8O26)2]

5- 
units with photoactive organic cations, 

paving the way toward novel multifunctional optical 
hybrid systems. 
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