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Abstract. Command and control systems centralize information from multiple

underlying systems to support operators in the performance of their mission.

Beyond the mission itself (that may be complex), operators must also ensure the

correct functioning of these systems (often called platform). Platform systems

(e.g. engines or electric system) may be very different from each other and

exhibit a large number of functional states. When applied to the design of

command control systems, User Centered Design methods support under-

standing and capturing operators’ needs to perform the mission, as well as to

propose solutions to design usable mission-related user interfaces. However,

user interfaces for platform management need to present and organize infor-

mation about the underlying complex systems. Understanding those systems and

abstracting away information about their behavior (so that operators can manage

them) requires deep knowledge beyond UI/UX designers and UCD methods

experts. In this paper, we propose a system-centered process that would com-

plement UCD approaches for the design of command and control systems. That

process takes as input the detailed functioning of underlying systems and pro-

vides abstract and structured information to inform UCD methods. Beyond

supporting usability property, the integrated process supports reliability and

safety properties that UCD approaches usually overlook. We present how the

proposed process has been applied for the design of a large civil commercial

aircraft warning system and show generalizability to other domains.

Keywords: Command and control systems � Development process � UCD �

Models � Architectures

1 Introduction

User Centered Design processes [26] target the design of usable interactive systems and 
promote the inclusion of real users in various development phases from early needs 
identification and design until evaluation and deployment. Recent contributions have 
tried to classify and structure the various concepts underlying UCD and interaction
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design [28] as well as associating success criteria. For instance, interaction as trans-

mission focusses on the information passing between the user and the system and a

success criterion is the maximum efficiency for reaching a goal. Another example is

interaction as experience which focusses on the user feelings and on subjective

qualities perceived while interacting with the systems. While interaction as trans-

mission could be associated to early work in Human Factors [49] (and is referred to as

classical approach [42]), interaction as experience has received a lot of focus in recent

HCI research building on the seminal work from Hassenzahl [25] (and is referred to as

contemporary approach). While the classical approach was focusing on supporting

users’ work and avoiding the negative (such as user errors), the contemporary one

mainly targets at entertainment and leisure and focusses on the positive (such as

enjoyment and fun [7]). However, usability is still not trivial to reach for complex

command and control systems.

This evolution might be seen as migrating from a solved problem to a new difficult

problem missing clear understanding and solutions. UCD approaches are flexible but

are still far from being adequate for the design and evaluation of command and control

systems in general, and critical ones in particular. For instance, cockpit design by

aircraft manufacturers and suppliers is performed jointly with Human Factors experts

(with a deep knowledge about operators’ tasks and environmental conditions) and test

pilots (with a deep knowledge about missions and platform systems) [45]. This is

required as command and control systems centralize information from multiple

underlying systems to support operators in the performance of their mission. Beyond

the mission itself (that may be complex), operators must also ensure the correct

functioning of these systems (often called platform). This does not mean engaging

repair activities but shutting down a faulty system or starting a redundant one [46]. The

systems gathered in the platform such as a cooling system, solar panels or engines

might be very different from each other an exhibit a large number of functional states

very specific to each system. When applied to the design of command and control

systems, User Centered Design methods support understanding and capturing opera-

tors’ needs, their goals and tasks [18] in order to perform their mission. In addition,

UCD approaches propose solutions to design usable user interfaces. However, when

dealing with command and control that supports activities dedicated to the management

of the platform, those user interfaces need to present and organize information from the

underlying complex systems. Understanding those systems and abstracting away

information about their behavior in order to allow operators to manage them, requires

deep system knowledge beyond UI/UX designers and UCD methods experts’ knowl-

edge. Beyond, the complexity of those systems require knowledge that cannot be

acquired by those UCD experts within the lifespan of the project.

As UCD approaches do not provide explicit support for building an abstract view

on the system and its services, we propose a system-centered process (that would

complement UCD approaches) dedicated to the design of command and control sys-

tems. That process takes as input the detailed functioning of underlying systems and

provides abstract and structured information to inform the UCD of command and

control systems. As UCD approaches target at improved usability, our integrated

process targets at feasibility as relevant additional and required property. That process

is also positioned with respect to regulations in command and control systems that



target at dependability and safety. Regulatory authorities build their certification pro-

cesses on top of standards that vary significantly from one domain to another. For

instance, ECSS target at space systems [15], ESARR at Air Traffic Control [19] and

DO-178-C at Aeronautical systems [12]. Their integration within the design processes

is mandatory for critical systems and their explicit connection with UCD is thus

required when building dependable, safe and usable systems [29].

The paper is organized as follows. Section 2 details the limitations of UCD

approaches for command and control systems and motivations for extending UCD

them with deep knowledge about underlying systems. Section 3 presents a high-level

view of the proposed approach while Sect. 4 presents the foundations of the proposed

process. The main steps of the System Centered Design process are presented in

Sect. 5. Section 6 presents how the process has been applied for the design of a

commercial aircraft warning system and Sect. 7 concludes the paper.

2 Motivations: Why UCD Is Not Enough to Design C&C

Systems

The design of command and control systems requires information that is not provided

by UCD (e.g. all the possible states for each device). This section highlights the actual

conflicts between several principles of the UCD and the specificities of C&C systems.

2.1 Specificities of C&C Systems

The users who interact with C&C systems, named operators, interact according to

predetermined procedures, predetermined tasks and predetermined behaviors [47]. Their

abstract workflow [47] is to understand the system state, to compare it with the desired

system state and to apply the relevant procedure and tasks to achieve the target system

state. The number of possible states for devices and of information presented to the user

depend on the system and devices that compose the whole system. C&C systems aim at

managing large amount of system and devices, which leads to a huge number of possible

operational states to deal with. It is not possible for the users know all of these possible

states. In addition, the user will not be able to interact with all of the possible systems’

behaviors during the whole time s/he operates the system. For example, in the case of a

commercial aircraft, a fire engine may happen one time out of one billion flight hours.

Most of the commercial airlines pilots’ will (fortunately) never have to interact with the

cockpit C&C interface to recover from an engine fire. The design and development of

C&C systems are thus driven by safety and dependability objectives:

• Manufacturers of C&C systems have to set safety and dependability objectives for

their systems and have to demonstrate that the delivered systems match these

objectives [14]. Depending on the application domain and on the level of assurance

required for a function, regulation specifications let the manufacturer proves that the

targeted objective is reached using methods and techniques of its choice or indicates

prescriptive means of compliance to the requirements [14]. For high assurance



levels, structured development processes and model-based approaches are means of

compliance to the requirements.

• Manufacturers of C&C systems have to ensure that the C&C functions and inter-

faces match the users’ tasks [17]. For these purposes, Human factors experts

identify, gather and record exhaustively and precisely the users’ tasks [16, 47].

• The design of functions and presentations for C&C tasks is performed jointly with

Human Factors experts (with a deep knowledge about operators’ tasks and envi-

ronmental conditions) and test pilots (with a deep knowledge about missions and

extant systems) [45]. The produced design documents are shared amongst the

different stakeholders.

2.2 Main Principles of UCD and Their Limitations

User Centered Design is “a general term for a philosophy and methods which focus on

designing for and involving users in the design of computerized systems” [1] and has

the following main principles:

• Focus (early) on the user [22, 23], involve actively the user [11, 23, 31]: the user

and associated characteristics, tasks and context drive the design.

The operators have cumulative experience about the C&C systems they have been

operating, and about the systems’ behavior they have been interacting with. As far

as they know neither all the possible system’s states and all the systems’ charac-

teristics nor this information for the future systems, they do not have enough

knowledge to propose design solutions that contain relevant abstraction level and

relevant information. As UCD methods and techniques have historically been

proposed to deal with simple in home entertainment computers [5], it may be a

reason why this aspect is missing in UCD.

Moreover, focus (early) on the systems is required too. Exhaustive and detailed

information about each system is required before the design of the C&C interface.

For example, in the commercial aircrafts application domain, engines are specified

before the start of the cockpit design.

• Apply an iterative design process [11, 22, 31], apply an iterative and incremental

system development process [23]: the design process alternates the production of

multiple design solutions (evolvable prototypes) and their evaluation with users in

order to accommodate requirements changes and integrate new parts of the system.

An iterative and incremental process does not provide support to have a generic

architectural view on the system and of its various components [48]. Consequently,

it also makes very difficult to demonstrate that the system reach objectives in terms

of levels of safety and dependability [48].

• Produce simple design representations [23]: The design solutions are represented in

a way that can be easily understood by all stakeholders.

The representations that provide support to C&C tasks have to contain the relevant

information concerning the systems’ characteristics and states. According to the

complexity of C&C systems as well as the amount of information dealt with [47],

the design representations cannot be as simple as mass-market systems design

representations.



• Perform empirical measurement [22], evaluate use in context [23]: User evaluations

are conducted throughout the iterative design process.

The recruitment of operators for user evaluation as well as the preparation and

implementation of the test sessions is constrained [41]. It is not possible to cover all

the operators’ tasks and procedures and several types of users must be involved at

the same time during the test sessions.

• Multi-disciplinary design teams [23, 31].

Several types of expertise are required (engineering, physics, human factors, soft-

ware, hardware…). Stakeholders bring their expertise. The produced design and

development artefacts are shared amongst the stakeholders.

2.3 Existing Approaches for Integrating UCD in System Development

Processes

The fact that UCD do not explicitly address the whole development process for an

interactive system has been acknowledged since decades [23, 33, 35]. From a system

and software engineering perspective, development processes such as the waterfall

process [43] and the V cycle process [36] have proven useful to reach safety and

dependability objectives (i.e. “to build the system right”) [8] but they fail in taking into

account the usability property (i.e. “to build the right system”) [8]. The Spiral [8] and

Agile processes [44], even if they are iterative, do not explicitly take into account user

needs and tasks [30]. To overcome these issues, Goränsson et al. [23] proposed a

design process centered on usability. Larusdottir et al. [30] proposed an approach to

integrate UX design activities in Agile development processes. Gross [24] proposes a

generic process based on the high level UCD phases and complemented with system

development phases in order to encourage system designers and developers with no

HCI background to apply UCD techniques. Martinie et al. [33] proposed a develop-

ment process for safety-critical interactive systems, taking into account the develop-

ment of the training program.

These existing approaches do not provide explicit guidance and support on how to

use systems design artefacts within UCD phases, although system design artefacts

provide the information required to identify what should be presented to the users and

to take into account the feasibility of the interface and interactions design solutions.

The existing approaches fail in taking into account the properties required for C&C

systems: feasibility, usability, dependability and safety.

3 Holistic View on Command and Control System

Development

Figure 1 presents a generic approach for taking into account the properties required for

C&C systems: feasibility, usability, dependability and safety. This generic approach

was designed and developed in collaboration with cockpit experts and engineers in the

aeronautics domain during a four-year project on aircraft operational systems’ states.

This approach, named the clover process covers these properties thanks to three



different sub-processes: The System Centered Design (SCD) process, the User Cen-

tered Design (UCD) process and the Regulator Centered Design (RCD) process.

The SCD process identifies all the feasible command and control system functions.

Experts for each type of system should participate in this process. The aim of this

process is to provide information about the available command and control devices,

services and associated states by the mean of structuration and abstraction. This

information is composed of data, architecture, behavioral models and sample presen-

tation layout for the command and control system. This information thus feeds the

design and the evaluation phases in the UCD process. The foundations for the infor-

mation produced by the SCD process as well as the detailed phase by phase view on the

process (with the documents and information that flow between the phases) is described

in the next two sections of this paper.

The UCD process aims to ensure the usability property of the command and control

system and should then be conducted by usability experts. HCI main principles and

techniques can be applied but, as these activities require deep knowledge about the

command and control system, the UCD process has to take as an input the output of the

SCD process (data, models and sample presentation layouts of the systems, services

and associated states). For example, the task modeling activity requires the exhaustive

list of system functions, services and presentation information. If an important usability

issue that is due to the C&C system is identified, the design of the C&C system must be

amended (red dotted arrow from UCD to SCD in Fig. 1). In the same way, the outputs

of the UCD process can be regulated during the RCD process that may output pro-

posals for modifications (red dotted arrow from RCD to UCD in Fig. 1). System

devices or services can also be adapted by SCD (green arrows propagating modifica-

tions from one process to another.

The RCD process aims to set dependability and safety properties and to verify

them. It should thus be conducted by safety experts. In the aircraft domain, the DO-

178C [12] standard defines development assurance level for systems of aircraft systems

and associated recommendations. In addition, the CS-25 [17] defines certifications

specifications and associated means of compliances for aircraft systems. Following

these means of compliances, manufacturers show to the certification authorities that

they developed and deployed systems that conform to these specifications and standard.

A non-compliance leads to a new iteration of the UCD process or of the SCD process,

and then to a new iteration of the RCD process in order to verify that the compliance

issue is solved. For example, the CS-25 specifies that aircraft systems have “to be

designed so that qualified flight-crew members trained in its use can safely perform

their tasks associated with its intended function” [17]. Then, in order to be accepted

during the RCD process, each identified user tasks (identified during the UCD process)

must match a system function (defined during the SCD process with architecture and

data models) for the command and control system design. This highlights the impact of

dependability on usability [20].



4 Foundations for “Systems Centered Design” for Command

and Control Systems

The SCD outputs data about systems devices, services and their associated states. For

example, in a commercial aircraft, the “FUEL” service is associated to the aircraft fuel

systems (fuel tank, pump, cross-feed valves, etc.). In order to provide support for

covering all the possible devices, services and their associated states in the design

solutions for the C&C interfaces and interactions, we present: (1) an architecture built

upon the concept of abstraction hierarchy framework [6], and (2) a generic and abstract

state description applicable to the all of the architecture components (devices, services).

4.1 Handling Complexity with a Generic Architecture for the Command

and Control of Integrated System Services and Devices

DSCU (Device, System service, Compound service and User Service) is a generic

architecture designed around four types of components, each representing different

level of system abstraction for command and control. Figure 2 introduces the archi-

tecture. From left to right, it goes from physical implementation of the system (devices)

to services that are of interest for the end-user, named “User Service”. This decom-

position is close to the one proposed in the abstraction hierarchy framework [6] and

thus allow to reason on the entire system.

Fig. 1. The clover process for the design and development of command and control systems

(Color figure online)



System Devices. System devices are physical devices capable of producing or routing

resources (e.g. electrical generator and switches) and/or delivering forces (e.g. torque).

The System Device component (leftmost box in Fig. 2) holds the operational parameter

of the monitored device. On an aircraft engine, these parameters include the rotation

speed of the fans, the exhaust gas temperature, etc. These are useful to identify

problems such as over speed, overheating, etc.

System Service. System services are the set of resources and forces a device is capable

of producing. The System Service component (second box from the left in Fig. 2) holds

information regarding the production of the said resource or force, named “Service” for

generalization purpose. The System Services produced by an aircraft engine are, for

example, “Thrust” or “AC Electricity”. The System Service “Engine 1 AC Electricity”

holds information related to the monitoring of the Engine 1 generator such as output

Voltage or Current.

Devices dedicated to routing (e.g. electrical switches, fuel valves) enable system

services such as “Electricity routing” or “Fuel routing”.

Compound Service. A Compound Service is a system-wide resource made available

to devices and other services after aggregation from multiple producers. For example,

on a twin-engine aircraft, the “AC Electricity” compound service is the result of the

compounding of “Engine 1 AC Electricity”, “Engine 2 AC Electricity”, “Auxiliary

Power Unit AC Electricity” and “AC Electricity Routing”. “Compound Service” (third

box for the left in Fig. 2) are particular as their operational parameters may be nominal

even though some system services used to produce it are faulty. Indeed, in complex

systems, redundancy is an example of safety mechanism designed to prevent complete

loss of compound services. This means that even though a system service is not

working anymore (e.g. “Engine 1 AC Electricity”), the compound service to which it

participates (i.e. “AC Electricity”) may still be properly made available. The role of the

“Compound Service” is to allow for the identification of such combination and their

proper monitoring.

User Service. A User Service (fourth box from the left in Fig. 2) is a service that is of

interest for the user, or in other word directly associated to his/her goal. It needs and

controls one or multiple “Compound Services” in order to be delivered. For example,

on an aircraft preparing for takeoff at night, the flight crew needs to dim the cabin light

in order to comply with safety procedure. In this case, “Cabin Light” is a user service

Fig. 2. Generic architecture for command and control of integrated system services and devices.



that principally relies on the “AC Electricity” compound service in order to be

delivered.

4.2 Handling State Explosion with a Generic and Abstract Systems

and Services States Description

OQCR is a generic state based framework designed to allow the description of the

status of devices and systems according to 4 variables. These variables were identified

by analyzing the existing synoptic pages and alerts on command and control systems.

The variables used in OQCR are:

• Operational State: Is the device/service on, off, powering on, etc.?

• Qualitative State: Is the device/service working properly? (e.g. is a battery

delivering sufficient or insufficient voltage? Is it dead?)

• Contextual Attribute: Is the device/service in a suitable environment for operating

properly? (e.g. is it within operating temperature range? Is it plugged to a suitable

electrical network (voltage, frequency)?

• Restrictive Attribute: Is it allowed to use the device/service?

The values these variables may receive are either boolean (for the attributes) or

extracted from a set of component-dependent values (for the states). The second line of

Table 1 details the size of each set of values the OQCR variables (first line in Table 1)

may receive. This section presents (i) the sets of OQCR states and (ii) the sets of OQCR

attributes.

Operational and Qualitative States. In OQCR, the Operational and Qualitative states

are meant to provide real-time and predictive information regarding the behavior of the

devices and services. To do so, they indicate whether the device/service is in operation

(Operational state) and to which extant it is operating/it can operate properly (Quali-

tative State). Since DSCU covers a variety of components, slight variations in the

wording of the state values help to reflect the role of each component. Table 2 presents

the Operational states of OQCR.

Table 1. Structure of an OQCR state/attributes description.

Operational state Qualitative state Contextual attribute Restrictive attribute

1 value out of 4 1 value out 3 1 out of 2 1 out of 2

Table 2. OQCR Operational states for components of the DSCU architecture

Device System service Compound service User service

NOT RUNNING NOT PRODUCING NOT DELIVERING

STARTING RAMPING UP

RUNNING PRODUCING DELIVERING

SHUTING DOWN RAMPING DOWN



The values for the qualitative attributes are presented in Table 3. While the

Operational state is a real-time value only, we observe that the Qualitative state owns a

predictive value when a device/service is not running/producing/delivering. Indeed, it

may indicates that attempting the use the device/service will lead to either (1) the

expected behavior, (2) an unexpected behavior or (3) a failure to start due to a pre-

viously identified loss of the device/service.

Contextual and Restrictive Attributes. The OQCR Contextual and Restrictive

attributes are meant to provide information regarding the environment the

device/service evolves in (Contextual attribute) and how safe it is to use it (Restrictive

attribute). Table 4 presents and define the Contextual and the Restrictive attributes for

DSCU components. It is important to note that multiple factors such as resource

availability (e.g. low fuel pressure for an engine) or environment-related ranges (e.g.

temperature range, altitude range) impact the contextual attribute. The restrictive

attribute is the result of the computation of other system state that may forbid the usage

of a given device/service under some circumstances. (e.g. if a ventilation system is out

of service, it is not allowed to use the device it is meant to cool).

5 A Detailed Process for “System Centered Design”

of Command and Control Systems

The SCD process aims at structuring and abstracting the C&C systems’ descriptions

and states. This process uses the DSCU architecture to describe each system in a

structured way and the OQCR states abstraction for each component of the systems

described with the DSCU architecture. The outputs of this process are an integrated

Table 3. OQCR Qualitative states for components of the DSCU architecture

Device Services Definition

FUNCTIONAL The device can run or run properly. The service is (or can be)

produced/delivered as required

DEGRADED The device is not capable of running properly and suffers

performance penalty. The service cannot be produced or

delivered as required

OUT OF

ORDER

OUT OF

SERVICE

The device is not capable to run. The service cannot be

produced or delivered

Table 4. OQCR attributes for components of the DSCU architecture.

Attribute Value Definition

Contextual WITHIN CONTEXT The device/service is in its nominal context of use

OUT OF CONTEXT The device/service is not in its nominal context of use

Restrictive ALLOWED The device/service can be use

NOT ALLOWED The device or service must not be in use



architecture of the systems, the behavioral models of the C&C system and sample

presentation layouts of devices and services states. HCI designers can use these arte-

facts during the UCD process to propose design solutions for the C&C user interface.

Figure 3 presents the System Centered Design process of C&C systems. The process

takes as input all the systems being under supervision of the extant command and

control system. The process steps are applied for each system one by one and the last

step consists in integrating the information produced for each system.

5.1 Data Collection

This step consists in collecting the extant information concerning the selected system.

Each system must have a well-specified documentation including specification of

alarms, services, and operation and training manuals.

5.2 DSCU Generic Architecture and OCQR States Instantiation

During the second step, system designers analyze the selected system according to the

DSCU architecture. The designers have to identify the devices, the routing devices, the

system services, the compound services and the user services composing the selected

system. The specification documentation on the services of the system and the oper-

ation and training manuals are used during this step.

This steps aims at identifying if a service is useful to enable another service or

system, and if a service is directly useful to reach a user goal. For example, in the case

of a commercial aircraft cockpit, if the pilot needs to perform a “climb” at the

beginning of the flight, then the service “climb” is a User Service. The operation and

training manual are helpful to understand the services utility for users’ tasks. The result

of this analysis is an instantiated DSCU architecture. The OQCR states provide an

abstraction of all the possible values of devices or services parameters (e.g. value of

speed or quantity) for this architecture. However, in some particular domain, specific

parameters may be important to abstract the device or service state. During this step,

the OQCR states (presented from Sect. 4.2) can thus be customized for a particular

device or service if needed for the application domain (an example of such cus-

tomization is presented in Sect. 6.1).

5.3 Unitary System Processing

The aim of this step is to detail the behaviour of each component of the instantiated

DSCU architecture. The description of the devices and services behaviour will be

useful during the UCD process to understand which events trigger a state change. In

order to achieve this, the designer must follow three sub steps described hereinafter.

Unitary Alarms Identification. This sub step aims to assign each alarms of the

system to the DSCU components.



Fig. 3. System centered design of command and control systems



This assignment is the answer to the question “is the alarm affecting the system

device, routing device (or service), system service, compound service or user service?”

This step of alarm assignation is useful to determine in which conditions the device or

service under consideration is “DEGRADED”, “OUT OF ORDER/SERVICE”, “OUT

OF CONTEXT” or “NOT ALLOWED”.

Unitary System Modeling. This step consists in producing a description of the

behavior of the system following the DSCU instantiated architecture with alarms and

OQCR states in this sub step. The behavior of the device or service can be described

thank to various languages and notations like automata, Petri nets, or flow-based

notation. This model describes in which conditions and after which events the device or

service under consideration changes state.

Unitary Sample Presentation Layout Design. This step consists in producing sample

presentation layouts to help to understand the available services of the system and the

behavior of the system according to the alarms and user tasks. The sample layouts must

make visible all that is feasible with the system under consideration, as well as all the

possible states for the presented system components. Several different sample pre-

sentation layouts of the C&C interface for the system are produced in accordance with

operational scenarios. These different sample presentations will then be easier to use

during the UCD process as they are explicitly bound to scenarios. The operations and

training manuals contain procedures for nominal and abnormal situations taking into

account the system context. This is why they are useful resources for this sub step.

5.4 System Modeling and Sample Presentation Layouts Integration

The C&C interface must provide an integrated vision of the systems’ characteristics

and states. The last step of the SCD process is thus to integrate the outcome of the

previous steps for each processed system. The integration of the information about the

different systems can reveal new services or some introduced errors during the struc-

turation and abstraction process. Then, the expertise of the C&C systems’ experts is

needed to correctly identify the final services of the integrated systems. This integration

step produces the final integrated DSCU architecture, the final integrated systems

models and the finals systems sample presentation layouts when every system of the

whole command and control system were processed.

6 Application of the System Centered Design Process

to an Interactive Cockpit Application

In this section, we present a summary of the result we obtained applying the SCD

process to the design of a future crew alerting system for large civil aircrafts. This work

was performed in collaboration with Airbus Operation SAS in a project called “Inte-

gration of the Cockpit and its Systems”. This project involved, at various level,

additional stakeholders such as Airbus Helicopters, Dassault Aviation and Thales

Avionics.



The commercial aircraft Airbus A350-900 is the system selected for the case study.

The following set of materials and documentation were used for the application of the

process:

• User-related materials such as the aircraft Flight Deck Briefing for Pilots and its

Flight Crew Operation Manual (FCOM);

• Training materials such as the Flight Crew Training Manual (FCTM);

• Specifications of aircrafts systems such as logical datasheets for the Warning

System, system specifications, system requirements, etc.;

• Regulatory documentation including standard for software development in aero-

nautics [12], design assurance guidance for airborne systems [13] and Certification

Specification and Acceptable Means of Compliance for large aeroplanes [10].

During the first quarter of the project, weekly meetings with a Cockpit Display

expert, and a Flight Warning Engineer were dedicated to the analysis of the input

materials and documentations. The Flight Warning System (FWS) aggregates data

from most aircraft systems, hence its development in close cooperation with experts of

aircraft systems providing input to the FWS. The next two months focused on a subset

of the aircraft systems: Auxiliary Power Unit (APU), Bleed, Electricity, Fire Protection

System (FPS) and Fuel. For each of these systems, we collected data from the docu-

mentation (5.1) and used this data to derive an architecture from DSCU (5.2). At this

point, we realized that the wording of OQCR states and attributes could be refined for

each components of the architecture (5.2). A Flight Warning System expert then joined

the project to help us with step 5.3. The Flight Warning System expert contributed

largely to the integration step (5.4). We had several meetings with various stakeholders

to validate the outcome of each step. After each review, we recorded a list of modi-

fications and amendments of the architectures, models and presentation layouts. We

then validated the new versions of the architectures, the models and the presentation

layouts with engineers and experts before pursuing the project at a larger scale. This

section presents an extract of the application of the SCD process to the aircraft system:

Engines.

6.1 Example of the Application of the SCD Process to the Aircraft

Engines

Data Collection (step 5.1 in the Fig. 3). The documents gathered to understand the

functioning and the use of aircraft engines are:

• the specification of the engines (sections concerning the behaviour, envelope, ser-

vices and needed resources) in the FCOM (Flight Crew Operation Manual) [2],

• the list of possible alarms for the engines and their associated recovery procedures

(FCOM too),

• the usage instructions with associated C&C interfaces screenshots in the FCOM and

the FCTM (Flight Crew Training Manual).

A screenshot of a possible state of the extant Command and Control (C&C)

interface for engines in an A350-900 cockpit is presented in Fig. 4. The information



presented is related to “ALL ENG FLAME OUT” (both engines stopped running)

alarm. This status of the engines can be derived from the display as:

1. the engines are indicated as failed (represented with the amber attention getting

boxes in left-hand side of Fig. 4) and

2. the vibrations of rotors are not updated anymore (represented with the “XX” amber

indications for the vibrations of rotors).

DSCU Generic Architecture and OQCR States Instantiation. (step 5.2 in Fig. 3)

DSCU Instantiated Architecture for Engines. Figure 5 presents the DSCU architecture

instantiated for the two engines of the Airbus A350-900. It includes two ENGines

System Devices (blue components of Fig. 5 labelled “ENG 1” and “ENG 2”). From the

specification of the engines, we know that both engines produce HYDRaulic, BLEED,

ELECtricity and THRUST (i.e. force pushing forward) services. Then, both ENGines

produce a System Service for each of these services (green components connected to

ENG 1 and ENG 2 in Fig. 5 labelled “ENG 1 HYDR”, “ENG 1 BLEED”…). Com-

bined, ENG 1 and ENG 2 produce services corresponding to the merging of the

services of each Engine. These Compound Services (yellow components connected to

engines System Services in Fig. 5) include “THRUST” from “ENG 1 THRUST” and

“ENG 2 THRUST”, BLEED … Each service requires a routing device and a routing

service to be transported. In consequence, the DSCU architecture of the engines

includes a routing System Service for each Compound Services (components labelled

routing and network System Service components of Fig. 5: “ELEC NETWORK”,

“BLEED ROUTING”…).

In addition, the engines need a FUEL service for their operation. Then, the DSCU

architecture of engines includes a FUEL Compound Service as a resource for ENG to

function (FUEL Compound Service yellow component on the left-hand side of Fig. 5).

Fig. 4. Current ENGines System Display page after “ALL ENG FLAME OUT” alarm triggered



OQCR States Customization. During the analysis process, we found that the engines

may be in an unknown state when they have not been turned on yet. Indeed, we cannot

know its quality of operation state. In the same way, in case of a data update failure

from the systems to the C&C interface, the whole state of the system is unknown. In

consequence, we customized OQCR description by adding a value “UNKNOWN” that

applies to each OQCR state descriptor (O and Q) and each attribute (C and R).

Unitary System Processing. (step 5.3 in Fig. 3)

Unitary Alarms Identification. The ENGines documentation contains all the alarms

that may occur with this system. The FCOM indicates 60 possible alarms for the

engines [2]. We present here two examples assignment of alarms to the components of

the DSCU architecture: the caution alarm “THRUST LOCKED” and the warning alarm

“ALL ENG FLAME OUT”. The “THRUST LOCKED” alarm indicates that the

THRUST is frozen for one or both ENGines. The concerned components in DSCU are

ENGines THRUSTs (green ENG 1 TRHUST and ENG 2 THRUST System Services

components in Fig. 5). The “ALL ENG FLAME OUT” alarm indicates that both

engines are shutdown during the flight, represented in DSCU by ENGines devices

(blue ENG 1 and ENG 2 System Devices components in Fig. 5).

Unitary System Modeling. We used ICO Petri nets [39] to describe the behaviour of

the engines. One of the reasons we choose ICO notation is its ability to scale that is

needed for the integration step. Beyond, this notation has been widely used in multiple

domain for describing interactive systems behaviours for cockpits [9] or Air Traffic

Control Workstations [40]. As it is grounded on Petri nets theory, this notation is also

able to deal with concurrency and large number of states, beyond what State machines

can represent.

Fig. 5. Instantiated DSCU architecture for engines (Color figure online)



Unitary Sample Presentation Layout Design. To produce sample presentation layout

of engines states, we used the recommended recovery actions (for abnormal situations)

and normal checklists (for nominal situation) described in the FCOM [2].

Figure 6 presents one mockup of a presentation layout. It depicts the states of every

Compound Services of the engines when a “ALL ENG FLAME OUT” warning alarm

occurs. The mockup shows that, after the occurrence of that alarm, the ENGines

System Devices are in the operational state “NOT RUNNING”. All the Compound

Services are “OUT OF CONTEXT” (abnormal lack of resources). In addition, BLEED

and HYDraulic Compound Services are “RAMPING DOWN” as the ENGines stop

producing this services. The user service THRUST is “NOT DELIVERING” and the

engines are “NOT RUNNING”. The ELECtricity Compound Service is still “DELI-

VERING” thanks to an automatically turned on backup system for ELECtricity.

Finally, all the Compound Services are still “FUNCTIONAL” and have the restrictive

attribute “ALLOWED” because the warning concerns the ENGines System Devices

and that there are no restriction of usage in this context for these Compound Services.

System Modeling and Integrated Presentation Layouts. (step 5.4 in the Fig. 3)

Integrated DSCU Architecture. Together with the experts, we identified that THRUST

Compound Service produces the CLIMB User Service (used by the pilots during

takeoff for example). We thus integrated CLIMB User Service into the DSCU archi-

tecture as shown in Fig. 7.

Fig. 6. A sample presentation layout of DSCU structuration and the OQCR states of the engines

Compound Services in case of ALL ENG FLAME OUT.

Fig. 7. Integration of CLIMB user service in the DSCU architecture of engines



Integrated Systems Models. During this sub step, we connected the model of the

behavior of the THRUST Compound Service to the model of the behavior of CLIMB

User Service. These behavioral models are not presented here due to space constraints.

The interested reader can find similar models (covering nominal and abnormal situa-

tions in [21]).

C&C Sample Presentation Layout. Figure 8 presents a mockup of presentation layouts

produced for the “ALL ENGs FLAME OUT” alarm. In this layout, the ENG 1 and

ENG 2 System Devices are in the qualitative state DEGRADED because of the alarm.

In addition, they are in the operational state NOT RUNNING because the warning

alarm indicates that they are shutdown. All of the System Services related to the

ENGines (“ENGs ELEC”, “ENGs BLEED”, “ENGs HYDR” and “ENGs THRUST”)

have the contextual attribute OUT OF CONTEXT and they are in the operational state

RAMPING DOWN, except the THRUST System Service that is in the operational state

NOT PRODUCING. The CLIMB User Service is in the operational state

RAMPING DOWN and has the contextual attribute OUT OF CONTEXT. Indeed, the

THRUST resource is no longer produced and the plane will slowly start to glide.

Routing System Services are still PRODUCING (operational state) –FUNCTIONAL

(qualitative state) -WITHIN CONTEXT (contextual attribute) –ALLOWED (restrictive

attribute).

Fig. 8. A layout of the presentation for the system under design (following DSCU and OCQR).



6.2 Towards UCD of the Crew Alerting System

Each artefact produced during the application of the SCD process can be exploited by

most UCD techniques and methods. The set of DSCU architectures and the OQCR

(states and attributes) provides the exhaustive list of devices, services and their asso-

ciated states and attributes. This information provides support for designing mock-up

and prototypes of the interface of the C&C interactive systems. They also provide

support to crosscheck the prototypes and the task models, in order to determine whether

all the devices are bound to at least one user task. They also can be of great help

provide support to observation and interview activities as they help understanding

which services and devices are required for each user service (e.g. the connection

between the engines and climb in DSCU architecture represents explicitly the fact that

engines have to be functional to perform CLIMB). The system components behavioral

models provide additional support to define the behavior of mockups and prototypes

beyond their layouts. In the same ways, the coverage of both nominal and abnormal

situations provide support to produce prototypes that cover all the cases but also helps

identifying in an exhaustive way operators’ tasks [37] identifying corner cases to be

addressed in interviews and observations preparation. Furthermore, the system com-

ponents behavioral models provide support to the application of dependable computing

techniques [38], that provides means of compliance for the application of the RCD

process.

7 Conclusion and Perspectives

While UCD approaches focus on the usability of the interactive system under design,

constraints beyond users’ needs that have to be taken into account when designing

complex command and control systems. For instance, feasibility is a first class citizen

but it is not addressed by UCD approaches. For instance, without a deep understanding

of aircrafts physics, it is not possible to design a cockpit that will meet feasibility.

Beyond, this paper has demonstrated that without a deep understanding of aircraft

systems, cockpit design is a task doomed to fail, especially when interfaces for system

management are concerned. However, it is not possible for designers to learn all this

information for every type of command and control system they are likely to design.

This paper tackles that specific problem by providing a generic design process for

gathering the information of underlying systems when designing a command and

control system. This process makes explicit use of available documentation (both

technical and operational) and provides stepwise progress towards User Centered

Design.

In this paper, the proposed approach is applied to the design of user interfaces for

aircraft cockpits. However, the approach is generic enough and applicable to other

command and control systems. For example, in the space domain, the satellite platforms

and the missions they support are firstly designed for feasibility. The design of ground

segment applications to monitor and control the various sets of devices of the satellites

and of the ground communications systems also requires knowledge beyond the UI/UX

designers and UCD experts’ knowledge [32]. The paper has also emphasized the



importance of standards and certification activities in the design of these systems. Indeed,

even automotive systems rely on existing standards such as AUTOSAR [4] and ISO

26262 [27] that provide regulatory framework for autonomous cars design and devel-

opment. We believe that this paper can provide support to designers involved in design

tasks of C&C systems that have been so far not supported by UCD processes leaving,

very unfortunately, Command and Control interactive systems design incapable to

benefit from UCD benefits. Such approach requires techniques to trace and analyze the

coverage of regulatory requirements, feasibility requirements and design options [34].
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