A Virtual Reality and BIM Approach for Clash Resolution
Pierre Raimbaud, Mateo Bonilla Palacios, Juan Pablo Romero Cortes, Pablo Figueroa, Ruding Lou, Florence Danglade, Frédéric Merienne, José Tiberio Hernandez

To cite this version:

HAL Id: hal-02435331
https://hal.science/hal-02435331
Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Virtual Reality and BIM Approach for Clash Resolution

Pierre Raimbaud1,2, Mateo Bonilla Palacios2, Juan Pablo Romero Cortes2, Pablo Figueroa2, Ruding Lou1, Florence Danglade1, Frederic Merienne1 and Jose Tiberio Hernandez2

1LiSPEN, Arts et Metiers, Institut Image, Chalon-sur-Saone, France
2Universidad de los Andes, Colombia

Corresponding author: pierre.raimbaud@ensam.eu, p.raimbaud@uniandes.edu.co

Keywords: BIM, virtual reality, immersion, clash resolution, clash analysis

In the Architecture, Construction and Engineering (AEC) industry, a crucial task is Building Information Modelling (BIM) models coordination. Clashes can be detected automatically by current BIM tools. Clash origins (Parn et al., 2018), or avoidance (Singh et al., 2015) have been studied. But, clash resolution still needs the civil engineers’ expertise. Currently, in a computer with a 3D BIM tool, they use annotations. As previous research showed that Virtual Reality (VR) can help to perform better AEC tasks, in terms of time and accuracy (Chalhoup and Ayer, 2018), we propose an immersive VR tool to solve clashes.

Methodology

As for us, immersion is missing in the current method, so, in VR, clashes may be understood and solved faster and better. Comparison with the current method in a within-subjects design experiment allowed to evaluate our solution, measuring time and solution quality. Experts had to use annotations in both methods to explain their solution. Preliminary results tend to confirm initial hypotheses: they solved the inconsistencies faster in VR, and for some clashes, they solved it better. So, new experiments with more experts are necessary to get more conclusive results.

Figure 16. From left to right: clashes examples; BIM tool interface; annotations in our VR tool: narrows, spheres.

References

