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Geometric prediction: proposing a theoretical construct to analyze 

students’ thinking in geometrical problem-solving 

Elisa Miragliotta 

University of Modena and Reggio Emilia, Department of Physics, Computer Science and 

Mathematics, Modena, Italy; elisa.miragliotta@unimore.it 

We consider geometric prediction (GP) as a mental process through which a figure is manipulated, 

and its change imagined, while certain properties are maintained invariant. In this paper, we 

explain our interest in this process and how we define it. Furthermore, we describe a tool for 

analyzing students’ productions. In particular, we present brief analyses of students’ interviews 

while they are solving a geometric open problem explicitly designed to elicit processes of GP. 

Finally, we summarize some preliminary results about the features of this construct. These results 

are part of a doctoral project aimed at gaining insight into the process of GP. 
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Introduction 

It is well known that spatial reasoning and visualization are topics of interest for mathematics 

educators (e.g. Duval, 1995; Presmeg, 2006) to the extent that Cuoco, Goldenberg and Mark (1996) 

have proposed to organize curriculum around mathematical habits of mind, which include 

visualization and tinkering. These are described as being at the heart of mathematical research and, 

therefore, crucial for helping students learn to think like mathematicians. These habits are 

particularly involved in geometrical problem-solving. Indeed, when solvers approach a geometrical 

task they can interact with visual or mental images in several ways. Cognitive Psychology explains 

this interaction by the intervention of several visuo-spatial abilities such as imagery generation 

ability and imagery manipulation ability (Cornoldi & Vecchi, 2004). 

In a previous study (Miragliotta & Baccaglini-Frank, 2017) we tried to analyze students’ solution 

processes when solving a geometrical task, but found shortcomings in using the visuo-spatial 

abilities for at least two reasons: much effort goes into establishing which abilities are used during 

each analyzed process, and interpretation plays a large role and is not consistent across researchers; 

none of the abilities explicitly deal with the Theory of Euclidean Geometry within which figures 

and their properties are defined, when the reasoning is carried out in this context. This is because as 

mathematicians we know that, when we solve a geometrical task, we can imagine consequences of 

(mental) transformations on a geometrical object which are consistent with theoretical constraints, 

given or induced by a particular construction. Indeed, mathematical objects have a particular nature, 

the investigation of which usually requires theoretical elements which refer to a domain different 

from the one of perception. In line with Neisser (1989), we consider perceiving and thinking as 

different cognitive activities. Perception “is immediate, effortless, and veridical” in one word 

“direct”; thinking is “indirect”, because it “may not depend on the immediate environment at all, it 

is often anything but effortless or immediate, and frequently goes astray” (Neisser, 1989, p. 11).  

In the specific domain of 2D Euclidean Geometry, in order to cope with the difficulties listed above, 

we defined a new theoretical construct called geometric prediction (GP). Although at the moment, 

we are working towards a finer operative definition, it seems to be an interesting construct to use in 
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order to shed light onto problem solving processes in geometry. Furthermore we expect it to be 

trainable, that is to ameliorate through appropriate educational practices. The aim of our research is 

to gain insight into the process of GP. So we set out to observe and analyze what happens during 

the resolution of particular open problems, focusing on instances of geometric prediction in solvers’ 

discourse, gestures, drawings, and dragging modalities used in a second phase of the resolution of 

the given problem in a Dynamic Geometry Environment (DGE). Because of what we present in this 

paper, in which the role of the DGE is marginal, and since the space limited, we will not discuss this 

second phase. In this paper, we present the construct of GP and describe a tool used for analyzing 

its emerging features in students’ data that are collected in task-based interviews.  

Theoretical framework 

In the specific domain of Mathematics Education, under the umbrella of spatial reasoning literature 

collects a large set of definitions, which share the reference to the activity of imagining objects and 

interact with them through mental transformations (rotation, stretch, reflection, etc.). Among these 

definitions, we have considered spatial reasoning as defined by the Spatial Reasoning Study Group: 

“the ability to recognize and (mentally) manipulate the spatial properties of objects and the spatial 

relations among objects” (Bruce et al., 2017, p. 146). We considered visualization, according to 

Presmeg’s (2006) description, as “taken to include processes of constructing and transforming both 

visual mental imagery and all of the inscriptions of a spatial nature that may be implicated in doing 

mathematics” (p. 206). Here visualization is considered to be explicitly linked to mathematical 

activity, and it could involve mental images.  

Geometric prediction 

Previous research on visualization informs us that when solvers face a geometrical task, they can 

interact with mental images; they can imagine the consequence of (mental) manipulation of the 

geometrical figure. Moreover, it seems that in this process the theoretical elements play an 

important role. With “theoretical elements” we mean those related to the Theory of Euclidean 

Geometry (TEG). The process of geometric prediction is “a mental process through which a figure 

is manipulated, and its change imagined, while certain properties are maintained invariant” 

(Mariotti & Baccaglini-Frank, 2018, p. 157). 

Products of GP may or may not be coherent with theoretical constraints. Indeed, in order to take 

into account all theoretical constraints, the solver must theoretically control the figure, that is 

“mentally impose on a figure theoretical elements that are coherent in the Theory of Euclidean 

Geometry” (Mariotti & Baccaglini-Frank, 2018, p. 156).  

Fischbein’s Theory of Figural Concepts and Intuitive knowledge 

In order to explain the nature of geometrical objects, we refer to the Theory of Figural Concepts 

(Fischbein, 1993), according to which they have a dual nature. Geometrical objects are completely 

described and controlled by an axiomatic system of definition and theorems, but at the same time 

they maintain certain figural aspects of images. Fischbein (1993) thinks of a figural concept as a 

complex mental entity (different from pure concepts and pure images) “which simultaneously 

possesses both conceptual and figural properties” (p. 144), realizing a fusion between the 

conceptual and the figural components.  



 

 

A construct which seems to be involved in GP is intuition (Fischbein, 1987). It is a kind of 

cognition, characterized by self-evidence and immediacy, different from perception, and implying 

an extrapolation of information beyond that directly accessible. Intuitions can have an anticipatory 

role. Indeed, anticipatory is a kind of intuition, which belongs explicitly to problem-solving 

activity; it provides a global view of a solution, which precedes the analytical one. 

Research questions and methodology 

The data we present are part of a doctoral research project on GP for which 6 geometrical problems 

were designed and proposed to 37 Italian high school students (ages 14-18), undergraduates, 

graduate and Ph.D. students in mathematics (ages 19-33), during the months of February and April 

2018. The problems were designed to elicit processes of GP and they were used within task-based 

interviews (Goldin, 2000). We decided to use a semi-structured type of interview: the first question 

is always the same; then there is a sequence of questions defined a priori and a set of stimuli in 

order to elicit students’ comments. 

Consistently with our purposes, we designed a particular kind of open problems (Arsac, Germain, 

Mante, 1998; Silver, 1995), prediction open problems, in which the solver is asked to describe 

possible alternative arrangements of a geometric configuration (imagined, given by a drawing 

and/or by a step-by-step construction) maintaining given properties. Predictions could be asked for 

explicitly or not.  

Although all data have not yet been thoroughly analyzed, we use some of the data to present a 

preliminary report on the following questions: (a) How can we characterize GP processes (in the 

case of the prediction open problems given)? (b) In solving a prediction open problem, what kind of 

gestures, words and drawings are performed by solvers? What do these allow us to infer about the 

GP processes? 

In the following section we report on an example of the task used during interviews.  

The “locus of P” problem 

The task used in this study is composed of two parts. The first one is:  

Read and perform the following step-by-step construction: fix two points A and B; connect them 

with a segment AB; choose a point P on the plane; connect A and P with a segment AP; construct 

M as the midpoint of AP; construct the segment MB and name its length d. A and B are fixed, 

and the length of MB has to always be d. 

Then the interviewer asks: “What can you say about the point P?” 

 

Figure 1: Instance of figure obtained by step-by-step construction 

The step-by-step construction could be accomplished with paper and pencil (obtaining a 

construction like the one in Figure 1). Once the solver had proposed a solution or stated that s/he 



 

 

was not able to find one, part two of the task was given: the interviewer opened a dynamic 

geometry sketch and she asked the solver to move P in the figure, consistently with her/his 

prediction, or else to explore the figure to help reach a solution. As highlighted before, in this paper 

we will not focus on this second phase.  

Construction of a new tool for data analyses 

In our data analyses, we have been highlighting instances of GP by spotting and analyzing students’ 

gestures, drawings and discourse. In particular, we are trying to identify elements which belong to 

the students’ conceptual component and their figural component of the geometrical objects in focus. 

In order to analyze solvers’ GPs, we collect these elements in a sort of “funnel” (Figure 2) which 

shows a product of GP in gestural and/or discursive form.  

 

Figure 2: Elements collected in the funnel and its product 

The tool, as shown in Table 1 and sketched out in Figure 2, is composed of 3 columns. In the first 

and in the third there are, respectively, theoretical elements and figural elements, referred by solvers 

in gestural or discursive way or inferred by us (in square brackets). These two constructs are 

defined and identified according to Fischbein’s (1993) distinction between conceptual and figural 

components of geometrical objects. In the center column, we used two different colors to highlight 

which element of the two columns is expressed by the solver at a specific moment. Indeed, the 

vertical order of boxes follows the chronological sequence in which solvers made elements explicit. 

Furthermore, we added an “X” when the element is mathematically incorrect or incoherent with 

respect to the given geometrical construction. At the end of the funnel, there is the product of the 

GP. Each funnel represents the sequence of the observable steps of a new GP.  

As an example, here we show the construction of the funnel referred to an excerpt of Student A’s 

interview. She is solving the “locus of P” problem. This excerpt begins right after the interviewer 

asked the first question. 

Student A: The point P…meanwhile is part…of the straight line in which…on which there 

is also…AM and is outside the triangle AMB. 

Student A: In this case – but I think it is a particular case – perpendicular to…not the point 

P! It is a straight line on which there is the point P that is perpendicular to MB, 

but it is a particular case, I think! 

Interviewer: Ok. Make a prediction. Do you think that the point P can have other positions? 



 

 

Student A: If I draw again…if the length of MB must always be d, it could be like a 

mirror, so it could take the place…the same position, only on the other side of 

the segment. 

In this excerpt, we recognize some figural elements (and underlined them), like segment AM and 

triangle AMB. We use bold type to highlight the identifiable theoretical elements, like 

perpendicularity and (line) symmetry. We recognize a product of a GP in the last student’s 

statement: P takes a symmetric position with respect to AB. The GP is both discursive and gestural 

(the student shows the expected position of P using a pen (Figure 3a)). Then, she undertakes another 

GP, strictly connected with the figural elements observed before. Indeed, she claims: 

Student: Yes, it [point P] moves along the segment M…along the half-line MP and then 

etcetera, etcetera… along the half-line that would continue, because it does not 

interfere with the triangle. 

(a)              (b)              (c)   

Figure 3: Gestures performed by (a) Student A (b) Student C (c) Student D 

We collected all elements in two funnels, as shown in Table 1 (see Student A). The blue arrow 

highlights how the product of the second GP (named GP2) is directly connected with and derives 

from the product of the first GP (named GP1). 

Preliminary findings 

Funnels as a tool to gain insight into solvers’ processes of GP   

At the moment we have analyzed 15 interviews during which the “locus of P” problem was 

proposed. Here we show only four examples of funnels (Table 1): Student A is a 9th grade student 

(15 years old); Student B is a 13th grade student (18 years old); Student C is an undergraduate 

student and Student D had just completed a master’s degree in mathematics. The chosen funnels 

summarize some of the solvers’ common behaviors during the resolution of the first part of the task 

and highlight how this tool can be used to gain insight into the process of GP. 

The first funnel (Student A) represents an example of a mathematically incorrect GP during which 

the student focuses on particular figural elements of the given configuration. Indeed, Student A 

explicitly mentioned the triangle ABM and then the segment MP. Our analyses reveal that in all 

cases in which the triangle is mentioned (5 interviewees), the solvers seem to have considered the 

configuration as made up of two completely independent figural elements: a triangle and a segment. 

This hypothesis is consistent with the solvers’ stated predictions about the behavior of the 

configuration and it is confirmed by instances of surprise observed during the subsequent 

exploration in a DGE. The relation between figural elements induces Student A to speak of moving 

P along a half-line, maintaining MB not only constant in length, but also in the same position. 

Possibly, it is the lack of theoretical control that induces the solver to infer the necessity of 

maintaining invariant so many properties. In this case, the invariance of the length is maintained by 



 

 

the invariance of the whole triangle. Furthermore, we notice that our analytical tool allows us to 

notice that during the second GP the student mostly referred to figural elements.      

On the contrary, Student C and Student D provide examples of GPs that explicitly make use of 

theoretical elements. In particular, in the funnel of Student C, we observe an ongoing dialectic 

between figural and theoretical elements. In this case, we notice another common phenomenon: 

observing the development of the fourth GP (whose outcome is GP4), Student C recalls the 

prototype of circle (defined as the locus of points at a given distance from a given point); she 

reproduces its construction using her fingers as a compass (Figure 3b), making the circle (or some 

parts of it) into a figural element, even if it was not actually drawn on paper. 

Student A  

 
Student C 

 
 

Student B 

 
Student D 

 

Table 1: Four examples of solvers’ funnels 

Such a phenomenon is evident also in Student D’s production. First of all, she produces a GP about 

P. Suddenly, the point constructed as a symmetric point of P becomes in its own right one of the 

figural elements involved in the subsequent GP. We can see this effect also in the last funnel. 

Student D imagines to construct some points by rotating MB (Figure 3c). These points become part 

of the configuration, even if they are not visible on the drawing.  

These findings allow us to highlight two features of GP processes. They are independent of each 

other, but they come in a sort of flow or chain of predictions. Furthermore, often their products 

seem to “freeze” for the student (see Student C and Student D), becoming integral parts of the 

configuration even if they are not drawn, and they become starting points for new GPs.  

We stress how important is the role of the theoretical elements. Although Student D and Student A 

start from a similar product of GP regarding point P, Student D’s GP is accompanied by more 



 

 

detailed and coherent (with the TEG) theoretical elements. Moreover, she does not mention 

triangles, but she focuses only on segments and points. This seems to allow her to refine the first 

product of her first GP and, finally, to reach the last one (point M on a circle).   

Student D’s processes of GP highlight another emergent feature of GPs: often they are accompanied 

by intuitions. In particular, we observe a kind of intuition which appears during a solution process 

and that expresses an immediate and global view of a solution: anticipatory intuition. The 

occurrence of this kind of intuition could explain what happens in short chains of GP, like the one 

performed by Student B. His funnel shows a chain of GP in which most rows contain theoretical 

elements and no other elements could be recognized between the two products of GP: GP1 and 

GP2. This could be explained by his resorting to intuitive knowledge.   

Conclusion 

The analyses of students’ videos and transcripts reveal that GP is a process involving an interplay 

between perception and reasoning processes. Indeed, GP seems strictly related to figural 

components. In the case of the problem analyzed, it seems that students who see the configuration 

as a triangle and an independent segment do not reach a mathematically correct (or coherent with 

the TEG) product of GP. The notion seems to be in line with Duval’s (1995) findings related to 

perceptual apprehensions of a geometric configuration and dimensional change. Nevertheless, GP 

also involves theoretical elements which belong to the TEG, and it has a strong relation with the 

idea of students’ theoretical control over a figure. Indeed, theoretical control that is coherent with 

the TEG should lead to correct predictions (see Student C and D). Moreover, GP is related to 

conceptual components to the extent that in the case of Student B the discursive element “the length 

of MB must always be constant” fostered recollection of the definition of circle, leading to 

immediate recognition of the locus of M. So, it seems that theoretical elements play an important 

role in the immediacy and correctness of GPs. Student B reveals how for an “expert” solver GP can 

become an immediate and automatic process. This finding is promising for the trainability of GP 

through appropriate educational practices.  

Furthermore, we notice that often GP is coupled with anticipatory intuition (see Student B and 

Student D). Nevertheless, the two constructs are not identifiable. Indeed, in other cases (see Student 

C) correct products of GPs are produced without any recognizable intuitive knowledge.   

In conclusion, processes of GP seem to be observable through the solver’s productions; funnels are 

useful tools for shedding light onto this process, but they must be accompanied by qualitative 

analyses of transcriptions for gaining deeper insight into the GP. Moreover, GP seems to be an 

interesting construct in order to shed light onto problem solving processes in geometry. 

We believe that this kind of research can provide new insights into students’ difficulties in learning 

geometry. Moreover, awareness of prediction processes could be very helpful for teachers. 

Outcomes of GPs seem to be windows onto students’ mental images and processes generating them. 

Such knowledge could help in guiding mathematical teaching and learning, because teachers could 

know which properties students are imposing on a given configuration by asking them to make 

explicit their GPs. If students are imposing on a figure too many or incorrect properties, the teacher 

can intervene appropriately. Moreover, geometrical activities to strengthen students’ theoretical 

control by fostering awareness of their conceived invariants can be designed.  
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