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This paper investigates the types of representations used by high-achieving eleven-year-old pupils 

in their argumentation in the process of mathematical problem solving. The literature review 

addresses pedagogical and psychological aspects of knowing representations and using them in the 

process of problem solving. In our empirical study we examine a sample of 109 eleven-year-old 

pupils who took part in the final round of a national mathematical competition in Serbia. A total of 

656 problem solutions was analyzed. The results show that these pupils used and often combined 

inventive iconic and conventional numerical/symbolical representations in their argumentation. We 

discuss pupils’ choice of representations which lead to correct solutions and adjusted 

representations corresponding to the type of problem (algebraic or logical-combinatorial).  The 

aim of the paper is to draw attention to the importance of studying representational approaches 

pupils take when solving problems.   

Keywords: Representations, problem solving, argumentation, solution representation. 

Introduction 

There has been rising interest among mathematics educators in the usefulness of representations in 

the process of learning and problem solving. Competent use of representations in problem solving 

appears to be a significant indicator of level of mathematics literacy (De Lange, 2003).  Then, it is a 

plausible assumption that investigations on how high-achieving pupils use representations in 

problem solving could lead to the development of strategies for choosing adequate representations 

in problem solving process. 

Some of the principal objectives of mathematics education are to enable pupils to be good problem 

solvers (Schoenfeld, 1992). Solving problems in various ways on one hand and “decoding, 

encoding, translating, distinguishing between, and interpreting different forms of representations of 

mathematical objects and situation”  on the other hand are recognized as some of the key 

competences needed for mathematical literacy as it is defined by national curriculums worldwide 

(De Lange, 2003, p.77). Representations, as tools for presenting problems, are considered to be 

means for understanding.  It is also advocated that using multiple representations in problems may 

contribute to higher achievement (Cai, 2013). Role of representations in problem solving is 

recognized as important issue (Janvier, 1987; Cuoaco & Curcio, 2003; Shoenfeld, 1992). Two 

important issues are 1) which representations pupils invent when solving non-routine tasks and 2) 

which representations more often assure successful argumentation. 

Theoretical background 

In numerous conceptualizations of mathematical competences and mathematical thinking, ability to 

use representations (symbolic, numerical, visual, or verbal expressions) is identified as important 
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parameter of mathematical abilities. Tchoshanov (2002) discusses types of representations on the 

concrete to abstract continuum as they reflect different modes of representation: concrete (real 

object, physical model, manipulative), pictorial (photograph, picture, drawing, sketch, graph), 

abstract (sign, symbol, written, verbal language).  Matteson (2007) identified five categories of 

mathematical representations in problem solving: numerical, iconic, verbal, symbolic, and dual. 

Numerical representation focuses on specific numerical values in a variety of formats, such as 

decimal, fraction, percentage, or a numerical list (such as a list of numbers appearing as outcomes 

of probability). According to Matteson, iconic representations encompass different visual 

representations, from pictorial, (realistic) models, horizontal charts, vertical charts to graphs and 

coordinates graphs.  Pictorial representations are pictures of real-world objects such as toys, dice, 

etc. As we slightly depart from Matteson’s classification, we will consider iconic representation as 

distinct from pictorial (which closely resembles real world objects).  For example, an apple may be 

“iconically” represented as a dot. Verbal representations require application of written (or spoken) 

language to express understanding, to describe, analyze, explain, or reflect upon numerical, 

algebraic, or graphic representation (which does not include brief phrases such as directions for 

solving the problem). Symbolic representations involve symbolic notation and include usage of 

variables and formulas such as: equation, expression, algebraic equation, algebraic expression, and 

formula (Matteson, 2007). Yet pupils may not use only one representation in problem solving. 

Under the term “dual representation” Matteson considers dealing with two categories of 

representations in problem solving (e.g. numerical and verbal). Matteson claims that “problems’ 

(solutions) incorporating multiple representations generally result in more incorrect solutions” 

(Matteson, 2007, p. 60). 

Some researchers pointed out that visual representations play an important role in supporting 

reflection and as a tool of communicating mathematical ideas (Arcavi, 2003; Gagatsis et. all, 2010; 

Sfard, 1991). The main functions of visual representation are to illustrate   symbolic representation 

and to resolve conflict between intuition and symbolic solution. Successfully arriving at solutions to 

mathematical problems utilizes a combination of problem representation skills and symbol 

manipulation skills (Brenner et al., 1997). The first mentioned function involves skills which 

“include constructing and using mathematical representations in words, graphs, tables, and 

equations” (ibid). Lesh and colleagues argue that besides the significance of each representational 

system, attention should be directed toward translation among representational systems as well as to 

transformation within them (Lesh et al, 1987). They point their research shows that the act of 

representing tends to be “plural, unstable and evolving”. Along the line, Duval discusses changes of 

register of representation in terms of cognitive operations: 1) transformations within the same 

register, like for example in case of algebraic operations or numerical computation, 2) translation of 

representation into different register, which is more cognitively challenging (Duval, 1999, 2003).  

Several researchers attended to multiple representations in problem solving (Lowrie, 2001; Hegarty 

and Kozhevnikov, 1999; Matteson, 2007).  Lowrie (2001), in a study of the relationship between 

different forms of problem representation and pupils’ performance in problem solving, has found 

that high-achieving middle school pupils tend to use nonvisual methods when solving problems.  

He pointed out that most studies examining representational preferences along a visual-nonvisual 

continuum have considered preference alone and did not attend to effectiveness of method (ibid).  



 

 

Lowrie found that  those “pupils’ who were able to use visual representations regularly and in an 

efficient manner, were able to solve mathematics problems in a more effective manner than pupils’ 

who were more inclined to use nonvisual aids on a regular basis” (Lowrie, 2001, p. 360). 

Stylianou and Silver (2004) examined differences in using representations between mathematicians 

and undergraduate students (as novices). They found that experts construct visual representations 

more frequently and use qualitatively better way to understand problem situation. School teachers 

are traditionally inclined to rely on symbolic, analytical representations. Consequently, pupils tend 

to do the same.  The role of different types of representation in problem solving, particularly the 

effects of the usage of multiple representations is not fully explored. 

Methodology 

We investigated types of representations used by high-achieving eleven-year-old pupils in solving 

problems. The main research questions were: 1. what representations pupils most frequently use 

when solving problems; 2. what representations are associated with correct solutions; and 3. how 

many representations used at the same time in argumentation are most often associated correct 

argumentation. Our questions were proposed based on previous research from Matteson, Lowrie, 

and Brenner and colleagues.   

The data was collected in the final round of a national mathematics competition “Mislisa”, similar 

to “Kangaroo without borders” In this competition, mathematics relevant for solving problems is 

not strictly limited to the national curriculum. Successful problem solving in this competition 

requires critical thinking and applying knowledge in non-standardized situations. The problems 

range from the simplest computation problems, to algebraic, logical, and combinatorial problems 

most often set in realistic context. The competition promotes the value of mathematics literacy in 

pupils. 

The study sample consists of 109 pupils who qualified for the finals of the competition by achieving 

the maximum score in the preliminary round of competition. We examined problem solutions from 

all finalists. The subset of 8 problems in which competitors were explicitly asked to provide 

explanation was analyzed in our study. Descriptive statistics was done for those eight problems. 

 Solutions for two of the problems are analyzed qualitatively in greater details. Our preliminary 

analysis of all solutions, resulted in selection of The Bottle problem and The Castle problem as 

exemplars for the points we make. They are the following: 

The Bottle problem There is three times more milk in the first bottle than in the second one. If 3l of 

milk is added in the first bottle, and 5l of milk in the second, than there would be two times more 

milk in the first bottle than in the second one. How many litres of milk has been in the bottles at the 

beginning? Explain your answer.   

The Castle problem A Castle has 6 towers. Each tower has a room. Each room has one door. Each 

door has a lock. All rooms are locked and keys are mixed up.  What is the maximum number of 

trials a guard needs to check, in order to open the doors? 

In the Bottle problem, finding way(s) to represent relationships between amount of milk in the first 

and the second bottles is the key for finding the solution. Problems similar to this are commonly 



 

 

solved in schools with the strategy of forming an algebraic expression (symbolic representation).  

But there are alternative strategies for solving this problem such as 1) the “method of segments” 

which relies on expressing relationships between quantities on line segments (iconic representation) 

or 2) the “method of trials” (involving number representation) or 3) simply explaining the solution 

in words (verbal representation) or 4) some other creative approach. 

The Castle problem is logical-combinatorial. The maximum number of trials in the first cycle to get 

to the door that can be unlocked is obviously equal to the number of rooms. In the following cycle 

of trials, one door is already unlocked so five doors remained to be checked in. There is no one 

“school” strategy for solving this problem.    

Results and Discussion 

Here we present descriptive analysis of pupils’ solutions. A total of 656 problem solutions are taken 

as units of analyses. Out of them, 355 items were solutions to algebraic problems and 301 items 

solutions to logical-combinatorial problems.  

Table 1 shows that choice of representations for algebraic problems did not match representations 

used in combinatorial problems. Since pupils often used more than one representation, the 

percentages in each column do not add to 100. 

Type of representation Algebraic problems Logical-combinatorial problems 

Numerical 31,9% 57,8% 

Iconic 22% 20,8% 

Verbal 21,8% 61,2% 

Symbolical 45,9% 8,3% 

Table 1: Percentages of problem solutions with particular type of representation  

In accordance to Duval’s claim, pupils tended to use non-visual representations. To explain 

algebraic problem solutions, pupils most frequently used symbolical representation. It is not 

surprising since traditionally solving algebraic problems in a way other than writing down 

equivalent equations is undervalued in classrooms. In contrast, the logical-combinatorial problem 

solutions pupils primarily relayed on verbal and numerical representations. Particularly, verbal 

representations were often used for argumentation in solving logical combinatorial tasks, rarely for 

algebraic problems.  

We examined whether there is an association between number of used representations (1, 2 or 3) 

and correctness of solution (False/Partially correct/Correct). The percentages are presented in the 

Table 2. Percentage of correct solutions including more representation, were bigger than of correct 

solutions with smaller number of representations used. We performed the χ
2
 test of independence 

for variables Number of used representations (1, 2 or 3) and Correctness of solution (False/Partially 

correct/Correct) on problems. There is a significant relationship between “number of used 

representations (1,2,3)” and “Correctness of solution (false, partially correct, correct)”.  (χ
2
=67,478,

 

df=4, N=656, p<0,001). Cramers’s V coefficient of 0,227, p<0,001 suggests moderate correlations. 



 

 

Thus, successful problem solvers constructed significantly more representations than unsuccessful 

problem solvers. Our finding confirm Lesh’s observation about plural and evolving nature of the act 

of representing. The finding does not reinforce Matteson’s statement that “multiple representations 

result in more incorrect solutions” (Matteson, 2007)  

Number of representations False solution Partially correct solution Correct solution 

1 35,4% 23,7% 40,9% 

2 20,7% 10,4% 68,9% 

3 4,5% 9,1% 86,4% 

Total 27,3% 17,2% 55,5% 

Table 2: Percentages of number of used representations according to correctness of solution 

Iconic representations are considered to be more intuitively comprehensible and closer to reality 

than symbolic representations which involve abstraction and generalization in mathematics domain 

(Liu, 2012). Yet sufficient experience with such representations is a prerequisite for their’ 

appreciation.  The high-achieving pupils in our study had a tendency to use symbolic 

representations in algebraic problems. Almost half of the solutions involved using of symbolic 

representation in those problems. The test of independence showed that there is significant 

association between correctness of problem solution and use of symbolic representation (
2
=62,417, 

df=2, p<0,001). The strength of relationship is medium (Cramer’s V=0,419, p<0,001).   

Many pupils obviously assumed that they were expected to use pictures when explaining their 

solutions. But often pictures were neither sufficient nor effective aid in argumentation. Some pupils 

combined pictorial with numerical representation (e.g. counting up number of attempts in the Castle 

problem). The others combined pictorial with symbolic and verbal representations by creating 

number sentences and written explanations of steps. 

Prototypical representations in pupil’s solutions 

Pupils created diverse representations for their argumentation. In the Castle problem a significant 

number of pupils used numerical representation. Yet, others supported argumentation with pictorial 

representation in combination with other representations. Figure 1 shows an example of 

argumentation based on dual representation (pictorial and numerical). 

 

Figure 1: Dual representation - pictorial and numerical (left) 

Figure 2: Dual representation - number line and algebraic expressions) (right) 



 

 

When using iconic representation, most commonly the pupils relied on number line and the method 

of segments. This method is commonly taught in Serbian schools. Figure 2 illustrates an example of 

argumentation based on number line representation in solving the Bottle problem. In her problem 

solution, Ana used the method of segments (number line representation) to show the relationship 

between elements in the initial state and the final state (so this pupil represented how the situation 

changed by drawing two pairs of number line segments).  Ana switched from the number line 

representation to symbolic ones as she wrote a chain of equivalent equations.  

An example of the solution of the Castle problem, solely based on iconic representation is presented 

in Figure 3. Marko put a key for his iconic presented argumentation on the right, where “x” meant 

unsuccessful attempt, “� ”, successful attempt, and”-“  that  the door cannot be opened. 

 

Figure 3:  Iconic representation  

Figure 4 shows Sara’s solution, assessed to be a creative argumentation involving Roman and 

Arabic numerals in solving the Castle problem. The solution consisted of five equalities.  Sara 

counted the cycle of attempts by Roman numerals. She used Arabic numerals to show number of 

attempts in the particular cycle. Formally, without (absent) supplementary explanation the record 

was not mathematically correct as it stated e.g. I = 6 and V = 1. Sara used different numeration to 

distinguish between number of attempts and number of trials in the cycle, overlooking meaning of 

the equality sign. Her solution was assessed to be too sketchy and although the answer was correct, 

she did not earn points for argumentation. 

Pupils often combined different representations in solving problems. In those cases they usually 

started with pictorial representation, than they turned to verbal or symbolic representation. Using 

pictorial representation, enabled them to provide simpler explanation. An effective presentation of 

thought process with no verbal explanation is presented in Figure 1.  

    

Figure 4: Combined numerical representations (left) 

Figure 5:  Multiple representations - pictorial, verbal and numerical (right) 



 

 

In Figure 5 is Luka’s solution of The Castle problem with multiple representations. He initially used 

pictorial and numerical representations along with verbal explanation and finalized the solution with 

numerical calculation. The realistic picture of doors itself hardly helped in solving the problem. 

Nevertheless Luka used it as a tool in argumentation.  He probably meant to indicate with that 

picture that all 6 doors were checked with one key. The other cycles of tries were not visually 

presented in Luka’s solution. But his verbal explanation presented on the right side of the picture 

was accurate. Luka wrote: “Since there were 6 keys and 6 doors, with the first key there could be no 

more than five failed attempts, in the next step 4, than 3, and so on, in each successive step 1 less”.  

Conclusion 

Successful problem solvers construct significantly more representations than unsuccessful problem 

solvers. Our results do not endorse previous arguments that multiple representations are associated 

with more incorrect solutions. Using combined representations often results in correct solution. 

Typically, pupil’s argumentation starts with pictures, than turns to verbal or symbolic 

representation. Using pictures frequently enables pupils to provide sound explanation.  

We found that talented pupils had a tendency to use symbolic representations. Pupils’ choice of 

representation could be a consequence of limited experience in using different representations in the 

past. Ultimately teachers need to help pupils to develop flexibility in using different representations 

and ability to combine representations (or move in argumentation from one to another one).  

In particular, future research should test whether pupils should be encouraged to provide 

argumentation by 1) combining numerical and verbal representations in the case of logical 

combinatorial problems and 2) numerical pictorial and iconic representations in the case of 

algebraic problems.  More generally, we need to focus on developing methods for improving pupils 

‘abilities to visualize and verbalize thought process and to be flexible in combining representations 

in the process of problem solving.  
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