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Use of the bar model has gained momentum in England in recent years through the introduction of Singapore maths. Yet bar models originating from the Dutch approach known as Realistic Mathematics Education (RME), such as the fraction bar, the percentage bar and the double number line, have been available since the late 1990s. In this paper, we discuss the use of the bar in an intervention with low-attaining students in which we employed the RME approach. RME bases understanding in the everyday, where the role of the bar is to sustain modelling across multiple contexts, building on students' informal models. We argue that this context-driven 'bottom up' use of the bar is crucial in supporting progress towards formal mathematics, highlighting important issues to consider in the use of bar modelling, particularly with low attaining students. We suggest a consequent need for caution in use of the Singapore bar as a potential 'top down' model.

Background: different versions of the bar model

The Singapore bar

The success of the Pacific Rim countries in international tests such as PISA (OECD, 2016) has led to the promotion of approaches from Shanghai and Singapore in England, with 'Singapore maths' gaining considerable popularity. Drawing on the work of a number of theorists, but in particular on Bruner's enactive, iconic and symbolic modes of representation [START_REF] Bruner | Toward a theory of instruction[END_REF], Singapore maths' Concrete, Pictorial, Abstract (CPA) framework focuses on the shift from concrete to abstract via pictorial representations, and features bar modelling as a means of analyzing and solving arithmetic and algebraic word problems. Children in Singapore are taught the method in first or second grade, beginning with the introduction of pictorial representations of quantities using familiar objects such as teddy bears before moving to rectangles in the bar model [START_REF] Ng | The model method: Singapore children's tool for representing and solving algebraic word problems[END_REF]. Students are taught to recognize a problem type (part-whole, comparison, before-after) and then apply the bar model procedure to find the solution [START_REF] Ban Har | Bar Modelling A Problem-Solving Tool[END_REF]. Figure 1 shows the basic comparison bar model. Taken up by the influential National Centre for Excellence in Teaching Mathematics (NCETM) in England, bar modelling 'is introduced within the context of part/whole relationships… It exposes the relationships within the structure of the mathematics, which are used to find the unknown elements and thus supports the development of algebraic thinking' (Griffin, nd). Presented in this way, bar modelling focuses on applying a model once the problem structure has been analysed, or as part of the process of its analysis, with the teacher supplying the model and its associated method.

The RME use of the bar

In RME, bar modelsincluding the fraction bar, the percentage bar, the double number line and the ratio tablealso take the role of bridging the gap between the learner's informal understanding of 'reality' on the one hand, and the understanding of more formal systems on the other. However, the connection between reality and formal mathematics differs quite fundamentally, in that models are generated from students' understandings of the context, rather than being offered by the teacher. Mathematical activity emerges from students' informal models, in contrast to the Singapore use of the bar model which focuses from the outset on the structure of the mathematical problem and the relationships between the numbers involved. This emergent characteristic of RME models means that context plays a crucial role in the process of formalization, supporting extended discussion of models which are then generated as mathematizations of reality rather than being presented as tools for solving particular types of problems1 .

RME materials expose students to multiple contextual situations which can be represented by a 'model of' each particular situation. Designers deliberately choose contexts with potential for developing mathematical thinking; for example, asked to depict how to share a subway sandwich, students may begin by making 'realistic' drawings, showing round ends and fillings, but in time will move to a rectangular bar 'model of' a sandwich with the ends squared off. Producing a drawing to show how to share the sandwich fairly, marking cuts on the rectangular representation and labelling the pieces with fractions, leads to a bar model picture -a fraction bar. Other contexts such as shading in a rectangular cinema layout to represent the number of seats sold would lead to a percentage bar type of bar model. For some contexts such as marking bottle stops on a race route, it may be more appropriate to draw a line showing distance on one side and bottle stop positions on the other. This is sometimes described as a 'double number line' but would still be classed as a type of bar model, where the bar has been flattened to look like a line. Overall, models in RME "should 'behave' in a natural, self-evident way. They should fit with the students' informal strategiesas if they could have been invented by them…" (Van den Heuvel-Panhuizen, 2003, p. 14).

Conceptualising progress and the role of the bar model

How models are used in teaching has implications for the conceptualisation of progress. Whereas the Singapore model is based on Bruner's enactive-iconic-symbolic framework as a progression heuristic, in RME, progress is indicated when students start to see the similarities between 'models of' situations, and are consequently able to generalise the use of these models and apply them to other problems. At this point they are able to make a shift towards using a bar to represent a situation which is not obviously 'bar like', using a bar as a 'model for' solving a problem. Thus progress is defined in terms of formalisation of models (Van den [START_REF] Van Den Heuvel-Panhuizen | The didactical use of models in realistic mathematics education: an example from a longitudinal trajectory on percentage[END_REF], and in particular the progression from 'model of' to 'model for' [START_REF] Streefland | Wiskunde als activiteit en de realiteit als bron [Mathematics as an activity and reality as a source[END_REF]. So, for example, students may begin to see how they can use a bar to represent survey data, and to develop connections between segmented bars, pie charts and fractions, ultimately using a bar to compare and add fractions. This shift is also described as vertical mathematisation [START_REF] Treffers | Three dimensions: A model of goal and theory description in mathematics instruction: The Wiskobas project[END_REF], where students recognise the mathematical similarity between different problems and are able to choose an appropriate model to solve a problem. Models, in this view, are far more than given strategies for solving problems; they are central to building the understanding needed to deconstruct a problem.

In particular, models in RME depend on a 'bottom-up' process in contrast to a 'top down' approach which offers the model ready-made, to be overlaid onto the problem.

The contrasts between the use of models in RME and the Singapore method raise some questions regarding the current popularity of the Singapore bar -in particular, "what is being modelled, and by who?" The Singapore bar appears to be introduced by the teacher as a ready-made model for a mathematical problem rather than being generated by the learner from a context that will support the development of a situated model of that has meaning for them, and on which they can build to generate a model for which they genuinely own. In this paper, we explore how a group of lowattaining students worked with the bar in an RME-based intervention which aimed to support them to progress beyond poorly learned algorithms towards a deeper understanding of mathematics which is based on their own informal models. Thus, we ask the following research questions:

1. How do students use the bar within an RME context? 2. To what extent do students make progress in terms of moving towards 'model for'?

We consider the implications for the widespread adoption of Singapore bar modelling in the English context of pressure to move quickly towards formal mathematics and algorithmic approaches.

Methodology

In England, a large percentage (around 30%) of students fail to gain an acceptable pass grade in mathematics in national examinations (GCSE) at the age of 16 each year, and resit success rates are poor (DFE, 2017). Resit courses tend to be short (around 8 months) and focus on revising the same methods which students have already failed to learn and remember, hence the larger study of which this is a part investigated the impact of materials based on RME in four GCSE resit classes across three different sites in the North-West of England, during 2014-15. The research team developed and delivered two short modules focusing on number (12 hours) and algebra (9 hours), employing a quasi-experimental design. For reasons of space, we focus on the number module in this paper. Number teaching materials were designed to draw on contexts that supported students in producing situation-dependant bar-type representations and solutions, thus enabling the natural emergence of the bar as a 'model of'. For example, fair sharing problems required students to share out candy strips, pizzas and ribbon, all of which were chosen for their rectangular and hence bar-like properties. Lessons were delivered by three members of the research team, all experienced RME teachers. They followed the RME practice of emphasis on discussion of the context, moving from students' informal (and life-like) representations of the context (e.g. buying ribbon, mapping water stops on a fun run, sharing a subway sandwich) to discussion of their various strategies for problem solution, and finally to bar models produced by the students.

One of the questions for this intervention is whether students can recognise the potential of the bar model and associated strategies as 'models for' tackling problems where use of the bar is not suggested by situation-specific imagery (see Van den Heuvel-Panhuizen, 2003, pp 17-29). All students took a short test prior to and at the end of each module. The number test problems were chosen to reflect a range of topics in proportional reasoning, and covered ratio, proportion, finding a percentage of an amount, finding a fraction of an amount, comparing two rates and a reverse percentage calculation. Each question made reference to a context, but unlike in the teaching materials, the contexts were not suggestive of a bar-like representation. Questions were designed to reflect typical GCSE questions on the target subject matter, but students were additionally asked to explain their answers in order to reveal differences in levels of conceptual understanding.

Seventy-five students participated in the intervention classes and 72 in control classes. In the main study, independent evaluators found small but significant gains for the intervention group on the number post-test (F 1,93 =4.55, p=0.035, Cohen's d = 0.26). They also found a significant correlation between students' improvement from pre-to post-test and the extent to which they used an RME approach (use of the bar or ratio table to solve the problem) (r = .258, n = 86, p = .016) (see Hough et al, 2017, Appendix 8.5). Here, we investigate these findings further through qualitative analysis of the number pre-and post-test scripts in order to identify how students used the bar and its contribution to their learning. Our analysis involved comparing pre-test and post-test solutions by categorising responses given in terms of:

(1) use of the bar or ratio table versus standard methods/trial and error;

(2) correct labelling/division of bar parts, and scaling accuracy;

(3) the bar strategies employed, for instance partitioning/ adding; (4) error types: inappropriate halving, incorrect adding, incorrect bar representation; and

(5) evidence of progress.

Findings

The extent to which students could vertically mathematise their use of the bar

In post-test scripts, 73 % of intervention students chose to draw a bar-type model for at least one of the questions. In contrast, methods used in their pre-test scripts referred to operations denoted purely by numbers and symbols. Control group students were highly unlikely to draw a pictorial representation in order to solve a problem. These overall statistics suggest that the intervention led many students to recognise the potential of the bar model as a model for tackling a variety of problems, and in that sense to vertically mathematize.

However, it is not enough for students to simply apply the bar model method to the problem. One of the factors which distinguishes RME models is whether the learner perceives the model to be 'emergent' or 'imposed'. Emergent models are described by [START_REF] Gravemeijer | Emergent models as an instructional design heuristic[END_REF] as one of the key design heuristics of RME: models are grounded in reality, they make sense to the learner and even when the model progresses to a more formal version, the learner can always fall back on the original meaning in order to make sensethey are 'bottom up ' (p. 146). But although the designer may intend engagement with the model to be 'bottom up', this does not necessarily guarantee the model will be experienced in this way. Hence, there may be cases where a learner's experience of working with RME-based models results in a classical 'top down' engagement whereby the model is imposed by the teacher in the traditional sense of demonstrating formal procedures. In the next two sections, we look at examples of students using the RME bar model from both a 'bottom up' and 'top down' perspective.

The bar model as a 'bottom up' sense making strategy / model

For many post-16 GCSE resit students, their experience of learning mathematics involves being shown formal procedures which they can make little sense of, and which they are rarely able to accurately reproduce. The pre-test scripts contained numerous mis-representations of formal procedures, for example writing 17% of £3300 as ×100, calculating of £600 by replacing with 0.58, and incorrect additive strategies for two proportionally related quantities. However, , in an answer typical of 33% of scripts, she has drawn a bar split into 7 parts and labelled as a continuum from 0 to £140, and she has used shading to distinguish the portions on £140 allocated to Pat and Julie. Here, the student has created a bar model representation which correctly depicts the required sharing processes.

analysis
In the next example, Student B demonstrates knowledge of the standard formal procedure used to find a fraction of an amount in her pre-test, but is unable to go any further, commenting that she is does not know how to calculate the division 600 ÷ 8 (Figure 3, left). In the post-test, and in common with 20% of scripts, she was able to work out an alternative strategy, targeting the values of , of £600 and combining these to find (Figure 3, right). Her successful modelling of the problem on a bar enabled her to employ informal approaches to see the relationships between the numbers. The third example concerns a question requiring students to find the original price of a car, when the current price of £6820 is 20% less than the original. Although none of the control students were able to answer this question in either the pre-or the post-test, 18% of intervention students used a bar to model and solve the problem (Figure 4). Reverse percentage problems of this type are notoriously difficult for students to access, not least because the standard method involves setting up an equation in one unknown. Representing the information on a bar enables further sense-making in terms of providing opportunities for filling in what else the student knows, and enabling them to build up to the required percentage amount.

The bar model as yet another 'top down' procedure/model

We have seen examples above where students used the bar as a model for, enabling them to represent the question and link it to mathematical strategies which they could make sense of and therefore use effectively. However, in the next two examples, we see students able to operate with the bar model, but their subsequent strategies suggest that they are unable to connect the model with meaningful mathematical activity. For example, the student in Figure 5 (left) applied several cycles of halving and combining chunks to fill in as far as the th way point on his bar, but given that the bar is split into 7 pieces, these calculations served no purpose in finding one part. Some studentsaround 10% -always marked the half-and quarter-way points of their bars, even when the divisor was an odd amount, suggesting a top down use of the strategy. Figure 5 (right) shows a bar model being used to solve a question which asks how long a photocopier takes to produce 30 copies if it takes 18 seconds to produce 12 copies. The student has used a bar to model the situation for 24 copies, marking up the bar in one second segments, but has then simply extended the bar by 6 segments to reach 30 copies, omitting to realise that the model shows that one copy takes 1.5 seconds. The error of adding one second for every copy implies that drawing the bar has not provided this student with genuine insight into the underlying structure of this problem. Rather, the bar model has been used as a 'top down' model, here, applied without real linkage to the context. 

Discussion

These findings show that the bar has the potential to enable progress. Drawing a bar-type model enabled students to represent problems in helpful ways, allowing some to engage with informal sense-making strategies. The model enabled them to fill in other quantities in order to provide a more complete and detailed representation of the problem. Many students applied an RME method to several post-test questions, suggesting that they were beginning to recognise the unifying potential of the models as a strategy for answering questions across a range of topics in number, and that they were beginning to vertically mathematise and see how to apply their context-specific models to a range of problems.

However, the transition to using a bar model is not unproblematic, and it does not provide an instant solution. Indeed, the issue of inappropriate halving suggests that students can move towards treating the bar as yet another algorithmic method. The intervention was short and as such represented an over-simplification of the RME process, but this served to expose the fragility of these particular students with regard to number sense and their ability to make connections. The complexity of their response to the bar, and the importance of its use for sense-making and not just method raises questions for the Singapore approach to bar-modelling. The significance of this issue is highlighted by [START_REF] Ng | The model method: Singapore children's tool for representing and solving algebraic word problems[END_REF] analysis of Singapore 5 th -graders' solutions to a variety of problems, in which high achievers scored well, but mid-level achievers' strategies often showed erroneous use of the model. Incorrect solutions involved the omission or misrepresentation of crucial information, changing unit generators mid-solution, failure to keep the overall goal in mind, or lack of necessary conceptual knowledge (of fractions, for example) -children were using the method algorithmically, failing to monitor what they were doing. Arguing for the importance of discussion in the classroom about different strategies for solution and the development of meta-cognition in problem representation, [START_REF] Ng | The model method: Singapore children's tool for representing and solving algebraic word problems[END_REF] note that the bar model must be used 'as a problem-solving heuristic that requires children to reflect on how they would accurately represent the information presented in word problems …. This art of representation has to be taught, but it is then the children's responsibility how they choose to use this heuristic effectively' (pp.311-2). Ng and Lee's warning underlines the potential danger in the Singapore bar's reliance on formal conventions in terms of which bar model is required to solve a problem and how the bars should be labelled. From an RME perspective, we would ask what are the contextual mediums that enable struggling students to gain access to these conventions. The model offers learners a way to represent algebraic word problems, but how do students lacking number sense negotiate meaning once the bars can no longer be drawn to scale, or when, as Ng and Lee (2009, p. 308) note, they are challenged by the concept of fraction and represent the relationship between rectangles erroneously? We suggest that these considerations need to be taken into account in the adoption of Singapore bar modelling, where students, not the teacher, need to own the model.
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 1 Figure 1: Comparison bar model with arithmetic form on the left, algebraic form on the right (from Ng & Lee, pp. 287-8)

  of the post-test scripts revealed several examples of sense-making through use of an RME bar model, as in the following three examples.

Figure 2 :

 2 Figure 2: Student A pre-test (left) and post-test (right)Student A's pre-test solution (Figure2, left) may be interpreted as an example of a half-remembered procedure -multiply something by 2 and something by 5. In the post-test (Figure2, right), in an answer typical of 33% of scripts, she has drawn a bar split into 7 parts and labelled as a continuum from 0 to £140, and she has used shading to distinguish the portions on £140 allocated to Pat and Julie. Here, the student has created a bar model representation which correctly depicts the required sharing processes.

Figure 3 :

 3 Figure 3: Student B pre-test (left) and post-test (right)

Figure 4 :

 4 Figure 4: Representing reverse percentage on the bar

Figure 5 :

 5 Figure 5: Top down use of the halving strategy (left) and Using the bar in top-down fashion (right)

It is important to note that in RME 'real' means imaginable (Van den Heuvel-Panhuizen,

2003, pp. 9-10).