
HAL Id: hal-02435240
https://hal.science/hal-02435240

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A lightweight web client to discover, explore and test
software components that process geographical data

Bénédicte Bucher

To cite this version:
Bénédicte Bucher. A lightweight web client to discover, explore and test software components that
process geographical data. 23rd International Cartographic Conference, Jul 2007, Moscow, Russia.
�hal-02435240�

https://hal.science/hal-02435240
https://hal.archives-ouvertes.fr

Page 1

A lightweight web client to discover, explore and test

 software components that process geographical data

Bénédicte Bucher

COGIT Laboratory, Institut Géographique National,

2 av. Pasteur, 94160 Saint Mandé, France

benedicte.bucher@ign.fr

1. Introduction

Processing geographical data based on modular software components developed by

different authors is getting more and more generalised with web services and interoperable

java libraries. For instance, MapShaper and WebGen are generalisation Web services

meant to be invocated by human users on their data thanks to clients hiding the complexity

of network communication [1] [2]. Geotools and Geoxygene are java libraries, that can be

downloaded on the Web, and which propose a wide range of functionality related to

geographical data processing. These are interoperable because they implement ISO/OGC

concepts like FT_Feature or GM_Point, and, in the future, because they will implement the

GeoAPI (a set of standard java interface definitions corresponding to these conceptual

models).

This paper presents a work in progress to provide a lightweight web interface for a user

to locate software components that process geographical data, to explore them and

eventually test them on his data. The immediate purpose of this application is to facilitate

the design of user applications based on such resources. A user may want to select a best

implementation of an abstract service before deciding to use a web service or to use the

programmatic interface of a java interoperable library that has not yet been deployed as a

web service. The expression ‘abstract service’ is used here to refer to ‘an abstract resource

that represents a capability of performing tasks that represents a coherent functionality’ [3].

Figure 1. The aim of this work is to support the discovery, exploration and exploitation of software

components that provide abstract services. We focus on services of the kind ‘to process geographical data’.

Software Component
(Web Services,

interoperable libraries)

Abstract Service
’capacity to perform a task’

(to process geographical data)

provides

Page 2

Another purpose of this work is to stimulate developers of java libraries to publish

methods that are relevant outside the library. There exist environments to deploy java

methods as web services like the axis application. They cop with network communication

–incl. XML serialisation of main datatypes- and with the writing of standard metadata.

They do not assist the developer in identifying relevant methods, in choosing meaningful

names for the service and for the parameters, in defining the best granularity for his service

operations. We think that our application will incite them to describe abstract services

provided by their libraries, which is a first step towards deploying them as web services if

necessary. For this purpose, an interface to author metadata about services provided by

libraries is being developed: the model for these metadata is an ad hoc model that

extrapolates standard models for Web Services [4]. This interface is not presented in this

paper.

In the following of this paper, we adapt principles stemming from spatial data

infrastructure literature like [5] and from search engines to our context: user access to

software components that process geographical data. We define several access phases as

schematised on figure 2: discovery, exploration, and testing. For each phase, a short

analysis of its functional requirements is followed by the description of our proposal to

support them.

Figure 2. Main phases in user access to software components that process geographical data.

The prototype implementation is a signed java applet that communicates with servlets.

2. Discovering relevant software components that process geographical data

The discovery phase aims at defining, among a set of resources (like all items of a

catalogue or the whole Web), a first subset of resources that are potentially relevant with

respect to the user query. Two important aspects in discovery are supporting the expression

of the user need and selecting relevant resources among a possibly vast set. These reasons

DISCOVERY
Finding component

of potential interest

EXPLORATION
Evaluating and comparing

components relevance

TESTING

Using components and

evaluating them

Phases in user access to

 software components that process geographical data

Page 3

induce several requirements on the layer of data used in discovery. Discovery data should

contain meaningful criteria of relevance about the resources (like the spatial extent of a

geographical data set or the words contained in a Web document). These criteria should

make sense as homogeneously as possible among the resources (for instance, spatial extent

is not a homogeneous criteria for Web documents). These data should be organised into a

queriable structure (like a SQL database or inverted files). Last, these data should reference

the resources.

The main standard metadata model for cataloguing web services is UDDI [6]. It

describes a service through four main metadata entities: the businessEntity describes the

provider, the businessService describes the type of service, the bindingTemplate and

tModel contain information about how to bind to the service and about the service formats.

Discovery UDDI criteria are the ‘BusinessEntity’ and the ‘BusinessService’. Each of them

is specified through a bag of categories in taxonomies. Publication of taxonomies is

supported by tModels like the Universal Standard Products and Services Classification

(UNSPSC) UDDI tModel. In the following we concentrate on the yellow pages criterion,

namely the service category.

Figure 3. Registry big picture: providers publish their services by documenting specific metadata in a

registry. A requester finds a service thanks to the registry metadata. A requester binds to the provider to use a

service he has found.

There exist taxonomies for the resources we are studying. The ISO 19119 service

taxonomy identifies very high level categories of GI services among which ‘geographic

processing services’. This category is divided into four subcategories after the nature of the

processed information (‘spatial’, ‘thematic’, ‘temporal’, ‘metadata’). Each ISO19119

UDDI REGISTRY

REQUESTER

(Service user)

PROVIDER

Provider Agent

(Web Service end points)

Service (abstract notion)

2: find

1: publish

3: bind

Operations

White pages : businessEntities

(� provider)

Yellow pages : businessServices

(� services)

Green pages : bindingTemplates and

tModels

(� operations, datatypes, agents)

DataTypes

Interface (WSDL)

DISCOVERY CRITERIA

Page 4

subcategory is specialised with a list of services, like ‘generalisation services’. This

taxonomy is non exhaustive and still too generic. For instance, [2] propose more specific

classifications of ‘generalisation services’. One is obtained based on the service data types.

Services which data types may be expressed with GML core schema elements are

classified into ‘default generalisation services’ and service which data types need more

GML application schema elements are classified into ‘advanced generalisation services’.

These illustrate the importance of signatures in services classification. The word signature

refers here to the data types of input and output parameters of the service. Another

classification of generalization services proposed by [2] is based on generalisation

activities: generalization support services which prepare the data, generalization operator

services which transform the data, generalization process services which control the whole

generalization task. These illustrate the importance of other relationships between services

than subsumption: the sequencing relationship (this service is to be used before that other

one), the composition relationship (this service uses that other one). When modelling

services categories, other challenges are to describe services unambiguously and also to

explicit relationships between services in a tractable way. [7] addresses this by proposing

an operations ontology OPERA expressed in the formal language OWL. Earlier work to

classify operations took place in the context of formalising the use of GIS to perform

spatial analysis. [8] and [9] have formalised abstract spatial analysis operations and

combination of operations in their map algebra. Later, [10] has proposed a list of universal

abstract operations that refer to GIS operations. His VGIS (Virtual GIS) prototype allows

the user to build sequences of abstract operations in the form of flow charts. The system

interprets user flow charts into executable processes. [11] have added to VGIS hybrid

operations on vector and field data. Other authors concentrated on higher level

functionality. For instance, [12] focuses on the functionality ‘portraying thematic data’ and

proposes an explicit strategy to perform this functionality with a specific GIS. Such expert

knowledge about processing geographical data could be integrated into a model of abstract

services to facilitate the discovery of software components based on user goals [13].

To summarize, there exist several classifications or more complex models for abstract

services ranking from elementary operations to complex processes. Supporting user

discovery of services of interest requires integrating categories identified in these models

into a unified model. Whereas many models already address the discovery of new services

based on the sequencing of existing services –services choregraphy models-, a first result

Page 5

not yet achieved is a model that addresses user discovery of existing services, possibly

predefined sequences of services –services orchestration models-. Important criteria for

user discovery are the service name, the service signature as well as subsumption and

composition relationships between services.

We propose an ad hoc model summarised on figure 3. In this model, the word ‘function’

is used instead of ‘service’. A function is ‘what the component does’. It has several

properties among which a generic name (which should refer to an existing classification)

and a unique identifier (the name is not an identifier). As in standard models for web

services, function signature is represented through parameters (variables which include

geographical data input and output), preconditions and postconditions. The formalisation

of composition relationships, i.e. of methods and strategies, is classically done either with

state diagrams or with activity diagrams. In our model, we chose the latter [14]. Activities

associated to a function are descriptions of how to carry out this function. It can be a

sequence of message to be exchanged with a web service (this sequence is described in

standard metadata for the web service (WSDL, OWL-S)) or it can be a sequence of method

calls from a library.

Figure 4. Main lines of the model to index software components by the function they provide and to

support function discovery based on signatures, subsumption and composition relationships.

In the prototype, users can browse this model based on a tree structure that is

progressively sent to the client. In this tree structure, a function node (a service) can have

the following sons: parameters, more specific functions, ‘may use’ functions, software

components and activities. An activity node can have the following sons: parameters, sub-

Activity

ActivityEdges

bagOfCategories :

preconditions :

postconditions :

Function

Variable

1..n parameter

1 0..n

 < carries out

0..n decompositionEdges

0..n

decomposition

Nodes

name :

value :

defaultValue :

varPreconditions :

varPostconditions :

SoftwareComponent

0..n 0..n

DISCOVERY CRITERIA

Page 6

activities, software components. The strategy to send the structure progressively is so far

very generic. When the user selects a node, the client sends a request to get the n+3 nodes.

3. Exploring selected resources

Exploration aims at assessing more precisely the relevance of resources selected during

discovery and at comparing the relevance of several resources, based on metadata only.

Classically, during exploration, a user firstly identifies selected resources thanks to

identification metadata (like URLs titles). Relevance assessment is then supported by the

display of a relevance criterion for each resource (like fragments of a document containing

the words used in the query). Last, the user also needs to compare relevance and determine

the most relevant resources. He may need help to do this, for instance when there are too

numerous selected resources for him to browse all relevance criteria. Automatic

comparison consists in clustering (grouping resources that are relevant the same way) and

ranking (ordering resources after their level of relevance). It needs tractable comparison

criteria (like the frequency of the user keyword in the document or a URL’s popularity). In

the following of this section, we try to support the identification, relevance assessment and

comparison of specific resources: software components that process geographical data.

Identification based on a cartographical illustration of provided functions

In our context, the user needs to identify two items: the function and the component.

Component identification can first rely on web services URLs and java packages names.

Function identification is a complex issue as long as there does not exist a detailed

universal ontology of functions involved in the processing of geographical data. When a

function is cartographic or modifies the geometry, a graphical overview will enhance its

identification by the user. In [4], the developer of a processing tool can add a graphical

illustration to the tool description. He may generate this illustration by processing sample

data stored on the server and by portraying the processed data with styles proposed by the

server.

A finer illustration of a function may be a mosaic of results corresponding to different

parameter values and to different input data. Indeed, for some processes, differences in

parameter values or difference in properties of input data yield very different results. This

issue has been explored in [15]. The authors have built a database of cartographic samples

obtained by applying the same generalisation algorithm with different parameter values

and to different geographical data. This allows illustrating the various behaviours of this

Page 7

algorithm depending on parameter values and on properties relative to the information

represented in input data (object size and granularity, spatial structure). Other properties of

the input data may affect the behaviour of a software: properties relative to the global data

set (size of the data set) or relative to the data logical structure (attribute values).

Relevance assessment based on activities

The relevance of a component to provide a service should include effectiveness and

efficiency criteria. We focus on efficiency criteria. In our model (illustrated on figure 4),

activities describe sequences of actions that should be undertaken to carry out functions

thanks to components. Assessing the relevance of a component with respect to a selected

function relies on properties of the activity ‘to carry out the selected function thanks to the

component’. These properties are: the number of actions, the number of extra software

components, the existence of default value for parameters, the complexity of types

involved in the signature. We do not calculate tractable relevance criteria but display these

properties for the user to browse them.

4. Testing selected resources

Last, the user needs to test the resources on his data. More precisely, the user needs to

upload his data on the server to have them processed. He needs to test a selected function

to his data. To do so, he must value the parameters of an activity that carries out this

function. When the required parameters are valued, the activity state becomes ‘executable’

and the user can ask the server to execute it. He needs to see the result, even if his

processed data remain on the server. The user also needs to step back to a former state of

his data, try another parameter value or another activity (another sequence of methods calls

or web services calls).

Specifying activities

User specification of activities is based on the ‘obrowser’ java component developed

at the laboratory and embedded in our applet. This component builds a graphical view of

any java object (based on his class definition) for the user to interactively specify it.

‘Obrowser’ can either provide a generic view –for any class definition on the classpath- or

a view dedicated to the current class –thanks to an extension mechanism-. This approach is

based on the assumption that function parameters can be expressed as instances of java

Page 8

classes. When the function is based on web services, the parameter are ultimately XML

fragments but they can be mapped to java objects. The corresponding java class are

obtained by applying a stub generator tool to the service WSDL metadata. In our context,

genericity is important because function parameters can be of any type.

Figure 5. Documenting the value of an elementary activity: to carry out a filtering.

Distributing session actions and session data between the client and the server

 Stepping back and trying another activity is supported by tracing all user and server

actions on geographical data and keeping a copy of data states. This tracing is stored in the

‘Session History’ which is formalised as an Activity under construction. Each time the user

wants to carry out a new function, a new sub-activity edge is added to the History as well

as an edge. This subactivity is created as the carrying out of this function. The subactivities

may have several states: specifiable, executable, executed. A crucial aspect of a History is

that some parameter values are documented through identifiers instead of the very values.

These identifiers are keys belonging to the ServerTable and the ClientTable. The

ServerTable contains FeatureCollection and other complex objects related to the

Geoxygene plateform. It is not shared with the client. The ClientTable contains SVG

documents. When the user uploads his data to the server, the server generates a SVG

document and sends it to the client along with an identifier for that document. It also

indexes the FeatureCollection with the same identifier in the ServerTable attached to the

user session. The client receives the SVG document and indexes it in his ClientTable, with

the identifier. The History is modified on the client each time the user selects a new

function, or specifies a sub-activity. It is modified on the server each time the server runs

Page 9

an executable sub-activity. In all cases, the whole history is sent to the client or server to

replace the older one. When user data are a large data set, the server does not work on the

whole data set but on an extract of them. This extract is made automatically at loading

time.

SVG activity maps: a library of styles dedicated to render process effects

Visualisation of a process result is based on two elements. First element is a library of

styles available on SVG maps dedicated to portray executed activities. These SVG maps

are called ‘SVG activity maps’. Currently studied styles are limited to rendering ‘feature

modifications’. The user specifies the style symbol and the server classifies features into

graphical classes (classes of features to be drawn with a given style). This server process is

based on identifiers for the features that are added to the feature collection before

executing an activity. So far, only three generic styles are provided: ‘deleted feature’,

‘feature with modified literal attributes’, ‘created feature’. The ‘created feature’ style is

specified into ‘created geometry’ and ‘created class’.

‘Created geometry’ is a style adapted to render buffer. It is calculated based on default

styles adapted to any type of geometry, and on the color of input data. It is a dynamic style.

The user can modify the opacity balance rate between the created feature and the other

cartographic layers: when the created geometry layer is opaque the other layers are

transparent, and vice versa.

‘Created class’ is a style adapted to render the association of features, typically through

the creation of a classification attribute or the creation of relationships between features.

Complex cartographic views based on SVG activity maps

Next element is a cartographic view attached to the following history nodes contents:

variables, executed activities and ‘decomposition’. The view attached to an executed

activity is a SVG activity map with the style presented in the preceding section. The view

attached to a ‘decomposition’ property or to the root is a set of SVG activity maps

corresponding to all subactivities. Activity maps can be displayed in a chronological layout

or in a workflow.

Page 10

Figure 6. A workflow display of a session : the user firstly loaded his data on the server (map on the left),

then applied successively two filtering to the data set (two maps above), stepped back to the initial loaded

data and applied another filtering with a different parameter value (map below).

The view attached to a variable is the set of SVG maps corresponding to activities that

count the value of this variable among their own variables. For instance, when the user

clicks on a variable which value is a data set, the client identifies the activity that yields

this data set and the activities that transform it. The user may specify a legend for the data

set in one of the SVG canvas and ask the server to generate SVG documents with the same

style for the datasets displayed in the other SVG canvas of the current view. So far, he can

specify some basic SVG attributes that are mapped to styling rules.

5. Conclusion

The work presented in this paper addresses the issues of discovering software

components that process geographical data, assessing their relevance and testing them from

a lightweight web client embedded in a classical browser. It is grounded firstly on a model

that relates functions to components thanks to activities. Activities describe how to carry

out functions with components. It is also grounded on styling tools to render the result of

Page 11

one activity on a SVG activity map, and to render a sequence of tests on complex views.

Our prototype supports the specification and launching of a complex process to be

executed on a remote server. The user can get SVG feed backs of process results.

This prototype aims at refining and testing our approach. Yet, to propose an

application that meets real needs we must enrich it with more components and more

activities.

References

1- Harrower, M., Bloch, M., MapShaper.org: A Map Generalization Web Service, in IEEE

Computer Graphics and Applications, 2006, vol 26(4), pp.22-27

2 - Burghardt, D., Neun, M. and Weibel, R., Generalization Services on the Web - A

Classification and an Initial Prototype Implementation, in CaGIS, 2005, Vol. 32, No. 4

3 - W3C working group, Web Services Architecture, W3C Note, 2004

4 - Abd El Kader Y., Bucher B., 2006, Cataloguing GI Functions provided by Non Web Services

Software resources Within IGN, in proceedings of the AGILE conference, Visegrad, 2006

(apendum)

5 - GSDI, Developing Spatial Data Infrastructures: the SDI Cookbook, Douglas D. Nerbert (Ed),

v2.0, 2004

6 - UDDI Spec Tec, UDDI Version 3.0.2, 2004

7 - Lemmens, R., Semantic interoperability in distributed geo-service, PhD thesis, ITC, Enschede,

2006

8 - Joseph Berry, Fundamental Operations in Computer-Assisted Map Analysis, IJGIS, Vol 1,

No2, 1987, pp119-136

9 - Tomlin C. D., Cartographic Modelling, in Geographical Information Systems : Principles and

Application, edited by D. J. Maguire, M. F. Goodchild and D. Rhind (Harlows : Longmans),

1991, vol1, pp.361-374

10 - Albrecht J., Universal GIS operations for environmental modeling, in Proceedings of the 3
rd

International Conference on Integrating GIS and Environmental Modeling, Santa Barbara,

1996

11 - Jung S., Voser S. A., Ehlers M., Hybrid Spatial Analysis Operations as a Foundation for

Integrated GIS, in proceedings of the ISPRS Commission IV Symposium, Stuttgart, Germany,

1998

12 - Andy Mitchell, The ESRI Guide to GIS Analysis, volume 1 : Geographic patterns &

relationships, USA, 1999

13 - Bucher B., Translating user needs for geographic information into metadata queries, in

proceedings of the 6th AGILE conference, Lyon, 2003, pp. 567-576

14 - Bucher B., Balley S., Richard D., Cébelieu G., Hangouët J-F. Shareable descriptions of data

production processes, in proceedings of the 8th AGILE conference, Estoril, Portugal, 2005

15 - Hubert F., Ruas A., A method based on samples to capture user needs for generalisation, 5
th

Workshop on Progress in Automated Map Generalization, Paris, France, 2003

