
HAL Id: hal-02435190
https://hal.science/hal-02435190

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From concrete to abstract and back: Metaphor and
Representation

Pierre Arnoux, Jorge Soto-Andrade

To cite this version:
Pierre Arnoux, Jorge Soto-Andrade. From concrete to abstract and back: Metaphor and Represen-
tation. Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht
University, Feb 2019, Utrecht, Netherlands. �hal-02435190�

https://hal.science/hal-02435190
https://hal.archives-ouvertes.fr


 

 

  

From concrete to abstract and back: Metaphor and Representation     

  Pierre Arnoux
1
 and Jorge Soto-Andrade

2 

1
University of Aix-Marseille, Department of Mathematics, Marseille, France; 

pierre@pierrearnoux.fr 

2
University of Chile, CIAE & Faculty of Science, Mathematics Department, Santiago, Chile; 

sotoandrade@uchile.cl 

We are interested in exploring from an enactivist perspective the role of metaphor and 

representation in the emergence of the abstract from the concrete and also in sense making of 

abstract mathematical notions. After introducing our theoretical framework, we present and 

comment on some illustrative examples, explored with several cohorts of learners, which include 

both prospective mathematics secondary teachers and first year university students studying science 

and the humanities.     
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Introduction 

We claim that representation and metaphor (between which we distinguish, see below) play a key 

role in the teaching and learning of mathematics. More precisely, in this paper we focus on the ways 

in which metaphorising and representing can foster the emergence of abstract concepts from 

concrete a-didactic situations (Brousseau, 1998) and backwards, making (concrete) sense of abstract 

concepts.  We argue, moreover, that taking advantage of such concrete situations can afford insights 

and motivations for classical abstract mathematical notions, which are friendlier to the learners than 

the traditional approach where such notions are quite often “parachuted from Olympus”.  Indeed, 

many mathematical concepts emerge as procedural computations, which are not supposed to take a 

meaning by themselves. Every time a new representation, or metaphor, is found for such a 

“procedural” concept, this results in a deeper understanding, and quite often in new questions and 

results. A very famous example is that of complex numbers, invented as “impossible” numbers to 

solve cubic equations, whose now classical geometric representation via the complex plane was 

only found two centuries later. Other examples, like the metaphor of “arithmetic geometry,” are 

now at the base of important mathematical research programs. We argue that it is important to help 

students develop such representations explicitly, rather than treating them as trivial side-products of 

teaching. It is however a big challenge to figure out under which conditions representing and 

metaphorising foster mathematical thinking processes as hypothesised above.  

We intend here to pursue our recent research on metaphorising, representing and enacting (Arnoux 

& Finkel, 2010; Diaz-Rojas & Soto-Andrade, 2015; Soto-Andrade, 2007, 2014, 2018), by 

presenting and commenting some non-obvious examples of enactive metaphors and representations 

of mathematical concepts and their use in a-didactic situations (Brousseau,1998). The contextual 

background of our examples involves several cohorts of learners in Chile and France, mainly 

prospective secondary mathematics teachers.   

Research questions    

We single out a couple of research questions, among those involved in our research: 
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1. Which sorts of metaphorising and representing can foster the emergence of abstract notions from 

concrete situations and convey a better grasp of them for the students?   

2. ow can teachers support, in a friendly manner, learners in developing their representational and 

metaphorical competences?  

Theoretical background 

Metaphorising and Representing in cognitive science and mathematics education 

Metaphorising and Representing nowadays play undoubtedly a key role in cognitive science and 

mathematics education. See Goldin (2014) and Soto-Andrade (2014) for related comprehensive 

surveys. Notice that we prefer to focus in on metaphorising, a verb denoting a process, rather than 

on metaphor, a noun denoting an object. Indeed, what is a metaphor for someone may not be a 

metaphor for someone else, and for yet another person it could be a representation instead (see 

below). What we observe is actually the process of metaphorising carried out by someone, a 

cognitive subject.  

Regarding metaphorising (“looking at something and seeing something else”, in metaphorical 

terms), widespread agreement has arisen in cognitive science that our ordinary conceptual system, 

in terms of which we both think and act, is fundamentally metaphorical in nature (Gibbs, 2008; 

Johnson & Lakoff, 2003). In mathematics education metaphor typically appears not just as a 

rhetorical device, but as a powerful cognitive tool, that helps us in grasping or constructing new 

concepts, as well as in solving problems in an efficient way and user-friendly way (English, 1997; 

Lakoff & Núñez, 2000; Sfard, 2009; Soto-Andrade, 2007, 2014).     

Although in the literature the same object is sometimes described either as a representation or as a 

metaphor, here we draw a distinction: we re-present something given beforehand, usually to explain 

concepts already constructed, but we metaphorise to try to fathom something unknown or to 

construct a concept. Recall that Lakoff and Núñez (2000) highlight the intensive use we make of 

conceptual metaphors that appear – metaphorically – such as inference-preserving mappings 

(arrows) “going upwards” from a rather concrete ‘source domain’ into a more abstract ‘target 

domain’, enabling us to fathom the latter in terms of the former. Then representations naturally 

appear as arrows going the other way around, downwards from the more abstract domain to the 

more concrete one (Soto-Andrade, 2014).  

Indeed, our approach to the learning of mathematics emphasises the poietic (from the Greek poiesis 

= creation, production) role of metaphorising, which brings concepts into existence. For instance, 

we bring the concept of probability into existence when, while studying a symmetric random walk 

on the integers, we look at the walker (a frog jumping on a row of stones in a pond, say) and we see 

it splitting into two equal halves that go right and left instead of being equally likely to jump right 

or left (Diaz-Rojas & Soto-Andrade, 2015). This ‘metaphoric sleight of hand’ which turns a random 

process into a deterministic one, allows us to reduce probabilistic calculations to deterministic ones, 

where we just need to keep track of the walker’s splitting into pieces: The probability of finding the 

walker at a given location after n jumps is just the portion of the walker landing there after n 

splittings.    



 

 

  

In the same vein, imagine that one is trying to figure a struggle between two producers A and B for 

a consumer market, who each month – as a consequence of intensive marketing strategies – entice 

consumers of the other brand to change their choice, say 20% of consumers of A going to B but 

only 10% conversely. If one is familiar with jumping frogs, one could metaphorise the evolution of 

the market as the random walk of a frog between two rocks, tagged A and B, with corresponding 

transition probabilities. However, someone who is more familiar with market struggles would rather 

metaphorise the frog’s random walk as a market evolution, to benefit of his/her economic intuition. 

It can be argued that we often introduce new concepts via metaphor, but giving a new meaning (and 

often, just meaning) to a concept that has already been taught involves a representation. We may 

have internal representations (Goldin & Janvier, 1998; Goldin, 2014) which are operationally 

equivalent to metaphors, as the ways a cognitive subject has of figuring out concepts unfamiliar or 

still opaque.   

Methodology and experimental background      

Our methodology relies mainly on qualitative approaches like participant observation techniques 

and ethnographic methods (Brewer & Firmin, 2006; Spradley, 1980).   

Regarding our experimental background, several cohorts of students have participated in 

preliminary tests at the University of Aix-Marseille, France: 60 first year university students 

majoring in science and humanities in a mathematics course in 2015-2018 (usually organized in 10 

groups of 6) and 40 fifth year teacher students in 2 mathematics courses, of 20 students each, in 

2016-2018 (usually organized in 5 groups of 4 each).        

At the University of Chile, in Santiago, three cohorts of prospective secondary school mathematics 

and physics teachers (45 students each, on the average), in a one-semester yearly course in 

elementary number theory, have been involved in our teaching and learning following a metaphoric 

and enactivist approach, from 2016 to 2018. Working most of the time in random groups of 3 to 4, 

(defined by blind picking of coloured Lego cubes from a bag) they were observed and monitored by 

the teacher and an assistant as participant observer or ethnographer (Spradley, 1980; Brewer & 

Firmin, 2006).   

Since we were especially interested in evaluating the impact of our approach on the student’s 

engagement and problem solving and problem posing abilities, we observed mainly:  their level of 

participation and horizontal (peer) interaction, the emergence of “research questions”, i.e. questions  

they ask themselves, to be tackled by themselves (not questions addressed to the teacher to ask for a 

clarification or explanation) and (idiosyncratic) metaphors, arising spontaneously or under 

prompting, accompanying gestural language of learners and teacher, expression and explicit 

acknowledgement of affective reactions. Snapshots of their written products in problem solving 

activities were taken and processed in a worksheet, also for evaluation purposes, and some videos 

of their enacting moments were recorded. 

Illustrative examples and case studies   

We present and discuss here a couple of paradigmatic examples, regarding concrete ways to 

introduce and motivate in a friendly way Pythagorean triples as well as arithmetical congruences. In 

fact, we could describe them under the same roof as arithmetic in a discrete “modular universe”: a 



 

 

  

2D pixeled, grid-like one (the lattice   ) in the first case, and a 1D cyclic one (the polygon      

formed by the integers modulo m) in the second case. For other examples, related to computer 

science (finite automata) and probability, see Arnoux and Finkel (2010), Diaz-Rojas and Soto-

Andrade (2015) and Soto-Andrade (2018).   

Example 1: Pythagorean triples, with Lego bricks 

This activity has been carried out at the University of Aix-Marseille, in several contexts, with the 

cohorts described above: first year science and humanities students and fifth year teacher students 

(last year of teacher initial formation in mathematics).  

It has been tested informally in the last two years, using qualitative monitoring by an assistant, and 

posterior evaluation by the participants; we are setting up now an interdisciplinary team 

(mathematicians, didacticians and cognitive scientists) to study it more in depth in the framework of 

a methodology unit next year. 

We give to groups of 4 to 6 science and humanities students or teacher students one 16  16 

horizontal plaque, two elementary 1  1 bricks, and one 1  16 brick. The question is: for which 

positions on the plaque can the small bricks be connected by the long one? See Figure 1, showing a 

8  8 plaque, two 1  1 bricks in a good position, and a 1  8 brick superposed on them; it is of 

course cumbersome to explain this in writing, but the real model leaves no room for hesitation.  

 

 

 

Figure 1: Linking brick for Pythagorean triples 

By construction, the plaque is endowed with a discrete grid (a metaphor for    with the canonical 

metric, points being the centres of the small circles and 1  1 bricks playing the role of dots); no 

explanation of this is needed. But some time is needed to understand that the long brick can only be 

set on the pair of small bricks if the distance between these two bricks is an integer multiple of the 

unit distance: after half an hour, most groups discover the concept of Pythagorean triples as implied 

by this situation (they all know the Pythagorean Theorem, but not Pythagorean triples). This 

exercise is very rich. It works well, because all the distances are quadratic numbers, hence, if they 

are not integers, they are quite far from an integer: at small distance, there are only exact solutions, 

no “near-solutions”. It is also very engaging for students, because it is concrete. It evolves naturally 

into finding the classical Babylonian solutions (it may be pertinent at that point to present the 

famous Plimpton 322 tablet). One can then ask to find non-trivial rational points on the unit circle; 

students usually start by trial and error, and come first to the conjecture that there are no such 

points. It takes some time to make the relation with the previous question; this can be continued 

with a geometric parametrisation by the rational lines through the point (-1,0), which makes the link 

with the quadratic equation, and, via elementary geometry, with the formula for sine and cosine as a 

function of the tangent of the half-angle: these formulas appear as a reformulation of the 

Babylonian formula. Most students seem surprised to see that there can be links between very 

different domains of mathematics. This can be taken to much more elaborate questions, like the 

number of triples within a bounded distance, and in fact to difficult research questions. One remark 



 

 

  

is that, in our experience, it is not important whether or not the students have already studied these 

notions: in the case of prospective teachers, they are always surprised by the exercises, and do not 

immediately link them to notions they know quite well, but in an abstract way. 

Example 2:  Congruence mod m and dynamical systems   

We report on some developments of our metaphoric enactive approach to arithmetic congruences, 

with third year prospective maths and physics secondary teachers taking a one semester course in 

elementary number theory, in 2016, 2017 and 2018, at the University of Chile.  Since congruences 

mod m are unavoidable in this course, we wanted to motivate them or make their study friendlier. 

To this end, following a radical enactivist approach (Proulx & Maheux, 2017; Soto-Andrade, 2018), 

we just proposed a situational seed first and let the action emerge freely.   

From our theoretical perspective, taking into account the previous mathematical training of our 

teacher students, at secondary school and also in most courses of their initial formation, we could 

predict a “metaphoric deficit” in their understanding of arithmetical congruences. Eventually they 

will be able to recite the definition and calculate, but without having a favourite metaphor (or 

representation) for them, and also with no appreciation of their usefulness. Notice that if they 

metaphorise the integers mod m as a finite “shadow” of the integers, they might easily have the idea 

that a necessary condition for a property to hold for the integers is that it holds for its projection 

onto their arithmetical shadows, something much easier to investigate. So, if a Diophantine equation 

is solvable (in the integers) its shadow should be solvable in the shadow integers mod m. In this 

way, they get necessary conditions for a Diophantine equation to be solvable, which allows them to 

prove unsolvability in several cases.       

Indeed, we found that although our prospective teachers know by heart the definition of congruence 

mod m in the integers, when we ask them how they imagine, metaphorise or visualise congruence 

mod m or which are their internal representations for it in the sense of Goldin (2014), they are at a 

loss. After a while, some of them think of kangaroos, rabbits, frogs, jumping on the integer line, or 

they begin to paint the integers in different colours (five colours for congruence mod 5). Slowly the 

metaphor emerges in several groups, of winding the integer number line on a polygon, e. g. a 

pentagon for congruence mod 5.  They naturally carry out a spiral-like winding on the plane to 

begin with. If nobody suggests a different way, we ask them what they do when they want to wind 

up a long garden hose. They realise then that it is smarter to wind it in 3D, cylinder like. From there 

they come to visualise congruence mod 5, say, as a helical winding of the integer line above a 

regular pentagon. They metaphorise then this congruence relation as a covering space! Typically, 

however, this helix does not remind them of the intuitive construction of the imaginary exponential 

that they were exposed to in Calculus 1, where the real line was wound around or above the unit 

circle. Our enactivist theoretical perspective emphasises processes and dynamics more than (the 

more traditional) objects and static structures. So setting the integers mod m as a stage, for instance 

m = 12 (or even m = 6 or 7, for simpler examples of different nature), we prompt the students to 

wonder what interesting phenomena may arise in these universes with just 6, 7 or 12 sites, where 

they can add and multiply.  

Among other ideas, they can look at the transformation M2 given by multiplying by 2, for example, 

which when iterated launches a dynamical system in the integers mod 12.  The students try then to 



 

 

  

study the generated dynamics, something more natural for those who have developed a systemic 

perspective on phenomena, more often biology and physics students or humanistic students than 

mathematics students. Working for an hour, in random groups of 3 to 4 (defined by blind picking of 

coloured Lego cubes from a bag), a class of 30 to 40 students dutifully iterates M2 and tries to 

represent the phenomenon. They explore then M3 and so on. See Figure 2, which shows some 

drawings by the students, for m = 7 and m = 12. More generally, they investigate the dynamics 

spawned by the multiplication by an integer k in the integers mod m, discovering its variegated 

(forward) orbit structure. They metaphorise idiosyncratically these orbits as forward trajectories and 

they see fixed points, sinks, attractors, 2 – cycles, 3-cycles, etc., and become able to figure out the 

“fate” of different integers mod m.  They begin to conjecture on the number of orbits, or the number 

of n-cycles for a given n. Level of engagement and participation is high, as well as their horizontal 

interaction, where several ideas and approaches meet. Some of them want to find an arithmetical 

explanation of this dynamic geometric behaviour. Others do not. But we suggest everyone to look at 

this geometric phenomenon with arithmetical eyes and vice versa. Most of them draw pictures, but 

others just write down numbers and tables, and compare. We prompt them to exert some 

hermeneutical effort (Isoda & Katagiri, 2012), so that all try to understand other’s viewpoints. In 

this way, some predict the existence of an “ubiquitous orbit” for some k for prime m. The students 

are quite excited and motivated by this challenge when working in small random groups, where 

horizontal interaction is fostered. Quite often some groups want absolutely to show the teacher and 

assistant their progress so far. Each group summarises its findings in a report on a sheet of their 

notebooks, which is photographed by the teacher and assistant. Samples of their work are shown in 

Figure 2. These reports are evaluated, and a huge worksheet is set up with the corresponding grades. 

 

 

 

  

 

Figure 2: Orbit structure for Mk (k = 2, 3, 4, 5) in the integers mod 7 and mod 12 

At the end of the course each student gets a grade in group work which is only taken into account if 

it is higher than the average the grades in the usual compulsory traditional tests taken by the student 

during the course. Interestingly, in our courses the percentage of (the non-compulsory) student 

attendance is much higher than the average (80 to 85% against 50%). 

Overall, we see that students previously exposed to traditional teaching show a severe metaphorical 

and dynamical deficit, remaining confined in the arithmetic-algebraic realm. However, 

progressively, most of them turn out to be able to open up to geometric and dynamical insights, 

even though initially they remain tied to the purely arithmetical approach that they are more 

familiar with. At the end of the work session consensus arises on the importance of being able to 

“change register” and move seamlessly between the arithmetic-algebraic realm and the geometric-

visual one. Most students seem surprised to discover, in this way, links between domains of 

mathematics usually perceived as being far apart, like arithmetic and dynamical systems.     



 

 

  

Discussion and open ends   

We have shown how Pythagorean triples can be concretely embodied and enactively explored and 

also how a dynamical systems approach can make the arithmetic modulo m more lively, visual and 

motivating.  

Our examples show that concrete embodiment of abstract mathematical notions and properties, 

before or instead of their “abstract parachuting”, may bear a dramatic impact on the level of 

participation and engagement of the students in otherwise unappealing tasks. Such impact is also 

seen on their mathematical performance and their ability to put forth their own research questions, 

like investigating the “fate” of various numbers mod m or wondering about an arithmetical 

explanation of the dynamical phenomena observed in the universe of integers mod m.  

Our didactic activities are not staircases to climb sequentially but a rather highly intertwined space 

to explore, where moving flexibly among several representations or metaphors is a must for a 

meaningful and fruitful mathematical experience. 

Our examples also show that representations and metaphors appear sometimes deeply intertwined in 

a circular relationship, so that it may be somewhat artificial to try to separate them. If we focus in 

on metaphorising and representing it may very well happen that in a class, some students are 

metaphorising while others are representing.  

Also, quite often the teacher will be striving to represent – in a friendly way for the students – a 

notion that she is familiar with (maybe in a rather abstract way though), while students will be 

metaphorising the same notion, which they hardly fathom. This is visible in our preliminary 

example of the frog’s random walk: the teacher will be eventually representing the probability of 

finding the frog in a given stone after m jumps by the portion of the frog landing there, while the 

students will be metaphorically just constructing this probability as the frog’s portion landing in this 

stone. 

The same holds for Pythagorean triples and arithmetical congruences. Some arithmetically minded 

students may realise for the first time that Pythagorean triples may be embodied as an integer fitting 

phenomenon on a grid and that congruence modulo 5 may be represented by winding the integer 

number line over a regular pentagon. Other students may discover arithmetical congruences, which 

they ignored or felt to be an esoteric notion, with the help of this enactive geometric winding.  

Notice here the emerging connection between arithmetical congruences and geometric congruences.  

A recurring observation in all our examples, is the surprise that arises among the learners when they 

realise hitherto hidden connections between realms of mathematics which seemed to lie far apart. 

Furthermore, it appears that usual problem solving, as found in the literature, tends to neglect the 

important role of metaphorisation and representation, as a learner’s first reaction when tackling a 

problem that looks opaque to him or her. Not only because this may allow him or her to solve an 

otherwise unyielding problem but also because it may allow him or her to “see” a solution, turning a 

hitherto blind calculation into pellucid insight.  

The various metaphors we have presented here are only a sample; there are many others, in 

analysis, probability, computer science, etc. Invariably, when these metaphors are presented or 

emerge, they attract the attention of students, and make for a motivating and meaningful classroom 



 

 

  

experience. They may be however hard to find, so a systematic “catalogue” of them would be most 

commendable.   
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