N

HAL

open science

Indexing De Bruijn graphs with minimizers

Camille Marchet, Maél Kerbiriou, Antoine Limasset

» To cite this version:

Camille Marchet, Magl Kerbiriou, Antoine Limasset. Indexing De Bruijn graphs with minimizers.
Recomb-Seq 2019 - 9th RECOMB Satellite Workshop on Massively Parallel Sequencing, May 2019,

Whashinton, United States. pp.1-16, 10.1101/546309 . hal-02435086v1

HAL Id: hal-02435086
https://hal.science/hal-02435086v1
Submitted on 10 Jan 2020 (v1), last revised 23 Nov 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02435086v1
https://hal.archives-ouvertes.fr

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Indexing De Bruijn graphs with minimizers

Camille Marchet!, Magl Kerbiriou! and Antoine Limasset!
1Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL.

Abstract

Background: The need to associate information to words is shared among a plethora of applica-
tions and methods in high throughput sequence analysis, and could be marked as fundamental.
A scalability problem is promptly met when indexing billions of k-mers, as exact associative
indexes can be memory expensive. To leverage this challenge, recent works take advantage of
the k-mer sets properties. They exploit the overlaps shared among k-mers by using a De Bruijn
graph as a compact k-mer set to provide lightweight structures

Contribution: We propose a scalable and exact index structure able to associate unique iden-
tifiers to indexed k-mers and to reject alien k-mers. The proposed index combines an extremely
compact representation along with a high throughput. Moreover, it can be efficiently built from
the De Bruijn graph sequences. The efficient index implementation we provide, achieved to
index the k-mers from the human genome with 8 GB within 30 minutes and was able to scale
up to the huge axolotl genome with 63 GB within 10 hours. Furthermore, while being memory
efficient, the index allows above a million queries per second on a single CPU in our experiments
and its throughput can be raised using multiple cores. Finally, we also present the index ability
to practically represent metagenomic and transcriptomic sequencing data to highlight its wide
applicative range.

Availability: The index is implemented as a header-only library in C++, is open source under
AGPL3 license and available at https://github.com/Malfoy/Blight. It was designed as a
user-friendly library and comes along with sample code usage.

1 Introduction

Tremendous, ever growing amounts of DNA and RNA reads are made available through high-
throughput sequencing methods. Single RNA, DNA or metagenome and metatranscriptome sam-
ples can contain up to billion reads. As an example, the NIH Sequence Read Archive (SRA) [1]
gathers petabases of sequences. Working on such collections of samples is an important challenge
for indexation scheme. Even when assembling raw data to genome contigs, indexing very large
genomes (for instance Pinus taeda [2] with 20Gbp or Ambystoma mexicanum [3] with 32 Gbp)
or metagenomes remain a serious difficulty. In order to deal with these magnitudes, efforts have
been put into designing data structures that perform the generic task of associating pieces of infor-
mation to words (k-mers) from studied sequences. This fundamental block is a corner stone for a
large spectrum of methods in bioinformatics: genome assembly [4] efficient overlap detection among
large sequences [5], quick quantification of transcriptomes [6], sequence search in large sequences
collections [7], variant detection [8]; and can be identified as a generic need in large scale sequence
analysis.

The main difficulty remains to design data structures that can handle billions of k-mers, so they
can scale to large genomes or metagenomics instances. The methodology traditionally adopted

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

three main strategies. A first one is to index fixed-size words from sequences in sets structures that
enable presence/absence queries. This strategy often relies on Bloom filters, and is for instance
used to allow the search of sequences in thousands of indexed raw datasets [9], or for assembly [10,
11]. A second strategy uses full-text indexes that can localise words of arbitrary length in the
sequence or set of sequences. They commonly rely on FM-indexes [12]. These methods can offer
extremely memory efficient indexes but can present the inconvenient of a high construction cost
and a reduced throughput compared to hash based methods. Finally, some data structures propose
generic associative indexes. Based on hash tables [8] and/or filters [7], they allow to store (key=k-
mer, value) pairs. This way, k-mers can be associated to information of any nature, for instance
to their original dataset(s) [6], or counts [13]. The presented work pertains to this latter category.
Hash tables’ cost can be illustrated by pioneer works that introduced associative structures such as
Cortex [8]. Using a colored De Bruijn graph, it represents the k-mers associated to their datasets of
origin and allows quick queries. However, it cannot scale up to more than a dozen datasets. Such
difficulty motivated recent improvements [14] based on minimal perfect hash functions (MPHF) [15].
Building indexes upon such techniques has the advantage to yield powerful space and time com-
promises.

However, MPHFs do not represent sets of k-mers. Membership operations and stranger keys
rejection must be handled using additional information. In a previous work we proposed to add an
additional structure to associate to each k-mer a fingerprint [13], in order to obtain a probabilistic
associative structure. The fingerprint is a hash of the k-mer, as a consequence the structure presents
a false positive rate due to hash collisions, that depends of the fingerprint size.

More recently, Pufferfish’s [16] authors took advantage of the possibility to assemble k-mers using
compacted De Bruijn graphs [17, 18]. They store the position of each k-mer in the set of assembled
sequences and can handle stranger k-mers by seeking their sequence at the position indicated by
the index. De Bruijn graphs are convenient representations of k-mers collections since they collapse
redundancy in their vertices that represent the k-mers set. There are numerous efficient De Bruijn
graph representations (succinct data structures such as BOSS [19], efficient representations of De
Bruijn graphs vertices such as DBGFM [20] or deGSM [21]), however they differ from Pufferfish
and from the scope of this work since they are not associative structures.

In this contribution, we propose a novel, exact associative structure for k-mers, able to scale to
extremely large nucleotide content while being memory and time efficient. Although it is based
on a MPHF, this structure is deterministic and yields no false positives at query. It enabled the
indexation of the 18 billions of 31-mers from the axolotl genome using 62.4GB of RAM (= 28 bits
per k-mer) in 10 hours. The constructed index was able to perform more than a million query per
second. Contrary to works dedicated to a particular application (colored De Bruijn graphs [22],
quantification [6]), we propose a generic associative index that can be used for different purposes.
To this extent, we implement a header-only library for user-friendly integration to various projects.
We demonstrate its performances on different datasets to illustrate its potential applications on
various issues.

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

2 Methods

2.1 Outline
2.1.1 Inputs/outputs

We construct our index from a set of sequences representing the nodes of a compacted De Bruijn
graph called unitigs. We will consider a graph of unitigs, i.e. a compacted De Bruijn graph as
defined in [18]. Unitigs are simple paths from a De Bruijn graph, with all but the first vertex
(respectively last vertex) having a in-degree of 1 (respectively an out-degree of 1), compacted into
a single vertex in the graph of unitigs.

For each k-mer present in the input graph, the index returns a unique identifier i € [1, N] with N
the total number of k-mer, and —1 for any other k-mer.

2.1.2 Index construction

sequences k-mer set unitig set (a) | (b)
-0 = 21 unitigs
AGCTG.. | . .GAACTCAAATGTCTGCTT. . .
>1 — = — GAACTCA
CATAG... =_ AACTCAA
=== T ACTCAAA k-mers
>n — minimizers buckets C¥Eﬁﬁﬁ¥6
=] l l l CAAATGT
1\‘ mj mQ ms3 mp e _AI.\ATGTC
MPHF, MPHF, MPHF, MPHF, GAACTCAA super k-mers
positions ACTCAAATGTC
2548
105 p— — p—
super k-mers™ e

Figure 1: (a) Overview of BLight’s method. A compacted De Bruijn graph is built from of the
initial set of k-mers. Buckets are built upon the split of unitigs from the graph into super k-mers.
Each bucket is represented by a MPHF that associates k-mers to their positions in the bucket.
When querying, a k-mers is directly sent to the relevant bucket for lookup using its minimizer. (b)
Example of how a unitig is split into super k-mers per minimizers (in red).

First, we split the graph into several sets of k-mers called buckets, depending on the minimizers [23]
of the k-mers. For a minimizer size m, 4™ buckets will be constructed where each bucket will
handle all k-mers with a given minimizer. (See also algorithm 1 in Appendix for the detailed
bucket construction procedure). Once filled, for each bucket a specific MPHF is built from its
k-mer set. Then, for a given bucket and a given k-mer, the MPHF returns a unique identifier. We
use this identifier to associate to each k-mer its position in its corresponding bucket sequences to
ensure that it can be retrieved. Those position arrays are retained as bit-vectors, where each k-mer
position needs log2(bucket_size) to be encoded. Therefore each bucket handle k-mers that share a

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

given minimizer, contains the k-mer sequences and has a MPHF that associate to each k-mer its
position in the bucket sequences.

2.1.3 Query

The query is done in two times (Figure 2, also Algorithm 3 in Appendix): first the relevant bucket
is found according to the k-mer minimizer. Second, the MPHF is queried with the k-mer. MPHF's
can return false positives at query, never false negatives. This means that for an existing k-mer,
the MPHF returns its identifier that can be used to get its position in its bucket (Figure 2 (a)). For
an alien k-mer, either no information is returned, meaning the k-mer is not present, or the MPHF
falsely indicates a position (Figure 2 (b)). Then, for any k-mer for which the MPHF returned a
position p, a lookup is performed in the sequences bucket at position p. This way, we check that
the right k-mer sequence is read from this position. If not, we return a —1 identifier to indicate this
k-mer is an alien. It is thus important to notice that, despite relying on the probabilistic MPHF
response, our structure always permits deterministic queries.

2.2 Implementation details
2.2.1 Super k-mers

In order to represent k-mers from a bucket in a memory efficient way, we rely on the notion of
super k-mers as described in [24]. The intuition behind the idea of super k-mers is that overlapping
k-mers will often share the same minimizer. Therefore a group of x successive k-mers from a unitig
sharing the same minimizer can be encoded as a word of length k£ + x — 1 (Figure 1 (b)). We use
super k-mers in order to store more efficiently k-mers in each bucket. These sequences and their
associated minimizers are written on the disk, which allows to reload the index while skipping the
first bucket construction step. In order to easily access the sequences of the original graph, super
k-mer are stored in gzipped FASTA format. Meta-data linked to each bucket and super k-mer are
written in FASTA headers.

2.2.2 Minimizer size

The number of buckets increases exponentially (4™) as m the minimizer size increases. As a
consequence buckets contain less k-mers at higher m values, which means that the bit-vectors
used to encode positions in each buckets are also globally reduced (as each k-mer position requires
log2(bucket_size) to be encoded).

Thus, increasing the size of the minimizers seems to be interesting to encode k-mers positions in
a more efficient way. However, increasing the number of buckets also means having an additional
overhead as internal information, such as the beginning and the size of buckets, have to be stored for
each bucket independently of the input. As this overhead is exponential, it can represent significant
amount of memory when m is above 10. Moreover, another downside of a high m is that overlapping
k-mer are less likely to share a large minimizer. Therefore, a larger m tends to produce more and
smaller super k-mers and this fragmentation raises the total amount of nucleotide necessary to
represent a set of k-mer.

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint

(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

2.2.3 Sparse index

One can index k-mer approximate position via sub-sampling to reduce the memory impact of the
position encoding. Thus the trade-off involves the query time (supplementary time is required to
retrieve some k-mers) against the index size (by storing less position information, the bit-vectors
size for each bucket can be reduced). More precisely, in order to save b bits when encoding the
positions, one indexes p = p;/ /2b for each k-mer k; at position p;. Thus, 2° k-mers share the
same indexed position p. From this position, we have to check at most to 2° k-mers during the
query to ensure the k-mer exists. An example is given in Figure 2 (c). In the case of queried alien
k-mers, we always are in this worst case. We experimentally show (Table 2) that up to b = 6,
the additional time has no impact since the query bottleneck is to compute k-mers minimizers and
query their MPHF identifiers. We observe that for b > 6 the query becomes increasingly slower.
The value b = 6 has been therefore chosen as the default value for all the presented results unless
said otherwise.

(a) query k-mer (b) alien k-mer (c) query k-mer
ACTT GCTG ACTT
minimizer minimizer minimizer
bucket bucket bucket bucket bucket bucket bucket bucket bucket
positions positions positions positions positions positions positions positions positions
|
[PHF | | MPHF | | MPHF | | MPHF | | MPHF MPHF | | ‘ MPHF MPHF i-1 pj IPHF
i p i p |
"
ACTT ACTT AACTT

Figure 2: Queries in the index: (a) query of an indexed k-mer, (b) query of an alien k-mer, (c)
query in the sparse index.

3 Results

We benchmark our structure on three different use cases. First, we select large, complex, reference
genomes of increasing sizes (starting from the human that represents a moderate reference size, up to
the currently larger available at NCBI, i.e. the axolotl Ambystoma mezicanum, with 32Gbp) in order
to demonstrate how the structure scales to these objects. We use these datasets to demonstrate how
the minimizer size impacts the performances of our structure, as well as to illustrate the trade-off
obtained when using the sparse version of our index. On this application, we compare the current
state-of-the art approach designed to index such data, Pufferfish.

Second, we demonstrate how our method can handle the indexation of raw reads datasets and
show example of potential applications of such index. We use BLight to associate to each k-mer its
number of occurrences across the datasets. We selected a dataset from TARA Oceans samples [25],
that was previously used for the validation of a method we compare with [13]. We compare to
two lightweight, recent ubiquitous k-mer abundance index: Short Read Connector (SRC) [13] and
Squeakr [26]. Finally, we propose to use BLight as a proof-of-concept colored De Bruijn graph
representation. Using 100 simulated RNA-seq datasets, we retain each k-mer’s color (i.e. list of
initial datasets) using our structure. We compare our performances to another recent in-memory
colored De Bruijn graph exact representation: Mantis [7].

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

All experiments were performed on a cluster running with Intel(R) Xeon(R) CPU E5-2420 0 @
1.90GHz with 192GB of RAM, except for section 3.3 that was benchmarked using a machine
running with Intel(R) Core(TM) i7-8650U CPU (1.90GHz with 4 cores and 8MB L3 cache size)
with 32GB of RAM and Ubuntu 16.04.

3.1 Indexing up to top-largest reference genomes

Selected genomes To assess the impact of the proposed minimizer partitioning, we built a De
Bruijn graph (k = 31) from several reference genomes and built the BLight index with different
minimizer sizes on their graphs:

- The human reference genome (GRCh38.p12) of 3.2 Gbp, counting 2.5 billions k-mers and
constructed with Becalm?2 [18] using 12 CPU hours and 6.6GB of RAM.

- The latest assembly of Pinus taeda (GCA_000404065.3) of 22 Gbp, counting 10.5 billions
k-mers and constructed with Bealm?2 using 68 CPU hours and 17.3GB of RAM.

- The latest assembly of Ambystoma mezicanum (GCA_002915635.2) of 32 Gbp, counting 18.3
billions k-mers and constructed with Bealm2 using 107 CPU hours and 44.1GB of RAM.

To compare BLight to Pufferfish we also included the bacterial genomes graph from Pufferfish
paper, constructed from more than 8000 bacterial genomes counting 5,4 billions k-mers.

Index construction We constructed the BLight index with several minimizer sizes and report in
Figure 3 the amount of memory necessary to encode the graph super k-mer, to encode the k-mers
positions and the actual maximal memory peak during construction. All value are expressed as
bits per k-mers. We globally observe that a higher minimizer size leads to a slight augmentation
of the memory needed to encode the graph sequences and a neat decrease of the memory allowed
to the position encoding. With a uniform coverage we expect the bit required to encode a k-mer
position to be & logQ(MCk’f%m) resulting of an expected gain of 2 bits per k-mer for increasing the
minimizer size of one. Interestingly, the observed results are close to this trend in practice on our
indexed genomes on the Figure 3, where we report the BLight results for the index construction
on the chosen genomes graphs. We summarized the best result obtained with BLight with respect
to Pufferfish in Table 1. We show that BLight is able to construct its index using substantially
less memory than Pufferfish construction steps, but also than Pufferfish index itself. We also
show improved construction time and we want to highlight the fact that unlike Pufferfish, no pre-
processing is needed on the graph for the index construction, since only the unitig sequences in a
FASTA file are needed. All detailed results are presented in the Appendix in Table 6.

Query time and impact of sub-sampling factor We compared our throughput according to
Pufferfish in Table 2. We observe that our query is slightly slower than Pufferfish’s on a single CPU.
However the query throughput can be significantly increased by using multiple threads. Either way
both indexes are able to propose a very high throughput of the order of the million queries per
second. As mentioned before, using a sub-sampling factor enables to control the memory usage at
the expense of the query performances. However, we observe that below b = 7 the impact on our
query time is negligible. We therefore chose b=6 as the default sub-sampling value for all other
benchmarks (Table 2 shows only even b values, a full report can be found in Appendix).

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Human Bacterial Genomes
40 40
A A A
30 ek A 30 A
‘A - A
o) & A @ ki oA A
e e
120 120
= =
m m
10 10
0 0
3 4 5 6 7 8 9 10 11 12 7 8 9 10 11 12 13
Minimizer size Minimizer size
Pine Axolotl
40 40
A
A A
A) A A i
30 ™ s N 30 a Y ry
— o o - A
(O] ()
e e
120 120
= =
m m
10 10
0 0
7 8 9 10 11 12 13 7 8 9 10 11 12 13
Minimizer size Minimizer size

Memory usage: = graph encoding * peak memory *= position encoding

Figure 3: Detailed memory usage in bits per k-mer respectively on the human, bacterial genomes,
pine and axolotl graphs during the BLight index construction.

Blight as a De Bruijn graph representation BLight can be used as a high-throughtput De
Druijn graph representation, but is not optimal in comparison to space-efficient graph structures.
For each species, we computed the theoretical bound indicated by Conway & Bromage (CB) [27]
(for £ = 31, human: 32.2, pine: 30.15, axolotl: 29.35 and bacterial genomes set: 31.11 GB).
Contrary to our representation and Pufferfish’s, CB does not take into account the possibility to
assemble k-mers. This is why we use less space than CB on the human genome. Our structure and
Pufferfish’s use O(log(genome_size)) bits per k-mer, thus exceeds CB on larger genomes. Other
FM-index based methods such as DBGFM maintain compressed, non-associative representations of
the De Bruijn graph, thus are always more space-saving than ours. We follow a different trade-off,
since we expect a faster query time in practice.

3.2 Indexing and k-mer counting in metagenomics datasets

In this section, we assess the ability of the BLight structure to index complex metagenomic
datasets. We first chose to index all non unique k-mers of a TARA sample! containing five datasets
ERR1712199, ERR1711907, ERR599280, ERR562434 and ERR1718455. BLight was able to build

"https://www.ebi.ac.uk/ena/data/view/SAMEA2620556

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Genome Pufferfish time | BLight time | Pufferfish memory | BLight memory | Bits/k-mer
Human 01:09 00:29 274 8.0 25.6
Bacterial genomes 03:07 02:10 75.0 17.0 25.2
Pine NA 06:48 NA 38.8 29.6
Axolotl NA 10:11 NA 62.4 27.2

Table 1: Comparison of the maximal memory usage in GB and the CPU time in minutes used
during construction with BLight and Pufferfish from the De Bruijn graph. We were unable to
construct Pufferfish’s index for the pine and the axolotl genomes due to memory limitation. We
want to point up that the Pufferfish index use less RAM than its construction steps. This index
represent 17GB for the human genome and 40GB for the bacterial genomes.

b Position encoding || Query real reads | Multi thread || Query reference | Multi thread
(bit/k-mer) (hh:mm) (hh:mm) (hh:mm) (hh:mm)
0 18.7 00:23 00:04 00:29 00:06
2 16.7 00:27 00:05 00:32 00:07
4 14.7 00:27 00:05 00.33 00:07
6 12.7 00:28 00:05 00:36 00:07
8 10.7 00:45 00:08 01:04 00:13
10 8.7 02:28 00:22 02:44 00:31
Pufferfish NA 00:21 00:21 00:30 00:30

Table 2: Influence of the sub-sampling parameter on the query time. We report the amount of
memory used by the positions divided by the number of k-mers, the time required to query the real
dataset SRR5833294 with one thread, the time required to query the real dataset with 6 thread,
the time required to query all the k-mers of the reference graph and the time required to query this
graph using 6 threads.

an index from the graph constructed from Bcalm2. The construction lasted less an hour and used
24.7 GB, which represents 27.1 bits per k-mer. This memory usage is higher than the bacterial
genomes despite having a comparable amount of k-mers. This can be imputed to the expected
graph fragmentation of a raw metagenomic sample.

In a second experiment we provide a proof of concept of an index able to associate to each k-mer
its abundance among a dataset. We compare a naive usage of BLight with Squeakr and Short Read
Connector counter (SRC) in exact mode in Table 3. If the memory usage of BLight is very reduced,
the index construction is way slower than SRC or Squeakr. This can be explained by the fact that
the proposed snippet has to perform query on each k-mer of the dataset to re-count the k—mer
abundance. A real implementation should parse a k-mer counting result in order to initialize the

Tool Peak memory (GB) | Time (hh:mm)
Squeakr exact 185.4 15:11
SRC counter exact 44.20 05:12
BLight count 20.8 19:49

Table 3: Performance comparison of an abundance index on the ERR599280 metagenomic dataset.

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

k-mer abundance as SRC. Moreover, SRC or Squeakr inexact modes are expected to be more space
efficient but will yield false positives.

3.3 Colored De Bruijn graphs

Selected tools In this section, we propose to apply BLight to construct and query a colored
De Bruijn graph. In colored De Bruijn graphs, vertices/edges of De Bruijn graphs receive labels
(or colors) that represent their dataset(s) of origin. We implement a proof-of-concept colored De
Bruijn graph using BLight, by simply adding a new step that loops other k-mers in each dataset
to associate color information to k-mers using our index.

We chose to compare our approach to Mantis since it benefits from the most recent improvements
and outperforms previous efficient colored De Bruijn graph methods [28, 29]. Mantis allows exact
query and thus, can be fairly benchmarked with our method. Other approaches based on Sequence
Bloom Trees [9, 30, 31] do not represent the colored De Bruijn graph but yet can provide the
datasets that share k-mers with a query sequence. They explored the compromise of probabilistic
membership query to reduce their costs. Though it is not exact, we include SSBT [31] to our
benchmark for the sake of the comparison, as a recent Sequence Bloom Tree implementation.

Data generation and pre-processing We simulated a collection of 100 x 10M reads simulated
RNA-seq human datasets (with GRCh38 reference) using the Flux Simulator [32]. We filtered and
kept for further indexation the k-mers (kK = 31) which abundance is at least 2 in each dataset
(263,811,076 k-mers). For the query set, we randomly selected transcripts (of size > k) to build
batches of increasing sizes (from Gencode transcripts GRCh38.p12). Before running each tool, the
set of k-mers that they index must be computed. For Mantis, Squeakr exact is run each data
set (peak memory 1.8GB RAM and 1:42 minutes). For BLight, we ran Bcalm2 over each datasets
(21:16 minutes and 2,0GB RAM). For SSBT, we built Bloom filters for each datasets (20:06 minutes
and 0.66GB RAM), setting Bloom filters sizes roughly as the number of distinct k-mers to index
and using one hash function, as recommended. Then all tools were run single-threaded for indexing
and query steps.

Index construction and query Index construction times and peak memory are reported in
Table 4. SSBT is the fastest at construction (1min 46sec). BLight mitigates well construction time
and memory, being second in terms of speed (2min 33sec) and having the more lightweight memory
footprint (2.89 GB). Moreover, Mantis and BLight allow parallel index construction. Using only 4
threads, BLight becomes the fastest tool to build the index (1min 42sec for BLight versus 3min 38
sec for Mantis), and remains with the lowest memory consumption (2.89 GB versus 11.8 GB for
Mantis). For Mantis and BLight, we could report detailed performances for each step in Table 8 in
Appendix: both index construction and color addition steps are achieved in less time in comparison
to Mantis (Table 8).

We show the query results in Table 5. Since query time can evolve with the batch size, we observe
how three batches of 10, 100 and 1000 transcripts are queried to the three methods’ indexes.
BLight’s query times are the fastest in each case, requiring up to two orders of magnitude less than
Mantis and SSBT.

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

index constr. total (mm:ss) peak resident (GB)
Mantis 7:53 11.8
SSBT 1:46 3.34
BLight 2:33 2.89

Table 4: Comparison of Mantis, SSBT and BLight for index construction from 100 RNA-seq
datasets with k-mers of abundance > 2.

Query Mantis SSBT BLight
(nb. transcripts) | (seconds) (seconds) (seconds)
10 1.81 64.0E-1 1.35E-2
100 1.78 1.82 8.77E-2
1000 2.25 1.88E+1 1.58

Table 5: Query times for batches of 10, 1000 and 10000 transcripts from Gencode, on the indexes
built in previous table.

4 Conclusion and future work

In this work we propose BLight, an ubiquitous, efficient and exact associative structure for index-
ing k-mers, relying on De Bruijn graphs. Based on efficient hashing techniques and light memory
structure, we believe that the proposed index has a very interesting time/memory compromise,
being able to perform millions query per second and using less than 32 bits per k-mer on our exper-
iments. We demonstrate that BLight is able to index the largest available genomes to date using
reasonable amount of memory while outperforming state of the art methods in both construction
time and memory. We also shown it could be relevant and efficient on raw transcriptomic and
metagenomic data. We therefore believe that a huge number of methods could rely and benefit
from this structure due to its wide application spectrum. To that extent, we implemented a user
friendly library along with different snippets to allow our method to be usable in practical cases.
A vast amount of improvements could be brought to the proposed backbone structure. Specific min-
imizer schemes could be designed to obtain the smallest possible buckets, supplementary structures
to sort and rank the super k-mers could allow faster query or reduced position encoding. Such op-
timizations could improve the global resources usage of the index or provide different time/memory
trade-offs.

Another relevant continuation of this work would be to adapt this structure for the specific needs of
applications requiring such scalable data structure. In particular, the indexing challenge of colored
De Bruijn graph (or more generally to answer large sequence search problems as defined in [9]) have
caught the interest of a community and we believe that the proposed work could be relevant. The
field was first renewed very recently through two main categories, methods that adopted succinct
graph structures and color sets to save space [28, 29, 22], and structures that explored very memory
efficient structures at the cost of false positives [9, 30, 31]. We chose to face the problem by
enhancing the initial k-mers sets representation, and compared our approach to a representative
of each category. We demonstrated the promising results of BLight for encoding colors per k-mer,
even when competing with approximate membership query methods such as SSBT. At the moment,
results were performed on a rather restrained set of datasets and an interesting future work includes
a better representation colored De Bruijn graph using color factorization techniques.

10

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license.

Acknowledgements

We thank Rob Patro, Fatemeh Almodaresi, Tatiana Rocher and Rayan Chikhi for their support
and interesting discussions on this project. This work was supported by the ANR Transipedia
(ANR-18-CE45-0020), and benefited from Université de Lille HPC Cloud computing resources.

References

1]

Rasko Leinonen, Hideaki Sugawara, Martin Shumway, and International Nucleotide Se-
quence Database Collaboration. The sequence read archive. Nucleic acids research, 39(suppl_-
1):D19-D21, 2010.

Aleksey V Zimin, Kristian A Stevens, Marc W Crepeau, Daniela Puiu, Jill L Wegrzyn, James A
Yorke, Charles H Langley, David B Neale, and Steven L Salzberg. An improved assembly of the
loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience, 6(1):1-4,
2017.

Sergej Nowoshilow, Siegfried Schloissnig, Ji-Feng Fei, Andreas Dahl, Andy WC Pang, Martin
Pippel, Sylke Winkler, Alex R Hastie, George Young, Juliana G Roscito, et al. The axolotl
genome and the evolution of key tissue formation regulators. Nature, 554(7690):50, 2018.

Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin,
Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Prjibelski,
et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing.
Journal of computational biology, 19(5):455-477, 2012.

Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103-2110, 2016.

Nicolas L Bray, Harold Pimentel, Pall Melsted, and Lior Pachter. Near-optimal probabilistic
rna-seq quantification. Nature biotechnology, 34(5):525, 2016.

Michael Ferdman, Rob Johnson, and Rob Patro. Mantis: A fast, small, and exact large-
scale sequence-search index. In Research in Computational Molecular Biology: 22nd Annual
International Conference, RECOMB 2018, Paris, France, April 21-24, 2018, Proceedings,
volume 10812, page 271. Springer, 2018.

Zamin Igbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo assembly
and genotyping of variants using colored de bruijn graphs. Nature genetics, 44(2):226, 2012.

Brad Solomon and Carl Kingsford. Fast search of thousands of short-read sequencing experi-
ments. Nature biotechnology, 34(3):300, 2016.

Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph representation
based on a bloom filter. Algorithms for Molecular Biology, 8(1):22, 2013.

Shaun D Jackman, Benjamin P Vandervalk, Hamid Mohamadi, Justin Chu, Sarah Yeo,
S Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe, Rene L. Warren, et al.

Abyss 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome research,
pages gr-214346, 2017.

11

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

22]

[23]

[24]

[25]

[26]

It is made available under a CC-BY 4.0 International license.

Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM
(JACM), 52(4):552-581, 2005.

Camille Marchet, Lolita Lecompte, Antoine Limasset, Lucie Bittner, and Pierre Peterlongo.
A resource-frugal probabilistic dictionary and applications in bioinformatics. Discrete Applied
Mathematics, 2018.

Avi Srivastava, Fatemeh Almodaresi, Hirak Sarkar, and Rob Patro. A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics, 34(13):1169-i177, 06 2018.

Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable
minimal perfect hashing for massive key sets. arXiv preprint arXiv:1702.03154, 2017.

Fatemeh Almodaresi, Hirak Sarkar, and Rob Patro. A space and time-efficient index for the
compacted colored de bruijn graph. bioRziv, page 191874, 2017.

Ilia Minkin, Son Pham, and Paul Medvedev. Twopaco: An efficient algorithm to build the
compacted de bruijn graph from many complete genomes. Bioinformatics, 33(24):4024-4032,
2016.

Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):1201-1208, 2016.

Christina Boucher, Alex Bowe, Travis Gagie, Simon J Puglisi, and Kunihiko Sadakane.
Variable-order de bruijn graphs. In 2015 Data Compression Conference, pages 383-392. IEEE,
2015.

Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul Medvedev. On
the representation of de bruijn graphs. Journal of Computational Biology, 22(5):336-352, 2015.

Hongzhe Guo, Yilei Fu, Yan Gao, Junyi Li, Yadong Wang, and Bo Liu. degsm: memory
scalable construction of large scale de bruijn graph. bioRziv, page 388454, 2018.

Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman, Rob Johnson,
and Rob Patro. Mantis: A fast, small, and exact large-scale sequence-search index. Cell
Systems, 2018.

Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke. Reduc-
ing storage requirements for biological sequence comparison. Bioinformatics, 20(18):3363-3369,
2004.

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.
Kmec 2: fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569-1576, 2015.

Eric Karsenti, Silvia G Acinas, Peer Bork, Chris Bowler, Colomban De Vargas, Jeroen Raes,
Matthew Sullivan, Detlev Arendt, Francesca Benzoni, Jean-Michel Claverie, et al. A holistic
approach to marine eco-systems biology. PLoS biology, 9(10):e1001177, 2011.

Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. Squeakr: an exact and
approximate k-mer counting system. Bioinformatics, 34(4):568-575, 2017.

12

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

[27]

[28]

It is made available under a CC-BY 4.0 International license.

Thomas C Conway and Andrew J Bromage. Succinct data structures for assembling large
genomes. Bioinformatics, 27(4):479-486, 2011.

Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E Belk, Robert
Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher. Succinct colored de bruijn
graphs. Bioinformatics, 33(20):3181-3187, 2017.

Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: A succinct colored
de bruijn graph representation. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 88. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Chen Sun, Robert S. Harris, Rayan Chikhi, and Paul Medvedev. AllSome Sequence Bloom
Trees. In RECOMB 2017 - 21st Annual International Conference on Research in Computa-
tional Molecular Biology, Hong Kong, China, May 2017.

Brad Solomon and Carl Kingsford. Improved search of large transcriptomic sequencing
databases using split sequence bloom trees. Journal of Computational Biology, 25(7):755-765,
2018.

Thasso Griebel, Benedikt Zacher, Paolo Ribeca, Emanuele Raineri, Vincent Lacroix, Roderic
Guigé, and Michael Sammeth. Modelling and simulating generic rna-seq experiments with the
flux simulator. Nucleic acids research, 40(20):10073-10083, 2012.

Appendix

Result details

In Table 8 we show details about Mantis and BLight’s runtimes on the index construction for the
100x 10 million reads RNA-seq datasets.

Algorithms

13

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Genome minimizer size | graph encoding | position encoding | Total RAM | construction time
Human 3 4.6 25.5 26.4 00:50
Human 4 6.1 23.9 18.0 00:54
Human 5 6.9 22.3 13.3 00:47
Human 6 7.2 20.2 10.7 00:37
Human 7 74 18.3 9.7 00:33
Human 8 7.6 16.5 9.1 00:29
Human 9 7.8 14.6 8.7 00:27
Human 10 8.1 12.7 8.2 00:28
Human 11 8.3 10.8 8.0 00:29
Human 12 8.6 9.0 9.1 00:30
Human Pufferfish NA NA 27.4 01:09
Metagenomic sample 6 8.4 21.6 35.0 01:06
Metagenomic sample 7 8.6 19.7 31.9 01:06
Metagenomic sample 8 8.8 17.8 29.2 00:53
Metagenomic sample 9 9.0 15.8 27.6 01:02
Metagenomic sample 10 9.2 13.8 25.9 00:52
Metagenomic sample 11 9.5 11.9 24.7 00:56
Metagenomic sample 12 9.7 9.9 25.0 01:03
Metagenomic sample 13 10.0 8.0 29.8 01:11
Bacterial genomes 7 7.5 19.1 22.6 02:29
Bacterial genomes 8 7.7 17.2 20.4 02:19
Bacterial genomes 9 7.8 15.3 18.9 02:18
Bacterial genomes 10 8.1 13.3 17.8 02:09
Bacterial genomes 11 8.3 11.4 17.0 02:10
Bacterial genomes 12 8.6 9.5 17.6 02:15
Bacterial genomes 13 8.8 7.7 22.6 02:29
Bacterial genomes Pufferfish NA NA 75.0 03:07
Pine 7 9.9 20.8 48.8 07:44
Pine 8 10.1 18.9 46.3 07:13
Pine 9 10.3 17.0 43.3 07:01
Pine 10 10.5 15.1 41.0 06:37
Pine 11 10.7 13.2 39.3 06:40
Pine 12 11.0 11.3 38.8 06:48
Pine 13 14.1 9.4 43.1 07:00
Axolotl 7 8.7 21.2 80.1 12:04
Axolotl 8 8.9 19.2 76.1 11:18
Axolotl 9 9.1 17.3 71.8 10:23
Axolotl 10 9.3 15.3 67.8 09:54
Axolotl 11 9.5 13.3 64.3 09:48
Axolotl 12 9.8 114 62.4 10:11
Axolotl 13 10.0 9.4 65.7 10:18

Table 6: Influence of the minimizer size on different genome. The amount of memory used to
encode the positions and the graph divided by the number of k-mer is indicated. We also report to
the maximum memory and the CPU time used during the index construction. We were not able
to construct the Pufferfish index on the Pine and Axolotl genomes.

14

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license.

b Position encoding || Query real reads | Multi thread || Query reference | Multi thread
(bit/k-mer) (hh:mm) (hh:mm) (hh:mm) (hh:mm)
0 18.7 00:23 00:04 00:29 00:06
1 17.7 00:26 00:05 00:32 00:07
2 16.7 00:27 00:05 00:32 00:07
3 15.7 00:27 00:05 00:32 00:07
4 14.7 00:27 00:05 00.33 00:07
5 13.7 00:28 00:05 00:34 00:07
6 12.7 00:28 00:05 00:36 00:07
7 11.7 00:31 00:06 00:43 00:09
8 10.7 00:45 00:08 01:04 00:13
9 9.7 01:24 00:13 01:38 00:18
10 8.7 02:28 00:22 02:44 00:31
Pufferfish NA 00:21 00:21 00:30 00:30

Table 7: Influence of the sub-sampling parameter on the query time. We report the amount of
memory used by the positions divided by the number of k-mers, the time required to query the real
dataset SRR5833294 with one thread, the time required to query the real dataset with 6 thread,
the time required to query all the k-mers of the reference graph and the time required to query this
graph using 6 threads.

index constr. (mm:ss)

build colors (mm:ss)

peak resident (GB)

Mantis
BLight

1:56
01:43

9:57
00:49

11.8
2.89

Table 8: Details of performances of Mantis and BLight at indexing k-mers of abundance > 2.
Several steps are separated: index construction (mantis build command for Mantis) and colors
are added to the index (mantis mst command for Mantis).

15

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Feb. 11, 2019; doi: http://dx.doi.org/10.1101/546309. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Algorithm 1: Outline of the bucket creation

Data: A set of unitigs U = u1, us,...uy
Data: m the size of minimizers
Result: A list of buckets B, i.e. a list of lists of k-mers
1 create_bucketMap =<<>>;
2 forall unitig u; € U do
3 forall k-mer k;j from u; do
min;; = k;ij.compute_minimizer(m);
if min;; ¢ bucketMap then
new_bucket =<>;
bucket M ap[min;;] = new_bucket;

® N o oo

bucket M ap[min_ijl.write(ki;);

Algorithm 2: Bucket index

Data: A list of buckets B
Result: An associative index 7
1 forall bucket b; € B do
S = kija kipa ... k-mers € b;;
create. M PHEF}, (S) ;
forall k-mer k;; from b; do
p; = position of k;; in b;;
index = M PH F[k;jl;
Tindex] = p;;

I - NS T NI O

Algorithm 3: Query a k-mer

Data: The associative index T

Data: A k-mer k;

Data: m the minimizer size used to build T

Result: An integer: either position p; if the k-mer is present; -1 if the k-mer is absent.
1 min; = k;.compute_minimizer(m) — bucket b;;
2 P, = MPHF[,Z[]{Z]

16

http://dx.doi.org/10.1101/546309
http://creativecommons.org/licenses/by/4.0/

