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Abstract—Testing early reduces the cost of the val-
idation process. Model-Driven Testing promotes the
creation of the tests at the model level and their trans-
formation into code which can be executed. However,
we miss an empirical evaluation on the efficiency of gen-
erating tests designed on the service-based component
models compared to implementing them based on the
generated code.
In this paper, we evaluate if one shall generate

tests from platform-independent models or implement
them on the generated code. We consider service-
based component models and a case study modeling
and generating the code of a platoon of vehicles. Our
experimentation on that first case study confirms that
generating tests from the service-based models is eas-
ier compared to implementing them on the gener-
ated code. Moreover, efficiency of the tests of both
approaches is similar, considering code coverage and
mutation analysis.

Index Terms—Key words : Model Driven Develop-
ment, Model Driven Testing, Component, Test Har-
ness, Correctness

I. Introduction
Testing early reduces the cost of the validation process.

Studies have shown that the most costly errors are those
related to the definition of needs and not those related to
code. This is particularly true in Model Driven Engineer-
ing (MDE), where the models should be validated before
being transformed, preventing the spread of bugs intro-
duced into the design. Indeed, even if the transformations
are correct, the models could have bugs to be corrected
before being transformed. We then create tests at the
model level and following Model-Driven Testing (MDT)
principles, they are transformed into code and executed
on the generated code of the system under test (SUT).

We consider Service-based Component models and focus
on test at three phases: unit, integration and system
testing. Non-functional testing is outside the scope of
this study depending on implementation languages and
frameworks, but functional errors are detectable at the
model level.

Our study focuses on the comparison between the test
generated from model level and the test implemented on
the generated code. Some research has achieved to propose

MDT methods and tools, such as [1], or our COSTOTest
platform [2] dedicated to service-based component models.
They bring the benefits of MDE into testing which is
beneficial considering several issues, such as:

• Heterogeneity of the code: when developing lay-
ered applications (client-server development, web, n-
tiers...) it is difficult to implement test cases according
to the layers.

• Separation of points of view and concerns: in the final
code, business logic is melted with code and presenta-
tion. Separate their testing is more complicated than
on the model.

• Domain expert can contribute easier to testing con-
sidering abstract models instead of generated code.

However, we miss an empirical evaluation on the efficiency
of generating tests designed on the service-based compo-
nent models compared to implementing them based on the
generated code.
If it seems obvious that generate tests from service-

based models is easier, we would like to confirm it ex-
perimentally. Moreover, the efficiency of such tests should
be controlled to prevent that tests created on the models
are not sufficient requiring additional effort based on the
generated code.
To evaluate if one shall generate tests from service-

based models or implement them on the generated code,
we consider four research questions:

• RQ1: Is the coverage similar with tests from the two
approaches?

• RQ2: Is the fault detection effectiveness equivalent
between the two approaches?

• RQ3: Does the code generated from models require
additional tests?

• RQ4: Is it simpler to create tests with one of the two
approaches?

In this paper, we design an experimental process to
answer the research questions. Our case study is a pla-
toon system which models are defined by components
and services via the Kmelia modeling language [3]. The
interface of a component defines the services that it offers
and those that it requires. Services exchange data through



communication channels that create a link between them,
a dependency. The COSTO tool (COmponent Study Tool-
box) allows to transform the system model defined in
Kmelia into generated code of the SUT, implemented in
Java. To test the model at code level we use COSTOTest
tool [2] that allows us to create a test harness that we
use to isolate the service to be tested and to generate
executable tests.

The novelty of the current paper is an experimental
protocol allowing us to get results on a first case study.
They confirm that generating tests from the service-based
models is easier compared to implementing them on the
generated code. This latter contains platform dependent
code which hides code dedicated to the modelised SUT.
Moreover it doesn’t offer testing facilities such as mock
generation. We have also experimented that coverage and
fault-detection effectiveness are equivalent in the two ap-
proaches.

The article is organized as follows. The Model-Driven
Testing approach and how we can apply it on a case study
thanks to COSTOTest are explained in this section II.
The experimentation is detailed in section III. We discuss
the results in section IV. The section V presents the
related work. The section VI summarizes the results and
introduces perspectives.

II. Model Driven Testing
In this paper we focus on the MDT approach when

developing service-based components. In this section, we

first remind the MDT process and use it to introduce both
approaches considered in this paper: generation of the tests
from the service-based models or tests implementation on
the generated code. We then discuss in more detail the
concepts of service-based component models considering
the platoon case study as it is implemented with COSTO
and tested with COSTOTest.

A. Model Driven Testing
Fig. 1 illustrates the Model Driven Development (MDD)

on the right and the Model Driven Testing approach on
the left. In the middle column of the Fig. 1, solid line
rectangles illustrate the inputs of both approaches:

• System model which is a platform independent model
(PIM) describes the SUT.

• Test Intentions (TI) declare which model’s elements
are tested, in which context, with which data. They
model the test cases, based on the PIM.

• Operational Framework is a platform description
model (PDM) describing how to transform the test
harness in Java code for instance.

• Data sources provide input data and expected results
(oracle).

On the left column of the Fig. 1, the Model Driven
Testing process is made of three activities, implemented
by model transformations. The first one builds the test
harness as an assembly of the PIM with the TI and return-
ing a Test Specific Model (TSM) (intermediate elements
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Fig. 1: Overview of the global process: Model Driven Testing on the left, Model Driven Development on the right



are in dashed line rectangles). The second transformation
composes the harness with a PDM to get the executable
code of both the SUT and its tests. During the execution,
the data sources provide the test data needed to run the
tests, and concrete assert functions return the verdicts
(final results are in dotted line rectangles).

On the right column of the Fig. 1, the Model Driven
Development process is also producing executable code of
the SUT but the tests are not generated at the model
level but implemented based on the PSM code and the
Test Intentions.

In both MDD and MDT approaches we obtain an
executable code of the system based on a PIM and model
transformations. Additionally, MDT generates the tests
and their harness when MDD focus only on the system
generation and let the tester implements the tests on the
system code. MDT is different than Model-Based Testing
(MBT) which does not follow a model-driven architecture
process. MBT can not consider the system and test harness
generation based on a PIM and not take advantage of
model transformations to platform specific code.

To answer the research questions, we will experimentally
compare those two approaches:

• RQ1 and RQ2: by considering the TSM Code com-
pared to the Tests Code and PSM Code.

• RQ3: by considering the Automatic Code Generation
and Test Implementation.

• RQ4: by considering the Test Harness Building com-
pared to the Test Implementation.

B. Service-based component models
In this paper we continue our work of [4], considering

service-based component models, such as the one illus-
trated Fig. 2. We recall the main features of the mod-
elling language. A component system is an assembly of
components where the services required by a component
are bound to provided services by the means of assembly
links. The interface of a component defines its provided
and required services. The interface of a service defines
a contract to be satisfied when calling it. The services

may communicate, and the assembly links denote com-
munication channels. The set of all the services needed
by a service is called its service dependency. The required
services can then be bound to provided services. These
needs are either satisfied internally by other services of the
same component, or specified as required services in the
component’s interface and satisfied by other components.
A composite component encapsulates an assembly.
Our case study is illustrated in Fig. 2: a simplified

platoon of several vehicles, as used in [2]. Each vehicle
computes its own state (speed and position) by considering
its current state, its predecessor’s state, and also a safety
distance between vehicles. Each vehicle is a component
providing its speed and position and requiring predeces-
sor’s speed and position. Three vehicles are assembled in
that example. Each vehicle provides a configuration service
conf initiating its state, a service run launching the platoon
and requiring the service computeSpeed to calculate new
position and speed. The leader is another component
controlling its own values according to a position goal.
The Fig. 2 represents completely only the dependencies
of computeSpeed, the service under test considered in the
experimentation.

C. Test harness creation and code generation
The process consists of designing test cases for the

architecture of components, then executing them to obtain
verdicts. Usually the tester works with a test intention
that gives him/her the specification of test cases: model’s
elements under test, in which situation, with which in-
put data and oracle. This abstract intention is embodied
throughout the process to finally give a test harness
according to a process detailed in [2].
We have developed COSTO a set of prototype tools

dedicated to design, transform and execute Kmelia service-
based component models [3]. In particular, we have devel-
oped COSTOTest [2], a COSTO plugin to implement Model
Driven Testing on service-based component models.
During the step Test Harness Building, COSTOTest is

used to assist the tester, by helping the mapping between
the test intention and the system under test. As illustrated

Fig. 2: Kmelia components and services for the Platoon system



Fig. 3: Test harness for the computeSpeed service of the component SimpleVehicle under test [2]

Fig. 3, the tool produces mocks and drivers (im1 and vtd,
respectively), which are connected to service under test
(computeSpeed service) and to services requiring test data
( pilotspeed and pilotpos ).
Once the model of the test harness is built, its TSM

code can be generated in Java and concrete data mapping
is performed by matching the data sources on the entry
points present in the harness, as explained in [4].

III. Experimentation
In this section, we detail the protocol of the experi-

mentation and the experimental results obtained from the
platoon case study1. Each subsection considers a research
question, in their respective order.

A. Model and Code Coverage (RQ1)
We compare the coverage of the two approaches. First,

we build the Test Intentions creating a test data set based
on the coverage of the model of the PIM2. Second, we
build the Test Harness and generate the TSM Code to
measure how the generated tests cover the TSM code.
Third, we implement the Tests Code based on the Test
Intentions and the PSM Code generated by the MDD
approach to measure how the Tests Code cover the PSM
code. Finally we compare the respective test coverage of
both approaches.

1) Data: The test data set is an essential element for the
tester for code coverage. We have the objective of covering
all the transitions of the state transition system of the
service that is modeled in the PIM. We are studying the
computeSpeed service in the experimentation. As shown
by the graph of Fig. 4, there are nine possible paths in the
state transition system associated with the computeSpeed
service. However, there are three paths that cannot be
covered because the value of some variables changes during
the transition and it is mathematically impossible to cover
certain branches later on:

1The experimentation models and source code are available at
https://costo.univ-nantes.fr/download/

2Capitalized names are illustrated in Fig. 1

• e1_e2_8 && e2_f_11 because for the transition
e2_f_11 it is necessary that newspeed < 0 or e1_e2_8
implies that newspeed = vspeed + distanceStep. How-
ever, we have vspeed >=0 && distanceStep > 0,
newSpeed>0.

• e1_e2_10 && e2_f_11 because for the transition
e2_f_11 it is necessary that newSpeed < 0 while
e1_e2_10 implies newSpeed = 0

• e1_e2_10 && e2_f_12 because for the transition
e2_f_12 it is necessary that newSpeed > maxSpeed.
maxSpeed >= 0 inherently and e1_e2_10 implies
newSpeed = 0, thus maxSpeed >= newSpeed.

We therefore use six test cases to cover all the branches of
the automaton associated with the computeSpeed service.

2) Coverage: The computeSpeed service is transformed
into two java methods computeSpeed and computeSpeedLTS.
Table I shows the graph node coverage of these test cases
where CS stands for computeSpeed and CSLTS stands for
computeSpeed_LTS.

Fig. 4: Control graph of the computeSpeed service

https://costo.univ-nantes.fr/download/


TABLE I: Node coverage by the 6 test cases
M TC1 TC 2 TC 3 TC 4 TC 5 TC 6
CS 78.9% 81.0% 79.5% 78.9% 81.0% 77.5%

CSLTS 95.5% 95.3% 93.8% 94.5% 95.3% 95.3%

Code coverage is a measure that can be important in
describing the source code rate executed by a program
when a test suite is started. A program with high code
coverage, measured as a percentage, is considered to have
more code executed during testing, suggesting that it is
less likely to contain undetected software bugs, compared
to a program with low code coverage. There are different
metrics for calculating code coverage. We use the instruc-
tion coverage as well as the branch code coverage.

The coverage analysis is processed with the EclEmma
eclipse plugin3 which is based on Jacoco code coverage
libraries. It provides us with information on the code
coverage for which we used two metrics:

• Coverage Instruction (CI) : measures the percentage
of line of code executed and verified.

• Coverage branches (CB) : measures the percentage of
branch executed and verified.

Table II shows the coverage of the code generated by
the harness with all test cases allowing to have all the
branches of the automaton covered. We notice that the
code coverage of both approaches is similar. COSTO gener-
ates computeSpeed and computeSpeedLTS similar enough
in both the TSM code and PSM code to get the same code
coverage.

TABLE II: Coverage of the 6 cumulative tests
TSM code PSM codemethod CI CB CI CB

computeSpeed 89.9 % 85.7 % 89.9 % 85.7 %
computeSpeedLTS 98.4 % 92.9 % 98.4 % 92.9 %

3) Origin of the not covered code: We have created the
test data set to fully cover the transitions and states of
the automaton associated with the computeSpeed service.
However, we do not obtain 100% coverage of instructions
and branches, so we analyze the origin of this non-covered
code. We identify several situations:

• In the case of if ( transition ==null) return, only one
of the two branches is covered. That instruction aims
to avoid bug cases where the "transition" field has not
been filled in. However, these branches are not part
of the basic transitions of the model. Therefore, they
are not to be taken into account in calculating the
coverage of our service.

• The case of return true corresponds to the code gen-
erated to satisfy the needs of the language. Some func-
tions being composed of a succession of ifs returning a
Boolean without having any other, the function must
necessarily return some outside the latter.

3https://www.eclemma.org/jacoco/

• In the case of partially covered if statement (1 branch
out of 2), the part of the not covered branch corre-
sponds to an error case that will never happen because
it is not a branch of the model but a branch created
to satisfy the needs of the language.

• In the case of pre- and post-conditions, a Kmelia
feature, the functions corresponding to the verifica-
tion of the preconditions generated by the framework
are never called when the framework configuration
toggles off the assertion control. Indeed, the precondi-
tions are considered as being in defensive mode, this
implies that for the framework all the preconditions
are respected and does not call consequently the
functions allowing this verification.

Once the previous cases are removed from our code
coverage calculation, we get 100% coverage, which is con-
sistent with the data set we used.

B. Mutation Analysis (RQ2)

Code coverage is not a sufficient criteria to evaluate the
quality of test cases [5]. Indeed, the tests can obtain good
coverage rates but still not detect every error. To overcome
this problem, it is recommended to use mutation analysis.
Artificial bugs (called mutation) are introduced into the
program, creating mutants, with one mutation each. Once
the mutations have been injected into the program, we
run our tests. If the tests performed can distinguish the
behaviour of the mutants from that of the original program
(i.e. the test has failed on a mutant but has passed on the
original program, or the contrary), they are considered to
be of good quality. If the tests performed do not detect the
presence of a mutation in the mutant, then it means that
the current tests are not sufficient to ensure the reliability
of the program. Developers have to create additional tests.
In the same way than when considering the coverage,

we apply the mutation analysis on the two approaches
and compare their respective results. Considering MDT,
mutations are applied on the PIM. Considering MDD,
mutations are also applied on the PSM Code generated.
We use three kinds of mutation operators: Finite-State

Machine operators [6] are used to inject mutations in the
automata modeling the behavior of the service (Fig. 4).
Relational and arithmetic mutation operators are applied
to inject mutations in the expressions.
Finite-State Machine operators are applied differently

considering MDT and MDD. Considering MDT, they are
applied at the model level by modifying the Kmelia code
of the PIM. These mutations introduce a change in the
structure of the original system. For instance, in the case
of computeSpeed, the transitions going to state E2 are
changed to go to state F. It produces 4 viable mutants
(that still satisfy well-formedness rules and can be trans-
formed). Considering MDD, these mutations request to
modify several functions in the two classes computeSpeed
and computeSpeedLTS.

https://www.eclemma.org/jacoco/


Fig. 5: Relational Operator Replacement Mutator (ROR)

Fig. 6: Arithmetic Operator Replacement Mutator (AOR)

TABLE III: AOR and ROR mutations
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In Table III we list the mutations applied on each
arithmetic and relational operator found in the program.

Considering MDT, we apply these mutation operators
on the PIM, then generate the TSM Code for each mutant.
Considering MDD, we use the tool PIT-Test4. This tool
creates automatically AOR and ROR mutants, to execute
the tests, then to return a detailed verdict. Below, the
two tables summarize the results of the tests following the
insertion of the AOR and ROR mutants. All the mutants
with finite-state machine mutations have been killed.

The mutation scores and so the tables are the same
considering MDT and MDD approaches. The results are:
(i) 57 mutants generated (ii) 9 alive (iii) 84.21% of mutants
killed (iv) 15.79% of mutants alive The percentage of
mutants killed is 84.21%, which means that the data set
is relevant for the computeSpeed service. In Fig. 7, the
PIT-Test coverage results show that the test cases allow
for very early coverage and that mutants are well detected.
The number of mutants created and killed is different than
the previous enumeration because PIT-Test introduced
mutations in part of the generated code which is technical
code not coming from the PIM but the PDM and then not
useful for us for this experiment.

After repeating the operation on both types of test ap-
proach, we obtain exactly the same results. The mutation

Fig. 7: PIT Test Coverage Report

4http://pitest.org/
analysis on the PSM code and the mutation analysis on
the TSM code (created at model level) allow us to deduce
that considering this experimentation the quality of the
two test approaches is similar.

C. Additional Tests at the code level (RQ3)
Since the service under test is transformed from the PIM

to the TSM Code, it may need additional tests to the ones
created at the model level. Considering this, we should
take care of the granularity and the separation of concerns.
A test is created based on a test intention: which model’s

element is tested, in which context, with which data. At
the model level, one can create unit tests focusing on one
service of one component. The granularity is different at
the TSM Code level, since model elements are transformed
into several code expressions with dependencies with dif-
ferent part of the generated code. Therefore, the granu-
larity is already integration test at the code level because
one service of one component involves considering several
classes and methods. Therefore, those dependencies have
to be considered and we check if they request additional
test during the experimentation. Thanks to the MDT

http://pitest.org/


framework this is not the case since it is able to manage the
creation of mocks (as illustrated Fig. 3). A TSM mock is a
component including communications facilities. Its code is
generated and assuming the framework has been validated,
we can be confident in its quality.

The separation of concerns is a benefit of using model-
driven approaches. Creating the PIM, one can focus on the
specification of the SUT without considering implementa-
tion and deployment of the system, which is managed by
the PDM. Merging the TSM with the PDM, dilutes the
testing concerns in the code of the TSM. For each method
that overrides a PDM method, a recurrent question was
shall we test it or not despite we assume the PDM tests
being tested apart from the generated code testing.
For example, we implement manually the Test Case 1

of Table I by calling PDM primitives. It appears clearly
that this test method is not trivial to write (and even to
read). Without guidelines, the tester does not really know
which method to test and how to configure the test.

Listing 1: Testcase1 - PSM Code testing
1 private static void testCas1(PlatoonSystem comp){
2 comp.getMid().setConfig("conf", "mid" , 100, 130);
3 comp.getLast().setConfig("conf", "last" , 27, 121);
4 //creation of vehicle and driver services
5 comp.initBindings();
6 //creation of vehicle and driver services
7 comp.getMid().createServices();
8 comp.getLast().createServices() ;
9 comp.getDriver().createServices() ;

10 //initialisation of the threads
11 comp.getMid().init();
12 comp.getLast().init () ;
13 comp.getDriver().init () ;
14 Integer safeDist = 72;
15 // service call
16 ((SimpleVehicle_run) comp.getLast().getProvidedService("run")).
17 callService ("_computeSpeed" , "computeSpeed" ,
18 new Object[] {safeDist}, (SimpleVehicle_run)

comp.getLast().getProvidedService("run"));
19 Object[] rcvresult = ((SimpleVehicle_run) comp.getLast().
20 getProvidedService("run")).receiveServiceReturn("_compute
21 Speed" , "computeSpeed" , new Class<?>[] {Integer.class},
22 (SimpleVehicle_run)comp.getLast().getProvidedService("run"));
23 Integer newspeed = (Integer) rcvresult [0];
24 //result for test case 1
25 assert (newspeed ==130);
26 }

The examples of section III-A3 shows that the PDM
interfere with code testing despite the fact that the code
generated by COSTO has a great proximity with the model
concepts: every model element is being traceable at the
implementation level.

D. The complexity of implementing tests (RQ4)
During the first steps of the experimentation, we ob-

serve that it was easier for the students to test at the
model level because they had no experience on the PDM.
Then they proceeded by trial and error until having a
sufficient knowledge to understand the missing cases of
section III-A3. Many questions arise. Which classes have
to be tested? Shall we retrieve the SbC model structure

(how to isolate the ’components’ and ’services’?)? How
to configure the services and data inputs? Can we pass
through the communications? Elements of answers are
discussed in this section.
In the next two sections we will detail and compare the

implementation of tests in each of the two approaches.
1) Design of the TSM and Generation of TSM Code:

the Kmelia model of Fig. 2 is quite simple. It includes 3
components, but only 2 component types: SimpleDriver
and SimpleVehicle . SimpleDriver defines one variable
(the goal) and provides conf , pos, speed, goalreached ,
giveSafeDistance public services. All of these services
have simple sequential state transitions. SimpleVehicle
defines four variables, provides seven public services
conf , run, pos, speed, goalreached , computeSpeed,
giveSafeDistance and one private service applySpeed
and requires pilotpos , pilotspeed , isgoalreached ,
safeDistance services. Only the run service includes a
more complex behaviour with cycles. All of these services
have simple sequential state transitions. We therefore
have thirteen sets of tests to set up to test individually
and functionally all the services of our system at the
model level (and not only computeSpeed service).
In the example of Fig. 3, the TSM built for the

computeSpeed service under test (SUT) involves also three
components: the base SimpleVehicle , one mock component
IntegerMock instantiated twice and a generated tester com-
ponent TESTER_PlatoonTestIntention. The model metrics
in Table IV show a low complexity.

TABLE IV: Metrics Comparison between Models
Metrics PIM TSM

Number of component types 2 3
Number of services 14 11

Number of Assembly links 8 3
Max LTS Complexity O(n) 3

The resulting TSM is a first class (test) model: it has its
own life cycle and the same PIM tooling is applicable (ver-
ifications and transformations). There is no need to replay
the test harness building to refactor it by transformation
for instance. It is then possible to add new test intention,
to replace a Mock by another one for instance with the
same facility than considering JUnit test cases.
During the creation of the TSM, the COSTO tool

provides assistance to the tester to find the missing ele-
ments: unbind services, candidate services, missing vari-
able configuration, missing test intention variables, type
mismatches... All this information, that helps to get con-
sistent and complete tests cases, is not so easily available
at the code level. The COSTO tool automatically generates
the Java code of the TSM. Thus, the respect of the
initialization and execution process of the tests is no more
the responsibility of the tester, which prevents human
mistakes.

2) Implementation of tests in the code approach: the
Kmelia specification includes libraries of constants, types



TABLE V: Metrics Comparison between Java Applications

PDM framework PSM generated code TSM generated codeMetrics Total Mean Std. Dev. Max Total Mean Std. Dev. Max Total Mean Std. Dev. Max
NbC 55 6,111 5,587 16 36 36
NbA 139 2,527 3,474 17 68 1,889 1,39 7 74 2,056 2,068 11
NbM 540 9,818 12,012 57 389 10,806 8,95 47 388 10,778 9,363 47
LOC 3530 2360 2465
CC 1,358 0,972 12 1,362 1,451 15 1,395 1,534 15

NbC: Number of classes (avg/max per package) / NbA: Number of attributes (avg/max per type) / NbC: Number of methods (avg/max
per type) / LOC : Total lines of code / CC : Mc Cabe Cyclomatic Complexity (avg/max per method)

and functions (PLATOONLIB for the base application
and PLATOONTESTLIB for the harness. These primitive
elements are implemented in the target framework (e.g.
java) by a mapping configuration file. In particular, the
data values are provided by a specific access primitive.

In Table V, we compare the PDM java code, the
generated PSM code and the System and TSM code (cf.
figure 1) according to various metrics5.
The value of PSM and TSM metrics are close, because

the model SimplePlatoonSystem is itself a reduction of the
base PlatoonSystem case study. In ordinary cases, the test
harness is much simpler than the full application.

Despite the case is quite simple, the number of class of
the generated PSM application is important. This single
metrics shows that testing the model will be simpler than
testing the code (or even model based testing if a model
information is used to test the code). In the PDM (from
which depend the PSM and TSM), the number of classes
is only a part of the concurrency complexity since each
service instance is a concurrent process that shares the
component resources. The communications are performed
through message buffers with asynchronous communica-
tions but synchronous calls or returns.

The generation of the code necessarily implies an ad-
dition of technical elements for the proper functioning of
the program. The generation for the PSM code created 36
classes including several utility classes (one enumeration
type, one class for the primitive types library mappings,
a main program), a system configuration class, 11 classes
for the driver component and 21 classes for the vehicle
component and related services. The utility classes are
not in the scope of the test bed (done once before). So
we have 33 classes left to analyse and potentially test.
Table VI give the metrics for the computeSpeed service,
implemented by two java classes, one for the service and
one for the behaviour (LTS) which complexity is higher.
In this case one service refines into 52 methods. Again this
single metrics shows that testing the model will be simpler
than testing the code.

It must be taken into account that most of the gener-
ated code allows the system to operate according to the
framework principle. So, for testing to be really useful, it

5Metrics 1.3.6 available at http://metrics.sourceforge.net/.

TABLE VI: Metrics Comparison between Service Code

computeSpeed computeSpeedLTSMetrics Mean Std. Max Mean Std. Max
NbA 7 1
NbM 47 5
LOC 224 80
CC 1,064 0,32 3 6,6 6,859 15

is enough to test our code from a functional point of view.
That is to say, independently testing each function of each
class is not interesting. It is necessary to test if each service
respects well what we want it to face. To do this, as with
the model-level testing approach, we want to isolate each
service from each other. To do this we also use mocks.
As Fig.1 shows, we are testing the generated PSM code.

Thus, we must take into account the structure of the
system to set up the tests. The implementation of mocks
from this test approach is therefore more complex than the
model-level test approach. Indeed, the only viable method
we found to create the mocks of a service was to overload
the classes managing the parent component of that service.
In this way, we can modify the structure of the component
and associate it with the mock we previously created. Cre-
ating a mock also means creating a new service, because
it is a complete service that is doubled. Thus, there is a
development effort to be made that is not present in the
test approach at the model level. It is necessary to write
3 classes (the overloaded component and the two classes
managing the mock service).
Then, you have to write the logical part of the test.

That is to say, the part of the code that will allow the
system to be configured, executed, and the test verdict
rendered. The time required for this implementation can
be long and may require iterating the launch and rewriting
of tests in order to find the right configuration and order
of the different components involved in the test. As stated
in [4], "Finding the services to invoke to put the components
in an acceptable state for testing, is therefore not trivial."

IV. Discussion
We found that the code coverage analyses from the

model-based testing approach and the code testing ap-

http://metrics.sourceforge.net/


proach yielded the same results. The percentage of code
covered being the same implies that the tests from the
model approach are at least as efficient as those performed
by the code approach. This statement was confirmed by
the mutation analysis carried out because we got the same
mutation scores. However, there is a difference between
these two approaches in the complexity of test imple-
mentation. Indeed, our study shows us that it is more
difficult to implement tests using the code approach than
the model approach. This difficulty is mainly expressed
by the time spent analyzing and implementing the tests.
In particular, as we have seen in the section on test im-
plementation, in the model-based approach to testing we
have the possibility to forget the structure of the system.
This simplifies the implementation of mocks compared to
the approach to testing at the code level.

A relevant question is also whether the tests from
the level-model approach were more, or less, sensitive to
system changes compared to the tests from the code-level
approach. Both approaches treat the test input data in the
same way. The data is specified in an independent XML
file. In addition to allowing portability and simple reuse of
test sets, it also allows them to be easily modified. So we
can’t compare them on how they process the input data.
From the point of view of the evolution of the tests and
their maintainability, the difference between the two test
approaches could be in the amount of information that
will have to be modified in the event of an evolution of the
system under test. On this point, the test approach at the
model level, freeing itself from the technical constraints of
the final language and therefore being more abstract than
the code, allows for better maintainability over time. As
mention in [4]: "Defining tests at the model level makes it
easier to adapt them if the model changes".

The adaptability of the tests of both approaches can also
be based on their ability to evolve with their technical
foundation. If the java base evolves, then the code will
also have to evolve. An evolution of this type requires a
phase of non-regression tests. The code testing approach
involves manually modifying the tests each time the Java
platform evolves to ensure that they meet the new stan-
dards, and that new errors have not occurred. The model-
based approach to testing implies that test codes will be
generated automatically as the PSM code. Thus, they will
be automatically generated according to the current Java
platform. It will therefore simply be sufficient to generate
the tests again, then execute them. It is therefore clear that
tests based on the model approach are more advantageous
in the face of changes in the technical basis.

The PDM greatly influences the results of the ex-
perimentation. Having a distributed system middleware
increases the distance between the model paradigms and
the implementation paradigm. Distribution over internet
devices (e.g. J2EE or .NET implementations) or the cloud
will make it harder to test at the code level.

V. Related work
As far as we know, the topic of MDT is less addressed

by researchers than model-based testing, except for UML
Testing Profile (UTP)6. In their book [1] Baker and al.
illustrates how UTP can be used for test modeling and
test specification especially using frameworks like TTCN-
3 and the JUnit test framework for Java. Our approach
is less systematic in building the harnesses but provides a
better level of automation when considering service-based
component model. We have a vision similar to Born et
al. who test UML component models deployed on Corba
and test built-in contracts via TTCN-3 [7], [8]. However,
we miss details about their implementation to compare
precisely. In particular, the test code seems embodied in
the model and not generated from test models.
Our approach is an answer to the research question on

in Model-Driven Test-Case Construction raised in [9]. It
allows the reuse of tests for different versions or variants of
a system or for multiple systems within a family of systems
and enables domain experts without programming skills to
specify tests.
In [10], the author conducted an exploratory study

to evaluate the differences that may exist between the
model coverage guaranteed by the test scenarios and
the code coverage achieved when they were run on the
automatically generated code. They focus only on the code
coverage, when we also consider the mutation analysis,
the complementary tests, and the test creation effort.
They have observed similar results: the coverage is similar
between the two approaches after having selected the code
not injected by the framework. However, when the code
cyclomatic complexity was greater than 1, they observe
differences. Then we have consider another service to check
this issue with COSTOTest, but it remains similar when
the cyclomatic complexity varies. Only the quality and
number of test cases influence the coverage of the code
and model. Thus, as the cyclomatic complexity increases,
the number of test cases will have to be larger to fully
cover the control flow graphs of the model, and the code.
Basically, Kmelia models are architectural models even

if the specifier can go deeply in the service specification.
In [11] Keum et al. also deals with complex communication
middleware in the PDM. They focus on integration testing
(architectural level) of service-oriented applications where
the PDM is the SOAP standard. Our work can be seen
as complementary because we enable unit and functional
testing at a lower level. One important difference is that
instead of testing the communications consistency, we
verify them by the means of model checking and combine
verification techniques to cover various kinds of proper-
ties [12]. We therefore address most of the issues given in
the systematic literature review of Uzun et al. on Model-
driven architecture based testing [13] except the analysis
of results which is still manual in our case.

6http://utp.omg.org/

http://utp.omg.org/


In [14], the authors propose a MDT approach for
functional testing. According to the authors one of the
main challenges for functional test case generation is the
lack of formalism. They propose five meta-models and
four transformations from requirements to test cases, that
can be activity diagrams for example. This work does
not execute the model of the tests but we think it is
complementary to our process. Indeed it can be helpful
to manage our test intentions which are currently seen as
individuals in our approach.

In [15], Mussa et al. made a survey of 15 MDT tools
and approaches. Most of them focus on the automatic
generation of test cases from UML models. Even if the
paper shows the benefit of MBT, it is not discussed
experimentation having measured efficiency such as we
do here. The survey [16] of Dias Neto et al. covers a
great variety of MBT approaches that cover all the range
from unit testing to system testing. The synthesis table
shows a real complexity of testing steps, a variable level of
automation with about two thirds of them having a tool
support. Our approach covers until system testing without
graphical user interfaces and non-functional testing. But
it is clearly missing a test management level to handle the
test intentions and also an continuous integrated process
from requirements to test harness building and execution.

VI. Conclusion
In this article we have experimented and compared two

test approaches. One is based on tests generated from
the model level and the other on tests implemented on
the generated code. First, this research shows us that the
coverage rates, and the mutation analyses performed, are
equivalent on both test approaches. We therefore conclude
that the tests at the model level are as efficient as those
performed at the code level. Second, we find that the
complexity of implementing tests at the code level is higher
than that based at the model level. In addition, it results
from this work that model-level tests are more viable over
time than code-level tests, because they are less affected
by changes. Once the test harness of one service under
test is built, a full series of tests, including non-functional
ones, can be processed by modifying the test model. This
approach allows a better separation of concerns helping
model evolution.

Future developments could focus on tools to automatize
the harness building because this activity is still time
consuming. We currently work on a Xtext version of the
test harness building that will enable to integrate better
test intention management and test modelling. It would
allow us to extend the experimentation with more and
larger case studies. It would also be possible to consider the
comparison of MDT with classic development (not even
MDD) where the tests are created to cover the source code
of the SUT.

Finally, in future work, we would like to experiment the
coupling the model-driven testing approach with model-
based testing. The aim is to automatically generate part
of the test sets based on pre- and post- conditions.
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