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Random real branched coverings of the projective line.

Michele Ancona
∗

Abstract

In this paper, we construct a natural probability measure on the space of real branched
coverings from a real projective algebraic curve (X, cX) to the projective line (CP1, conj). We
prove that the space of degree d real branched coverings having "many" real branched points

(for example more than
√
d
1+α

, for any α > 0) has exponentially small measure. In particular,
maximal real branched coverings, that is real branched coverings such that all the branched points
are real, are exponentially rare.

Introduction

Let (X, cX) be a real algebraic curve, that is a smooth complex complex curve equipped with an
anti-holomorphic involution cX , called the real structure. We denote by RX the real locus of X, that
is the set Fix(cX) of �xed points of cX . For example the projective line (CP1, conj) is a real algebraic
curve whose real locus equals RP1.

The central objects of this paper are real branched coverings from X to CP1, that is, the branched
coverings u : X → CP1 such that u ◦ cX = conj ◦ u. Let us denote by MR

d (X) the set of degree d
real branched coverings from X to CP1. The �rst purpose of the paper is to show thatMR

d (X) has
a natural probability measure µd induced by a compatible volume form ω of X (that is c∗Xω = −ω),
which we �x once for all. Later in the introduction we will sketch the construction of the measure
µd, which we will give in details in Section 1.3. By Riemann-Hurwitz formula, the number of critical
points, counted with multiplicity, of a degree d branched covering u : X → CP1 equals 2d + 2g − 2,
where g is the genus of X. The probability measure µd allows us to ask the following question.

What is the probability that all the critical points of a real branched covering u ∈MR
d (X) are real?

In [2], it is proved that the expected number of real critical points is equivalent to c
√
d as the degree d

of the random branched covering goes to in�nity. The constant c is explicit, given by c =
√

π
2Vol(RX),

where Vol(RX) is the length of the real locus of X with respect to the Riemannian metric induced
by ω. The main theorem of the paper is the following exponential rarefaction result for real branched
coverings having "many" real critical points.

Theorem 0.1. Let X be a real algebraic curve. Let `(d) be a sequence of positive real numbers such
that `(d) ≥ B log d, for some B > 0. Then there exist positive constants c1 and c2 such that the
following holds

µd
{
u ∈MR

d (X),#(Crit(u) ∩ RX) ≥ `(d)
√
d
}
≤ c1e−c2`(d)2 .

For example, for any �xed α > 0, we can consider the sequence `(d) =
√
d
α
. Theorem 0.1 says

that the space of real branched coverings having more than
√
d

1+α
real critical points has exponential

small measure. In particular, maximal real branched converings (i.e. branched coverings such that
all the critical points are real) are exponentially rare.

The probability measure on MR
d (X). The construction of the probability measure onMR

d (X)
uses the fact that there is a natural map fromMR

d (X) to the space of degree d real holomorphic line

bundle PicdR(X), see Proposition 1.5. This map sends a degree d morphism u to the degree d line
bundle u∗O(1). The �ber of this map over L ∈ PicdR(X) is the open dense subset of P(RH0(X,L)2)
given by (the class of) pairs of global sections without common zeros. In order to construct a
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probability measure onMR
d (X), we produce a family of probability measures {µL}L∈PicdR(X) on each

space P(RH0(X,L)2). The probability measure µL on P(RH0(X,L)2) is the measure induced by
the Fubini-Study metric associated with a real Hermitian product on RH0(X,L)2. This Hermitian
product is the natural L2-product induced by ω, see Section 1.1. This family of measures, together
with the Haar probability measure on the base PicdR(X), gives rise to the probability measure µd on
MR

d (X).

An example: the projective line. Let us consider the case X = CP1 equipped with the conju-
gaison conj([x0 : x1]) = [x̄0 : x̄1]. Given two degree d real polynomials P,Q ∈ Rhomd [X0, X1] without
common zeros, we produce a degree d real branched covering uPQ : CP1 → CP1 by sending [x0 : x1]
to [P (x0, x1) : Q(x0, x1)]. We also remark that the pair (λP, λQ) de�nes the same branched covering.
Conversely, one can prove that any degree d real branched covering u : CP1 → CP1 is of the form
u = uPQ for some (class of) pair of polynomials (P,Q) without common zeros. This means that
MR

d (CP1) = P(Rhomd [X0, X1]2 \ Λd), where Λd is the set of polynomials with at least one common
zero. Consider the a�ne chart {x1 6= 0}, the corresponding coordinate x = x0

x1
and the polynomials

p(X) = P (X0, 1) and q(X) = Q(X0, 1). Then, one can see that a point x ∈ {x1 6= 0} is a critical
point of uPQ if and only p′(x)q(x)− q′(x)p(x) = 0 (see Proposition 2.14).

In the the previous paragraph, we constructed a probability measure on this space by �xing
a compatible volume form on source space, in this case CP1. Indeed, a compatible volume form
induces a L2-scalar product on Rhomd [X0, X1] which will induce a Fubini-Study volume form on
P(Rhomd [X0, X1]2) and then a probability onMR

d (CP1). If we equip CP1 with the Fubini-Study form,

then the induced scalar product on Rhomd [X0, X1] is the one which makes {
√(

d
k

)
Xk

0X
d−k
1 }0≤k≤d an

orthonormal basis. This scalar product was considered by Kostlan in [8] (see also [11]). It is the only
scalar product invariant under the action of the orthogonal group O(2) (which acts on the variables
X0 and X1) and such that the standard monomials are orthogonal to each other.

About the proof. There are two main steps in the proof of our main theorem. First, we reduce
our problem into the problem of the computation of the Gaussian measure of a cone C`(d) which lies
inside the space of pairs of global sections of a real holomorphic line bundle over X. This cone is
de�ned by using the Wronskian of a pair of global sections, which plays a key role. Then, we use
peak sections theory to estimate some Markov moments related to this Wronskian. These moments,
together with Poincaré-Lelong formula, allow us to estimate the measure of the cone C`(d).

Let sketch the proof in more details. We �x a degree 1 real holomorphic line bundle F over X, so
that, for any L ∈ PicdR(X) there exists an unique E ∈ Pic0

R(X) such that L = F d ⊗ E. Recall that
any class of pairs of real global sections without common zeros [α : β] ∈ P(RH0(X,F d⊗E)2) de�nes
a real branched covering uαβ by sending a point x ∈ X to [α(x) : β(x)] ∈ CP1. Theorem 0.1 will
follow from the estimate

µFd⊗E
{

[α : β] ∈ P(RH0(X,F d ⊗ E)2),#(Crit(uαβ) ∩ RX) ≥ `(d)
√
d
}
≤ c1e−c2`(d)2 (1)

where µFd⊗E is the probability measure induced by the Fubini-Study metric on P(RH0(X,F d⊗E)2).
Indeed, if we integrate the inequality (1) along Pic0

R(X) we exactly obtain Theorem 0.1. To prove the
estimate (1), we will use the following two facts. First, a point x is a critical point of uαβ if and only
if it is a zero of the WronskianWαβ + α⊗∇β−β⊗∇α. Second, the pushforward (with respect to the
projectivization) of the Gaussian measure on RH0(X,F d ⊗ E)2 is exactly the probability measure
µFd⊗E . These two facts imply that the estimate (1) is equivalent to the fact that the Gaussian
measure of the cone

C`(d) +
{

(α, β) ∈ RH0(X,F d ⊗ E)2,#(real zeros of Wαβ) ≥ `(d)
√
d
}

(2)

is bounded from above by c1e
−c2`(d)2 .

In order to estimate the Gaussian measure of C`(d), inspired by [5], we bound from above the moments

of the random variable (α, β) ∈ RH0(X,F d⊗E)2 7→ log ‖Wαβ(x)‖, where x is a point in X such that

dist(x,RX) is bigger that log d√
d
, see Proposition 2.15. This condition on the distance is natural, it is

strictly related to peak section's theory (see [12, 6]) and it is the reason why we need the hypothesis on
the growth of the sequence `(d) in Theorem 0.1. The estimate of these moments uses two ingredients:
the theory of peak sections and the comparison between the norms of two di�erents evaluation maps
(and more generally jet maps). Once these moments are estimates, Markov inequality and Poincaré-
Lelong formula gives us the exponential rarefaction of the Gaussian measure of the cone (2).
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Organization of the paper. The paper is organized as follows. In Section 1.1 we introduce the
main objects and notations of this paper. In Sections 1.2 and 1.3 we study the geometry of the
manifoldMR

d (X) and we construct the probability measure µd on it.
The purpose of Section 2 is to prove Proposition 2.15, that is, to estimate of the moments of the
random variable (α, β) ∈ RH0(X,F d ⊗E)2 7→ log ‖(α⊗∇β − β ⊗∇α)(x)‖, for F and E are respec-
tively a degree 1 and 0 real holomorphic line bundles. In order to do this, in Section 2.1 we introduce
Gaussian measures on RH0(X,F d ⊗ E)2 and in Section 2.2 we study jet maps at points x ∈ X
which are far from the real locus. Finally, in Section 3, we deduce Theorem 0.1 from the estimates
established in Section 2.

1 Random real branched coverings

1.1 Background

Let (X, cX) be a real algebraic curve, that is a complex, projective, smooth curve equipped
with an anti-holomorphic involution cX , called the real structure. We assume that the real locus
RX + Fix(cX) is non empty. For example (CP1, conj), where conj([x0 : x1]) = [x̄0 : x̄1], is a real
algebraic curve whose real locus is RP1. A real holomorphic line bundle p : L → X is a line bundle
equipped with an anti-holomorphic involution cL such that p◦cX = cL◦p and cL is complex-antilinear
in the �bers. We denote by RH0(X;L) the real vector space of real holomorphic global sections of
L, i.e. sections s ∈ H0(X;L) such that s ◦ cX = cL ◦ s. Let PicdR(X) be the set of degree d real line
bundles. It is a principal space under the action of the compact topological abelian group Pic0

R(X)
and so it inherits a normalized Haar measure that we denote by dH (see, for example, [7]). Finally,
recall that a real Hermitian metric h on L is a Hermitian metric on L such that c∗Lh = h̄.

Proposition 1.1. Let (X, cX) be a real algebraic curve and let ω be a compatible volume form of
mass 1, that is c∗Xω = −ω and

∫
X
ω = 1. Let L ∈ PicdR(X) be a degree d real holomorphic line bundle

over X, then there exists an unique real Hermitian metric h (up to multiplication by a positive real
constant) such that c1(L, h) = d · ω.

Proof. For the existence and unicity of such metric, see [1, Proposition 1.4]. The fact that the metric h
is real follows from the following argument. Let us consider the Hermitian metric c∗Lh on L. Claim: its
curvature equals −d · c∗Xω. Indeed, for any x ∈ X we consider a real meromorphic section s of L such
that x and cX(x) are neither zero nor pole of s (such section exists by Riemann-Roch Theorem). Then,
the curvature of (L, c∗Lh) around x is ∂∂̄ log

(
c∗Lh

)
x
(s(x), s(x)) = ∂∂̄ log hcX(x)(cL(s(x)), cL(s(x))) =

∂∂̄ log hcX(x)(s(cX(x)), s(cX(x))) = ∂∂̄c∗X log h(s, s) = −c∗X∂∂̄ log h(s, s), where the last equality is
due to the anti-holomorphicity of cX . Then, the claim follows from the fact that ∂∂̄ log h(s, s) = d ·ω.
Now, consider the real Hermitian metric (h · c∗Lh)1/2. Its curvature equals

1

2

(
∂∂̄ log h(s, s) + ∂∂̄ log

(
c∗Lh

)
(s, s)

)
=

1

2
(d · ω − d · c∗Xω) = d · ω,

where the last equality follows from the fact that ω is compatible with the real structure. By unicity
of the metric with curvature d · ω, this implies that (h · c∗Lh)1/2 is a multiple of h. We actually have
the equality (h · c∗Lh)1/2 = h, because for a real point x ∈ RX and a real vector v ∈ RLx we get
(hx(v, v) · (c∗Lh)x(v, v))1/2 = (hx(v, v) · hx(v, v))1/2 = hx(v, v).

De�nition 1.2. Let ω be a compatible volume form of mass 1, let L ∈ PicdR(X) be a degree d line
bundle over X and h be the real Hermitian metric given by the previous proposition. We de�ne the
L2-scalar product on RH0(X;L) by

〈α, β〉L2 =

∫
x∈X

hx(α(x), β(x))ω

for any pair of real holomorphic sections α, β ∈ RH0(X;L).

1.2 The space of real branched coverings

In this section we introduce and study the space of real branched coverings from a real algebraic
curve (X, cX) to (CP1, conj).
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De�nition 1.3. We denote byMR
d (X) the space of all degree d real branched coverings u : X → CP1,

that are the branched coverings such that u ◦ cX = conj ◦ u.

A natural way to de�ne a degree d real branched covering is the following one. Consider a degree
d real holomorphic line bundle L ∈ PicdR(X) and two real holomorphic sections α, β ∈ RH0(X,L)
without common zeros. Then, we can de�ne the degree d real branched covering uαβ de�ned by

uαβ : x ∈ X 7→ [α(x) : β(x)] ∈ CP1.

Proposition 1.4. Two pairs (α, β), (α′, β′) of real holomorphic sections of L de�ne the same real
branched covering if and only if (α′, β′) = (λα, λβ) for some λ ∈ R∗.

Proof. The proof follows the lines of [1, Proposition 1.1].

Proposition 1.5. There exists a natural map from MR
d (X) to the space PicdR(X) of degree d real

line bundles over X. This natural map is given by u ∈ MR
d (X) 7→ u∗O(1) ∈ PicdR(X). The �ber

over L ∈ PicdR(X) is the open subset of P(RH0(X;L)2) given by (the class of) pair of sections (α, β)
without common zeros.

Proof. Given a degree d real branched covering u : X → CP1, we get a degree d real line bundle
u∗O(1) over X and the class of two real holomorphic global holomorphic sections without common
zeros [u∗x0 : u∗x1] ∈ P(RH0(X;u∗O(1))2). On the other hand, given a degree d real line bundle
L → X and two real holomorphic global sections without common zeros (α, β) ∈ RH0(X;L)2, then
the map uαβ : X → CP1 de�ned by x 7→ [α(x) : β(x)] is a degree d real branched covering. Moreover,
by Proposition 1.4, two pairs (α, β) and (α′, β′) of real holomorphic sections of L de�ne the same real
branched covering if and only if (α′, β′) = (λα, λβ) for some λ ∈ R∗, hence the result.

1.3 Probability on MR
d (X)

Let X be a real algebraic curve equipped with a compatible volume form ω of total mass 1. In this
section, we construct a natural probability measure on the space MR

d (X) of degree d real branched
coverings from X to CP1.
Let L ∈ PicdR(X) be a degree d real line bundle equipped with the real Hermitian metric h given
by Proposition 1.1. We recall that in De�nition 1.2 we de�ned the L2-scalar product on the space
RH0(X;L) induced by the Hermitian metric h. This L2-scalar product induces a scalar product on
the Cartesian product RH0(X;L)2 and then a Fubini-Study metric on P(RH0(X;L)2). We recall
that the Fubini-Study metric is constructed as follows. First, we restrict the scalar product to the
unit sphere of RH0(X;L)2. The obtained metric is invariant under the action of Z/2Z and the
Fubini-Study metric is then the quotient metric on P(RH0(X;L)2).

De�nition 1.6. Let L be a real holomorphic line bundle over X. We denote by µL the probability
measure on P(RH0(X;L)2) induced by the normalized Fubini-Study volume form. Here, the Fubini-
Study metric on P(RH0(X;L)2) is the one induced by the Hermitian metric on L given by Proposition
1.1.

Proposition 1.7. The probability measure µL over P(RH0(X;L)2) does not depend on the choice of
the multiplicative constant in front of the metric h given by Proposition 1.1.

Proof. The proof follows the line of [1, Proposition 1.7]

Remark 1.8. For a real holomorphic line bundle L, we denote by ΛL the space of pair of sections
(s0, s1) ∈ RH0(X;L)2 with at least a common zeros. By [2, Proposition 2.11], the set ΛL has zero
measure (it is an hypersurface), at least if the degree of L is large enough. This implies that µL
induces a probability measure on P(RH0(X;L)2 \ ΛL), still denoted by µL.

De�nition 1.9. We de�ne the probability measure µd onMR
d (X) by the following equality:∫

MR
d(X)

fdµd =

∫
L∈PicdR(X)

(∫
MR

d(X,L)

fdµL

)
dH(L)

for any f ∈MR
d (X) measurable function. Here:
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• MR
d (X,L) is the �ber of the natural morphismMR

d (X)→ PicdR(X) de�ned in Proposition 1.5.

• µL denotes (by a slight abuse of notation) the restriction toMR
d (X,L) of the probability measure

on P(RH0(X,L)2) de�ned in De�nition 1.6.

• dH denotes the normalized Haar measure on PicdR(X).

Remark 1.10. The probability measure µd of De�nition 1.9 is the real analogue of the one constructed
in the complex setting in [1] for the study of random branched coverings from a �xed Riemann surface
to CP1. Also, in the complex setting, a similar construction has been considered by Zelditch in [14]
in order to study large deviations of empirical measures of zeros on a Riemann surface.

Example 1.11. Let us consider the case (X, cX) = (CP1, conj), where CP1 is equipped with the
Fubini-Study form ωFS. For the projective line CP1, the unique degree d real line bundle is the line
bundle O(d), which is naturally equipped with a real Hermitian metric hd whose curvature equals
d · ω. The space of real holomorphic global sections RH0(CP1;O(d)) is isomorphic to the space of
degree d homogeneous polynomials Rhomd [X0, X1] and the L2-scalar product coincides with the Kostlan

scalar product (i.e. the scalar product which makes {
√(

d
k

)
Xk

0X
d−k
1 }0≤k≤d an orthonormal basis, see

[8, 11]). Then, a random real branched covering u : CP1 → CP1 is given by the class of a pairs of
independent Kostlan polynomials.

2 Gaussian measures and estimates of higher moments

In this section, we introduce some Gaussian measures on the spaces RH0(X;L)2 and H0(X;L)2,
as in [6, 5, 10, 2]. We follow the notations of Section 1. In particular, (X, cX) is a real algebraic curve
whose real locus RX is not empty.

2.1 Gaussian measures

In this section, given any degree d real line L ∈ PicdR(X), we equip the cartesian product
RH0(X;L)2 of the space of real holomorphic section with a Gaussian measure γL. In order to
do this, we �x a compatible volume form ω of total volume 1 (i.e. c∗Xω = −ω and

∫
X
ω = 1). Given

L ∈ PicdR(X), we equip L by the real Hermitian metric h with curvature d · ω (the metric h is unique
up to a multiplicative constant, see Proposition 1.1).
In De�nition 1.2, we de�ned a L2-Hermitian product on the space RH0(X;L) of real holomorphic
global holomorphic sections of L denoted by 〈·, ·〉L2 and de�ned by

〈α, β〉L2 =

∫
x∈X

hx(α(x), β(x))ω

for all α, β in RH0(X;L).

De�nition 2.1. The L2-scalar product on RH0(X;L)2 induces a Gaussian measure γL on RH0(X;L)2

de�ned by

γL(A) =
1

πNd

∫
(α,β)∈A

e−‖α‖
2
L2−‖β‖

2
L2dαdβ

for any open subset A ⊂ RH0(X;L)2. Here dαdβ is the Lebesgue measure on (RH0(X;L)2; 〈·, ·〉L2)
and Nd denotes the dimension of RH0(X;L), which equals the complex dimension of H0(X;L).

Remark 2.2. If d > 2g−2, where g is the genus of X, then H1(X;L) = 0 and then, by Riemann-Roch
theorem, we have Nd = d+ 1− g.

Proposition 2.3. [1, Proposition 1.12] Let f be a function on an Euclidian space (V, 〈·, ·〉) which is
constant over the lines, i.e. f(v) = f(λv) for all v ∈ V and all λ ∈ R∗. Denote by dγ the Gaussian
measure on V induced by 〈·, ·〉 and by dµ the normalized Fubini-Study measure on the projectivized
P(V ). Then, for all cones A ⊂ V , we have∫

A

fdγ =

∫
P(A)

[f ]dµ

where P(A) is the projectivized of A and [f ] is the function on P(V ) induced by f .
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We will be also interested in the complex Gaussian measure on the space H0(X,L)2. Indeed, the
Hermitian metric h on L de�nes a L2-Hermitian product on H0(X,L) by the formula

〈α, β〉L2 =

∫
x∈Σ

hx(α(x), β(x))ω

for all α, β in H0(Σ;L).

De�nition 2.4. The complex Gaussian measure γCL on H0(Σ;L)2 is de�ned by

γCL(A) =
1

π2Nd

∫
(α,β)∈A

e−‖α‖
2
L2−‖β‖

2
L2dαdβ

for any open subset A ⊂ H0(Σ;L)2. Here dαdβ is the Lebesgue measure on (H0(Σ;L)2; 〈·, ·〉L2) and
Nd denotes the complex dimension of H0(Σ;L).

2.2 Jet maps and peak sections

Let F and E be respectively degree 1 and 0 real holomorphic line bundles over X. We equip F
and E by the real Hermitian metrics given by Proposition 1.1 which we denote by hF and hE . In
particular the real Hermitian metric hd + hdF ⊗ hE on F d ⊗E is such that its curvature equals d · ω.
Finally, recall that the space H0(X,F d ⊗ E) is endowed with the L2-Hermitian product

〈α, β〉L2 =

∫
x∈X

hd(α(x), β(x))ω

de�ned by for any α, β in H0(X;F d ⊗ E).

De�nition 2.5. For any x ∈ X, letHx be the kernel of the map s ∈ H0(X,F d ⊗ E) 7→ s(x) ∈ (F d ⊗ E)x.
Similarly, we denote by H2x the kernel of the map s ∈ Hx 7→ ∇s(x) ∈ (F d ⊗ E)x ⊗ T ∗X,x. We de�ne
the following jet maps:

evx : s ∈ H0(X,F d ⊗ E)/Hx 7→ s(x) ∈ (F d ⊗ E)x,

ev2x : s ∈ Hx/H2x 7→ ∇s(x) ∈ (F d ⊗ E)x ⊗ T ∗X,x.

The previous de�nition has the following real analogue:

De�nition 2.6. For any point x ∈ X, we de�ne the real vector spaces RH0
x = H0

x ∩RH0(X,F d⊗E)
and RH0

2x = H0
2x ∩ RH0(X,F d ⊗ E) and the real jet maps by

evRx : s ∈ RH0(X,F d ⊗ E)/RH0
x 7→ s(x) ∈ (F d ⊗ E)x,

evR2x : s ∈ RHx/RH2x 7→ ∇s(x) ∈ (F d ⊗ E)x ⊗ T ∗X,x.

By the fact that F is ample (recall that degF = 1), we get that for d large enough the maps evRx ,
evx, ev

R
2x and ev2x are invertible. The following proposition estimates the norms of this maps and of

their inverses.

Proposition 2.7. [6, Propositions 4 and 6] For any B > 0, then there exists an integer dB and a
positive constant cB such that, for any d ≥ dB and any point x ∈ X with dist(x,RX) ≥ B log d√

d
, the

maps d−
1
2 evRx , d

− 1
2 evx, d−1evR2x and d−1ev2x as well as their inverse have norms and determinants

bounded from above by cB.

Remark 2.8. In [6, Propositions 4 and 6], the constant B equals 1, and the line bundle E is trivial.
The same proof actually holds for any �xed B > 0 and any E ∈ Pic0

R(X). Indeed, the proof is based
on the theory peak sections and Bergman kernels and this theory holds in this more general setting
(see for example [4] or [9, Theorem 4.2.1]).

Using the L2-Hermitian product on H0(X,F d ⊗E), we can identify H0(X,F d ⊗E)/Hx with the
orthogonal complement of Hx in H0(X,F d ⊗ E). Similarly, we identify the quotient Hx/H2x with
the orthogonal complement of H2x in Hx. We then have an orthogonal decomposition

H0(X,F d ⊗ E) = H0(X,F d ⊗ E)/Hx ⊕Hx/H2x ⊕H2x.
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Similarly, using the L2-scalar product on RH0(X,F d ⊗ E), we have the orthogonal decomposition

RH0(X,F d ⊗ E) = RH0(X,F d ⊗ E)/RHx ⊕ RHx/RH2x ⊕ RH2x.

The map evx × ev2x (resp. evRx × evR2x) gives an isomorphism between H0(X,F d ⊗E)/Hx ⊕Hx/H2x

(resp. RH0(X,F d ⊗ E)/RHx ⊕ RHx/RH2x) and the �ber (F d ⊗ E)x ⊕ (F d ⊗ E)x ⊗ T ∗X,x.
Moreover, remark that we have natural identi�cations H0(X,F d ⊗ E)/Hx ⊕ Hx/H2x = H⊥2x and
RH0(X,F d⊗E)/RHx⊕RHx/RH2x = RH⊥2x. A direct consequence of Proposition 2.7 is the following

Corollary 2.9. For any B > 0, there exist an integer dB and a positive constant cB such that, for
any d ≥ dB and any x with dist(x,RX) ≥ B log d√

d
, the map (evRx ×evR2x)−1 ◦(evx×ev2x) : H⊥2x → RH⊥2x

has determinant bounded from above by cB and from below by 1/cB.

De�nition 2.10. We denote by s0 and s1 the global holomorphic sections of Ld⊗E of unit L2-norm
which generates respectively the orthogonal of Hx in H0(X,F d ⊗ E) and the orthogonal of H2x in
Hx. We call these sections the peak sections at x.

The pointwise estimate of the norms (with respect to the Hermitian metric hd of curvature d · ω)
of the peak sections are well known and strictly related to the estimates of the Bergman kernel along
the diagonal (see [12, 13, 3, 9]). With a slight abuse of notation, we will denote by ‖·‖ any norm
induced by hd.

Lemma 2.11. ([1, Proposition 1.5]) For any x ∈ X, let s0 and s1 be the peak sections de�ned
in De�nition 2.10. Then, as d → +∞, we have the estimates ‖s0(x)‖ =

√
d√
π

(1 + O(d−1)) and

‖∇s1(x)‖ = d√
π

(1 +O(d−1)), where the error terms are uniform in x ∈ X.

2.3 Wronskian and higher moments

Let F and E be respectively degree 1 and 0 real holomorphic line bundles over X. The purpose
of this section is to prove Proposition 2.15, which gives key estimates of the higher moments of the
random variable (α, β) ∈ RH0(X,F d⊗E)2 7→ log

∥∥ π
d3/2

Wαβ(x)
∥∥, where Wαβ is the Wronskian, given

by the following

De�nition 2.12. Let ∇ be a connection on F d⊗E. For any pair of real holomorphic global sections
(α, β) ∈ RH0(X,F d ⊗ E)2, we denote by Wαβ the Wronskian α ⊗ ∇β − β ⊗ ∇α, which is a real
holomorphic global section of F 2d ⊗ E2 ⊗ T ∗X .

Remark 2.13. The Wronskian Wαβ does not depend on the choice of a connection on F d ⊗ E.
Indeed, two connections ∇ and ∇′ on F d ⊗ E di�er by a 1-form θ, and then we have

(α⊗∇β − β ⊗∇α)− (α∇′β − β∇′α) = α⊗ (∇−∇′)β − β ⊗ (∇−∇′)α = α⊗ β ⊗ θ− β ⊗α⊗ θ = 0.

Proposition 2.14. [1, Proposition 2.3] Let F and E be respectively degree 1 and 0 real line bundles
over X and (α, β) ∈ RH0(X,F d ⊗ E)2 be a pair of sections without common zeros. A point x ∈ X
is a critical point of the map uαβ : x ∈ X 7→ [α(x) : β(x)] ∈ CP1 if and only if it is a zero of the
Wronskian Wαβ de�ned in De�nition 2.12.

Proposition 2.15. Let X be a real algebraic curve equipped with a compatible volume form ω of total
volume 1 and let F ∈ Pic1

R(X). For any B > 0 there exists an integer dB and a constant cB such
that for any E ∈ Pic0

R(X), any m ∈ N, any d ≥ dB and any point x ∈ X with dist(x,RX) ≥ B log d√
d
,

we have ∫
(α,β)∈RH0(X,Fd⊗E)2

∣∣∣log
∥∥∥ π

d3/2
Wαβ(x)

∥∥∥∣∣∣mdγd(α, β) ≤ cB(m+ 1)!.

Here, dist(·, ·) is the distance in X induced by ω, γd is the Gaussian measure on RH0(X,F d ⊗ E)2

constructed in Section 2.1 and ‖·‖ denote the norm induced by the Hermitian metrics on F and E
given by Proposition 1.1.

Proof. Let us consider the integral we want to estimate:∫
(α,β)∈RH0(X,Fd⊗E)2

∣∣∣log
∥∥∥ π

d3/2
Wαβ(x)

∥∥∥∣∣∣mdγd(α, β). (3)
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First, remark that the function in the integral (3) only depends on the 1-jet of the sections α and β.
We will then write the orthogonal decomposition RH0(X,F d ⊗ E) = RH2x ⊕ RH⊥2x, where RH2x is
the space of real sections s such that s(x) = 0 and ∇s(x) = 0. As the Gaussian measure is a product
measure, after the integration over the orthogonal of RH⊥2x × RH⊥2x, we get that the integral (3) is
equal to ∫

(α,β)∈RH⊥2x×RH⊥2x

∣∣∣log
∥∥∥ π

d3/2
Wαβ(x)

∥∥∥∣∣∣mdγd |RH⊥2x×RH⊥2x (α, β). (4)

Using the notations of Section 2.2, and in particular De�nitions 2.5 and 2.6, let Jd : H⊥2x → RH⊥2x be
the map (evRx × evR2x)−1 ◦ (evx × ev2x) and denote by

Id = Jd × Jd : H⊥2x ×H⊥2x → RH⊥2x × RH⊥2x.

By changing of variables given by the isomorphism Id, we get

(4) =

∫
(α,β)∈H⊥2x×H⊥2x

∣∣∣log
∥∥∥ π

d3/2
Wαβ(x)

∥∥∥∣∣∣m(I−1
d )∗(dγd |RH⊥2x×RH⊥2x)(α, β). (5)

By Corollary 2.9, the maps Id and I
−1
d have determinants bounded from above by a constant which

only depends on B. In particular, there exists a constant c1, depending only on B, such that

(5) ≤ c1
∫

(α,β)∈H⊥2x×H⊥2x

∣∣∣log
∥∥∥ π

d3/2
Wαβ(x)

∥∥∥∣∣∣mdγCd |H⊥2x×H⊥2x (α, β) (6)

where γCd is the complex Gaussian measure de�ned in De�nition 2.4. In order to prove the result, we
have to bound from above the quantity∫

(α,β)∈H⊥2x×H⊥2x

∣∣∣log
∥∥∥ π

d3/2
Wαβ(x)

∥∥∥∣∣∣mdγCd |H⊥2x×H⊥2x (α, β) (7)

Let s0 and s1 be the peak sections at x introduced in De�nition 2.10 and we write α = a0σ0 + a1σ1

and β = b0σ0 + b1σ1. We then have

‖Wαβ(x)‖ = |a0b1 − a1b0|‖(s0 ⊗∇s1 − s1 ⊗∇s0)(x)‖ = |a0b1 − a1b0|
d3/2

π
(1 +O(d−c2(B))),

where the last equality follows from Proposition 2.11. This implies that the integral in (7) equals∫
a=(a0,a1)∈C2

b=(b0,b1)∈C2

∣∣∣∣log

(
|a0b1 − a1b0|

∥∥∥ π

d3/2
(s0 ⊗∇s1 − s1 ⊗∇s0)(x)

∥∥∥)∣∣∣∣m e−|a|2−|b|2π4
dadb

=

∫
a=(a0,a1)∈C2

b=(b0,b1)∈C2

∣∣∣∣log

(
|a0b1 − a1b0|

)∣∣∣∣m e−|a|2−|b|2π4

(
1 +O(d−c3(B))

)
dadb

≤ 2

∫
a∈C2

b∈C2

|log |a0b1 − b0a1||m
e−|a|

2−|b|2

π4
dadb (8)

where the last inequality holds for d ≥ dB , for some dB large enough.

In the remaining part of the proof, we will estimate the last integral appearing in (8). In order to
do this, for any a = (a0, a1) we make an unitary trasformation of C2 (of coordinates b0, b1) by sending
the vector (1, 0) to va = 1√

|a0|2+|a1|2
(a0, a1) and the vector (0, 1) to wa = 1√

|a0|2+|a1|2
(−ā1, ā0). We

will write any vector of C2 as a sum tva + swa with s, t ∈ C. Under this change of variables, the
integral appearing in (8) becomes

≤ 2

∫
a∈C2

(s,t)∈C2

|log |s|‖a‖|m e
−|a|2−|s|2−|t|2

π4
dadsdt = 2

∫
a∈C2

s∈C

|log |s|‖a‖|m e
−|a|2−|s|2

π3
dads. (9)
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We pass to polar coordinates a = reiθ, for θ ∈ S3 and r ∈ R+, and s = ρeiφ, for φ ∈ S1 and ρ ∈ R+,
and we obtain

2

∫
a∈C2

s∈C

|log |s|‖a‖|m e
−|a|2−|s|2

π3
dads = 8

∫
r∈R+

ρ∈R+

|log ρr|me−r
2−ρ2r3ρdrdρ. (10)

Writing log ρr = log ρ+ log r, developing the binomial and using the triangular inequality, we obtain

(10) ≤ 8

∫
r∈R+

ρ∈R+

m∑
k=0

(
m

k

)
|log ρ|k|log r|m−ke−r

2−ρ2r3ρdrdρ. (11)

Let us study the integrals
∫
ρ∈R+

|log ρ|ne−ρ2ρdρ and
∫
r∈R+

|log r|ne−r2r3dr . To compute these two

integrals, we will use the following formula obtained by integration by part:∫
(log x)ndx = x log x− n

∫
(log x)n−1dx, n > 0. (12)

• Computation of the integral
∫
ρ∈R+

|log ρ|ne−ρ2ρdρ. We write∫
ρ∈R+

|log ρ|ne−ρ
2

ρdρ =

∫ 1

ρ=0

(− log ρ)ne−ρ
2

ρdρ+

∫ ∞
ρ=1

(log ρ)ne−ρ
2

ρdρ. (13)

For the �rst term of this sum we have∫ 1

ρ=0

(− log ρ)ne−ρ
2

ρdρ ≤
√

2

2

∫ 1

ρ=0

(− log ρ)ndρ =

√
2

2
n! (14)

where we used �rst that e−ρ
2

ρ ≤
√

2
2 for ρ ∈ [0, 1] and then we used n times the formula (12).

For the second term of the sum in (13), we use �rst the fact that e−ρ
2

ρ ≤ e
− 1
ρ2

ρ3 for any ρ ≥ 1

and then the change t = 1/ρ, to have∫ ∞
ρ=1

(log ρ)ne−ρ
2

ρdρ ≤
∫ ∞
ρ=1

(log ρ)n
e
− 1
ρ2

ρ3
dρ =

t=1/ρ
−
∫ 0

1

(log(1/t))nte−tdt =

∫ 1

0

(− log(t))nte−tdt.

(15)
The last integral is the same as in (14), so from (14) and (15) we obtain∫ ∞

ρ=1

(log ρ)ne−ρ
2

ρdρ ≤
√

2

2
n! (16)

Putting (14) and (16) in (13), we obtain∫
ρ∈R+

|log ρ|ne−ρ
2

ρdρ ≤
√

2n!. (17)

• Computation of the integral
∫
r∈R+

|log r|ne−r2r3dr. As before, we write∫
r∈R+

|log r|ne−r
2

r3dr =

∫ 1

r=0

(− log r)ne−r
2

r3dr +

∫ ∞
r=1

(log r)ne−r
2

r3dr. (18)

For the �rst term of the sum, we get∫ 1

r=0

(− log r)ne−r
2

r3dr ≤ (−1)n
√

2√
3

∫ 1

r=0

(log r)ndr =

√
2√
3
n! (19)

where the �rst inequality follows from e−r
2

r3 ≤
√

2√
3
, for r ∈ [0, 1], and the last equality is

obtained using n times the formula (12).
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For the second term of the sum in the right-hand side of (18), we use integration by parts with

respect to the functions − 1
2 (log r)nr2 and −2re−r

2

to obtain∫ ∞
s=1

(log r)ne−r
2

r3dr = [−1

2
(log r)nr2e−r

2

]∞r=1+
n

2

∫ ∞
r=1

(log r)n−1re−r
2

dr+

∫ ∞
r=1

(log r)nre−r
2

dr.

(20)

As [− 1
2 (log r)nr2e−r

2

]∞r=1 = 0 we obtain, by using (16) in (20), that∫ ∞
s=1

(log r)ne−r
2

r3dr ≤ 3
√

2

4
n!. (21)

Putting (19) and (21) in (18), we get∫
r∈R+

|log r|ne−r
2

r3ds ≤ 4
√

6 + 9
√

2

12
n!. (22)

Now, we use (17) and (22) and we obtain the following estimate:∫
r∈R+

ρ∈R+

m∑
k=0

(
m

k

)
|log ρ|k|log r|m−ke−r

2−s2r3ρdrdρ ≤ 4
√

3 + 9

6

m∑
k=0

(
m

k

)
k!(m− k)! ≤ 4

√
3 + 9

6
(m+ 1)!.

(23)
Putting (23) in (11) and using (10) , (9) and (8), we obtaine the desired estimate for (7), hence the
result.

3 Proof of Theorem 0.1

In this section, we prove our main result. We follow the notations of Sections 1 and 2.

Proposition 3.1. Let X be a real algebraic curve equipped with a compatible volume form ω of total
volume 1 and let F ∈ Pic1

R(X). Fix a sequence of positive real numbers (ad)d. Then, for any B > 0
there exists dB ∈ N and a constant cB such that, for any E ∈ Pic0

R(X), any d ≥ dB and any sequence
of smooth functions (ϕd)d with dist(supp(ϕd),RX) ≥ B log d√

d
, the following holds

γFd⊗E

{
(α, β) ∈ RH0(X,F d ⊗ E)2,

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ(x)‖

)
∂∂̄ϕd

∣∣∣∣ ≥ ad}

≤ cB exp

(
− ad

2
∥∥∂∂̄ϕd∥∥∞Vol(Supp(∂∂̄ϕd))

)
.

Here, dist(·, ·) is the distance in X induced by ω, γFd⊗E is the Gaussian measure on RH0(X,F d⊗E)2

constructed in Section 2.1 and ‖·‖ denote the pointwise norm induced by the Hermitian metrics on F
and E given by Proposition 1.1.

Proof. For any td > 0, let us denote

exp

(
td

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ(x)‖

)
∂∂̄ϕd

∣∣∣∣) =

∞∑
m=0

tmd
m!

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ(x)‖

)
∂∂̄ϕd

∣∣∣∣m. (24)

Remark that∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ(x)‖

)
∂∂̄ϕd

∣∣∣∣ ≥ add⇔ exp

(
td

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ(x)‖

)
∂∂̄ϕd

∣∣∣∣) ≥ etdad (25)

so that, by Markov inequality, we have

γFd⊗E

{
(α, β) ∈ RH0(X,F d ⊗ E)2,

∣∣∣∣∫
X

log
π

d3/2
‖Wαβ(x)‖∂∂̄ϕd

∣∣∣∣ ≥ ad} ≤
e−tdad

∫
RH0(X,Fd⊗E)2

exp

(
td

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ(x)‖

)
∂∂̄ϕd

∣∣∣∣)dγFd⊗E . (26)
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Now, we have∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ(x)‖

)
∂∂̄ϕd

∣∣∣∣m ≤ ∥∥∂∂̄ϕd∥∥m∞
∣∣∣∣∣
∫
Supp(∂∂̄ϕd)

log

(
π

d3/2
‖Wαβ(x)‖

)
ω

∣∣∣∣∣
m

. (27)

We then apply Hölder inequality with m and m/(m− 1) for the functions log

(
π
d3/2
‖Wαβ(x)‖

)
and

1, so that

(27) ≤
∥∥∂∂̄ϕd∥∥m∞Vol(Supp(∂∂̄ϕd))

m−1

∫
Supp(∂∂̄ϕd)

∣∣∣∣log

(
π

d3/2
‖Wαβ(x)‖

)∣∣∣∣mω. (28)

By Proposition 2.15, there exists dB ∈ N and a positive constant cB such that for any d ≥ dB we get

right-hand side of (28) ≤
∥∥∂∂̄ϕd∥∥m∞Vol(Supp(∂∂̄ϕd))

mcB(m+ 1)!. (29)

Then, by (26), (24) and (29), we have

γFd⊗E

{
(α, β) ∈ RH0(X,F d ⊗ E)2,

∣∣∣∣∫
X

log
‖Wαβ(x)‖
d3/2

∂∂̄ϕd

∣∣∣∣ ≥ ad} ≤
e−tdadcB

∞∑
m=0

(m+ 1)

(∥∥∂∂̄ϕd∥∥∞ ·Vol(Supp(∂∂̄ϕd))

)m
tmd . (30)

Now, we have the identity
∑∞
m=0(m + 1)xm = d

dx

∑∞
m=1 x

m = d
dx

(
1

(1−x) − 1
)

= 1
(1−x)2 , so that the

right hand side in (30) equals

cB exp(−tdad)(
1− td

∥∥∂∂̄ϕd∥∥∞ ·Vol(Supp(∂∂̄ϕd))
)2 (31)

Putting td =
(
2
∥∥∂∂̄ϕd∥∥∞ ·Vol(Supp(∂∂̄ϕd))

)−1
, we get the result.

Lemma 3.2 (Lemma 2 of [5]). There exist positive constants Ci, i ∈ {1, . . . , 4}, and a family of
cuto� functions χt : X → [0, 1], de�ned for t ∈ (0, t0], for some t0 > 0, such that

1. Vol(supp(∂∂̄χt)) ≤ C1t;

2. Vol(X \ χ−1
t (1)) ≤ C2t;

3.
∥∥∂∂̄χt∥∥L∞ ≤ C3t

−2;

4. dist(supp(χt),RX)) ≥ C4t.

We now prove the following �berwise version of Theorem 0.1.

Theorem 3.3. Let `(d) be a sequence of positive real numbers such that `(d) ≥ B(log d) for some
B > 0. Then there exist positive constants c1 and c2 such that

µFd⊗E
{
u ∈MR

d (X,F d ⊗ E),#(Crit(u) ∩ RX) ≥ `(d)
√
d
}
≤ c1e−c2`(d)2 .

Here, µFd⊗E is the probability measure de�ned in De�nition 1.6 and MR
d (X,F d ⊗ E) is de�ned in

De�nition 1.9.

Proof. For any pair of real global sections (α, β) ∈ RH0(X,F d ⊗E)2 without common zeros, let uαβ
be the real branched covering de�ned by x 7→ [α(x) : β(x)]. Consider the set

C`(d) + {(α, β) ∈ RH0(X,F d ⊗ E)2,#(Crit(uαβ) ∩ RX) ≥ `(d)
√
d
}
. (32)

Remark that this set is a cone in RH0(X,F d⊗E)2. By Proposition 2.3, this implies that the Gaussian
measure of C`(d) equals the Fubini-Study measure of its projectivization, which is exactly the measure
we want to estimate. In order to obtain the result, we will then compute the Gaussian measure of
the cone (32). Moreover, by Proposition 2.14, we have that x ∈ Crit(uαβ) if and only if Wαβ(x) = 0,
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so that, in order to compute #Crit(uαβ), we can compute the number of zeros of Wαβ . To do this,
we will use Poincaré-Lelong formula, that is the following equality between currents

ωd −
∑

x∈{Wαβ=0}

δx =
1

2πi
∂∂̄ log ‖Wαβ‖, (33)

where ‖·‖ is the (induced) metric on F 2d⊗E2⊗T ∗X given by Proposition 1.1 and ωd is the corresponding
curvature form. Remark that ωd equals 2d ·ω+O(1) (the term 2d ·ω comes from the curvature form
of F 2d⊗E2 and the term O(1) from the curvature form of T ∗X). Moreover, remark that the Hermitian
metric π

d3/2
‖·‖ has the same curvature of the Hermitian metric ‖·‖, because the curvature form is not

a�ected by a multiplicative constant. Then, Poincaré-Lelong formula (33), can also be read

2d · ω +O(1)−
∑

x∈{Wαβ=0}

δx =
1

2πi
∂∂̄ log

(
π

d3/2
‖Wαβ‖

)
(34)

where the equality is in the sense of currents. We will apply (34) for the functions χtd given by

Lemma 3.2, for td = `(d)

4C2

√
d
, where C2 is the constant appearing in Lemma 3.2. By (34), we then get

1

2π

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ‖

)
∂∂̄χtd

∣∣∣∣ ≥
∣∣∣∣∣∣2d(1− `(d)

4
√
d

)
+O(1)−

∑
x∈{Wαβ=0}

χ `(d)√
d

(x)

∣∣∣∣∣∣. (35)

Remark that, for any pair of real global sections (α, β) in the cone C`(d) de�ned in (32), we have∑
x∈{Wαβ=0}

χ `(d)√
d

(x) ≤ 2d+ 2g − 2− `(d)
√
d, (36)

where g is the genus of X. Then, putting (36) in (35), we get

1

2π

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ‖

)
∂∂̄χ `(d)√

d

∣∣∣∣ ≥ 1

2
`(d)
√
d+O(1),

for any (α, β) ∈ C`(d). Then, for d large enough, the cone (32) is included in the set{
(α, β) ∈ RH0(X,F d ⊗ E)2,

∣∣∣∣∫
X

log

(
π

d3/2
‖Wαβ‖

)
∂∂̄χ `(d)√

d

∣∣∣∣ ≥ `(d)
√
d

}
.

The result then follows from Proposition 3.1 and Lemma 3.2.

Proof of Theorem 0.1. We �x a degree 1 real holomorphic line bundle F over X, so that for any
L ∈ PicdR(X) there exists an unique degree 0 real holomorphic line bundle E ∈ Pic0

R(X) such that
L = F d ⊗ E. The result then follows by integrating the inequality appearing in Theorem 3.3 along
the compact base Pic0

R(X) ' PicdR(X) (the last isomorphism is given by the choice of the degree 1
real line bundle F ).
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