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Introduction

Let (X, c X ) be a real algebraic curve, that is a smooth complex complex curve equipped with an anti-holomorphic involution c X , called the real structure. We denote by RX the real locus of X, that is the set Fix(c X ) of xed points of c X . For example the projective line (CP 1 , conj) is a real algebraic curve whose real locus equals RP 1 .

The central objects of this paper are real branched coverings from X to CP 1 , that is, the branched coverings u : X → CP 1 such that u • c X = conj • u. Let us denote by M R d (X) the set of degree d real branched coverings from X to CP 1 . The rst purpose of the paper is to show that M R d (X) has a natural probability measure µ d induced by a compatible volume form ω of X (that is c * X ω = -ω), which we x once for all. Later in the introduction we will sketch the construction of the measure µ d , which we will give in details in Section 1. [START_REF] Berman | A direct approach to Bergman kernel asymptotics for positive line bundles[END_REF]. By Riemann-Hurwitz formula, the number of critical points, counted with multiplicity, of a degree d branched covering u : X → CP 1 equals 2d + 2g -2, where g is the genus of X. The probability measure µ d allows us to ask the following question.

What is the probability that all the critical points of a real branched covering u ∈ M R d (X) are real?

In [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF], it is proved that the expected number of real critical points is equivalent to c √ d as the degree d of the random branched covering goes to innity. The constant c is explicit, given by c = π 2 Vol(RX), where Vol(RX) is the length of the real locus of X with respect to the Riemannian metric induced by ω. The main theorem of the paper is the following exponential rarefaction result for real branched coverings having "many" real critical points. Theorem 0.1. Let X be a real algebraic curve. Let (d) be a sequence of positive real numbers such that (d) ≥ B log d, for some B > 0. Then there exist positive constants c 1 and c 2 such that the following holds

µ d u ∈ M R d (X), #(Crit(u) ∩ RX) ≥ (d) √ d ≤ c 1 e -c2 (d) 2 .
For example, for any xed α > 0, we can consider the sequence (d) = √ d α . Theorem 0.1 says that the space of real branched coverings having more than √ d 1+α real critical points has exponential small measure. In particular, maximal real branched converings (i.e. branched coverings such that all the critical points are real) are exponentially rare.

The probability measure on M R d (X). The construction of the probability measure on M R d (X) uses the fact that there is a natural map from M R d (X) to the space of degree d real holomorphic line bundle Pic d R (X), see Proposition 1.5. This map sends a degree d morphism u to the degree d line bundle u * O [START_REF] Ancona | Critical points of random branched coverings of the Riemann sphere[END_REF]. The ber of this map over L ∈ Pic d R (X) is the open dense subset of P(RH 0 (X, L) 2 ) given by (the class of) pairs of global sections without common zeros. In order to construct a probability measure on M R d (X), we produce a family of probability measures {µ L } L∈Pic d R (X) on each space P(RH 0 (X, L) 2 ). The probability measure µ L on P(RH 0 (X, L) 2 ) is the measure induced by the Fubini-Study metric associated with a real Hermitian product on RH 0 (X, L) 2 . This Hermitian product is the natural L 2 -product induced by ω, see Section 1.1. This family of measures, together with the Haar probability measure on the base Pic d R (X), gives rise to the probability measure µ d on M R d (X).

An example: the projective line. Let us consider the case X = CP 1 equipped with the conjugaison conj([x 0 :

x 1 ]) = [x 0 : x1 ]. Given two degree d real polynomials P, Q ∈ R hom d [X 0 , X 1 ]
without common zeros, we produce a degree d real branched covering u P Q : CP 1 → CP 1 by sending [x 0 : x 1 ] to [P (x 0 , x 1 ) : Q(x 0 , x 1 )]. We also remark that the pair (λP, λQ) denes the same branched covering. Conversely, one can prove that any degree d real branched covering u : CP 1 → CP 1 is of the form u = u P Q for some (class of) pair of polynomials (P, Q) without common zeros. This means that

M R d (CP 1 ) = P(R hom d [X 0 , X 1 ] 2 \ Λ d )
, where Λ d is the set of polynomials with at least one common zero. Consider the ane chart {x 1 = 0}, the corresponding coordinate x = x0 x1 and the polynomials p(X) = P (X 0 , 1) and q(X) = Q(X 0 , 1). Then, one can see that a point x ∈ {x 1 = 0} is a critical point of u P Q if and only p (x)q(x) -q (x)p(x) = 0 (see Proposition 2.14).

In the the previous paragraph, we constructed a probability measure on this space by xing a compatible volume form on source space, in this case CP 1 . Indeed, a compatible volume form induces a L 2 -scalar product on R hom d [X 0 , X 1 ] which will induce a Fubini-Study volume form on

P(R hom d [X 0 , X 1 ] 2
) and then a probability on M R d (CP 1 ). If we equip CP 1 with the Fubini-Study form, then the induced scalar product on

R hom d [X 0 , X 1 ] is the one which makes { d k X k 0 X d-k 1
} 0≤k≤d an orthonormal basis. This scalar product was considered by Kostlan in [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] (see also [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF]). It is the only scalar product invariant under the action of the orthogonal group O(2) (which acts on the variables X 0 and X 1 ) and such that the standard monomials are orthogonal to each other. About the proof. There are two main steps in the proof of our main theorem. First, we reduce our problem into the problem of the computation of the Gaussian measure of a cone C (d) which lies inside the space of pairs of global sections of a real holomorphic line bundle over X. This cone is dened by using the Wronskian of a pair of global sections, which plays a key role. Then, we use peak sections theory to estimate some Markov moments related to this Wronskian. These moments, together with Poincaré-Lelong formula, allow us to estimate the measure of the cone C (d) .

Let sketch the proof in more details. We x a degree 1 real holomorphic line bundle F over X, so that, for any L ∈ Pic d R (X) there exists an unique

E ∈ Pic 0 R (X) such that L = F d ⊗ E.
Recall that any class of pairs of real global sections without common zeros [α : β] ∈ P(RH 0 (X, F d ⊗ E) 2 ) denes a real branched covering u αβ by sending a point x ∈ X to [α(x) : β(x)] ∈ CP 1 . Theorem 0.1 will follow from the estimate

µ F d ⊗E [α : β] ∈ P(RH 0 (X, F d ⊗ E) 2 ), #(Crit(u αβ ) ∩ RX) ≥ (d) √ d ≤ c 1 e -c2 (d) 2 (1) 
where µ F d ⊗E is the probability measure induced by the Fubini-Study metric on P(RH 0 (X,

F d ⊗ E) 2 ).
Indeed, if we integrate the inequality (1) along Pic 0 R (X) we exactly obtain Theorem 0.1. To prove the estimate (1), we will use the following two facts. First, a point x is a critical point of u αβ if and only if it is a zero of the Wronskian W αβ α ⊗ ∇β -β ⊗ ∇α. Second, the pushforward (with respect to the projectivization) of the Gaussian measure on RH 0 (X, F d ⊗ E) 2 is exactly the probability measure µ F d ⊗E . These two facts imply that the estimate (1) is equivalent to the fact that the Gaussian measure of the cone

C (d) (α, β) ∈ RH 0 (X, F d ⊗ E) 2 , #(real zeros of W αβ ) ≥ (d) √ d (2) 
is bounded from above by c 1 e -c2 (d) 2 . In order to estimate the Gaussian measure of C (d) , inspired by [START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF], we bound from above the moments of the random variable (α, β) ∈ RH 0 (X,

F d ⊗ E) 2 → log W αβ (x)
, where x is a point in X such that dist(x, RX) is bigger that log d √ d , see Proposition 2.15. This condition on the distance is natural, it is strictly related to peak section's theory (see [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF][START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]) and it is the reason why we need the hypothesis on the growth of the sequence (d) in Theorem 0.1. The estimate of these moments uses two ingredients: the theory of peak sections and the comparison between the norms of two dierents evaluation maps (and more generally jet maps). Once these moments are estimates, Markov inequality and Poincaré-Lelong formula gives us the exponential rarefaction of the Gaussian measure of the cone (2).

Organization of the paper. The paper is organized as follows. In Section 1.1 we introduce the main objects and notations of this paper. In Sections 1.2 and 1.3 we study the geometry of the manifold M R d (X) and we construct the probability measure µ d on it. The purpose of Section 2 is to prove Proposition 2.15, that is, to estimate of the moments of the random variable (α, β) ∈ RH 0 (X, F d ⊗ E) 2 → log (α ⊗ ∇β -β ⊗ ∇α)(x) , for F and E are respectively a degree 1 and 0 real holomorphic line bundles. In order to do this, in Section 2.1 we introduce Gaussian measures on RH 0 (X, F d ⊗ E) 2 and in Section 2.2 we study jet maps at points x ∈ X which are far from the real locus. Finally, in Section 3, we deduce Theorem 0.1 from the estimates established in Section 2. Let (X, c X ) be a real algebraic curve, that is a complex, projective, smooth curve equipped with an anti-holomorphic involution c X , called the real structure. We assume that the real locus RX Fix(c X ) is non empty. For example (CP 1 , conj), where conj([x 0 : x 1 ]) = [x 0 : x1 ], is a real algebraic curve whose real locus is RP 1 . A real holomorphic line bundle p : L → X is a line bundle equipped with an anti-holomorphic involution c L such that p•c X = c L •p and c L is complex-antilinear in the bers. We denote by RH 0 (X; L) the real vector space of real holomorphic global sections of L, i.e. sections s ∈ H 0 (X; L) such that s • c X = c L • s. Let Pic d R (X) be the set of degree d real line bundles. It is a principal space under the action of the compact topological abelian group Pic 0 R (X) and so it inherits a normalized Haar measure that we denote by dH (see, for example, [START_REF] Benedict | Real algebraic curves[END_REF]). Finally, recall that a real Hermitian metric h on L is a Hermitian metric on L such that c * L h = h.

Proposition 1.1. Let (X, c X ) be a real algebraic curve and let ω be a compatible volume form of mass

1, that is c * X ω = -ω and X ω = 1. Let L ∈ Pic d R (X)
be a degree d real holomorphic line bundle over X, then there exists an unique real Hermitian metric h (up to multiplication by a positive real constant

) such that c 1 (L, h) = d • ω.
Proof. For the existence and unicity of such metric, see [START_REF] Ancona | Critical points of random branched coverings of the Riemann sphere[END_REF]Proposition 1.4]. The fact that the metric h is real follows from the following argument. Let us consider the Hermitian metric c * L h on L. Claim: its curvature equals -d • c * X ω. Indeed, for any x ∈ X we consider a real meromorphic section s of L such that x and c X (x) are neither zero nor pole of s (such section exists by Riemann-Roch Theorem). Then, the curvature of (L,

c * L h) around x is ∂ ∂ log c * L h x (s(x), s(x)) = ∂ ∂ log h c X (x) (c L (s(x)), c L (s(x))) = ∂ ∂ log h c X (x) (s(c X (x)), s(c X (x))) = ∂ ∂c * X log h(s, s) = -c * X ∂ ∂ log h(s, s),
where the last equality is due to the anti-holomorphicity of c X . Then, the claim follows from the fact that

∂ ∂ log h(s, s) = d • ω. Now, consider the real Hermitian metric (h • c * L h) 1/2 . Its curvature equals 1 2 ∂ ∂ log h(s, s) + ∂ ∂ log c * L h (s, s) = 1 2 (d • ω -d • c * X ω) = d • ω,
where the last equality follows from the fact that ω is compatible with the real structure. By unicity of the metric with curvature d • ω, this implies that (h

• c * L h) 1/2 is a multiple of h. We actually have the equality (h • c * L h) 1/2 = h, because for a real point x ∈ RX and a real vector v ∈ RL x we get (h x (v, v) • (c * L h) x (v, v)) 1/2 = (h x (v, v) • h x (v, v)) 1/2 = h x (v, v).
Denition 1.2. Let ω be a compatible volume form of mass 1, let L ∈ Pic d R (X) be a degree d line bundle over X and h be the real Hermitian metric given by the previous proposition. We dene the L 2 -scalar product on RH 0 (X; L) by

α, β L 2 = x∈X h x (α(x), β(x))ω
for any pair of real holomorphic sections α, β ∈ RH 0 (X; L).

1.2

The space of real branched coverings

In this section we introduce and study the space of real branched coverings from a real algebraic curve (X, c X ) to (CP 1 , conj).

Denition 1.3. We denote by M R d (X) the space of all degree d real branched coverings u : X → CP 1 , that are the branched coverings such that u • c X = conj • u.

A natural way to dene a degree d real branched covering is the following one. Consider a degree d real holomorphic line bundle L ∈ Pic d R (X) and two real holomorphic sections α, β ∈ RH 0 (X, L) without common zeros. Then, we can dene the degree d real branched covering u αβ dened by

u αβ : x ∈ X → [α(x) : β(x)] ∈ CP 1 .
Proposition 1.4. Two pairs (α, β), (α , β ) of real holomorphic sections of L dene the same real branched covering if and only if (α , β ) = (λα, λβ) for some λ ∈ R * .

Proof. The proof follows the lines of [1, Proposition 1.1]. Proposition 1.5. There exists a natural map from M R d (X) to the space Pic d R (X) of degree d real line bundles over X. This natural map is given by u

∈ M R d (X) → u * O(1) ∈ Pic d R (X). The ber over L ∈ Pic d R (X)
is the open subset of P(RH 0 (X; L) 2 ) given by (the class of) pair of sections (α, β) without common zeros.

Proof. Given a degree d real branched covering u : X → CP 1 , we get a degree d real line bundle u * O(1) over X and the class of two real holomorphic global holomorphic sections without common zeros [u * x 0 : u * x 1 ] ∈ P(RH 0 (X; u * O(1)) 2 ). On the other hand, given a degree d real line bundle L → X and two real holomorphic global sections without common zeros (α, β) ∈ RH 0 (X; L) 2 , then the map u αβ : X → CP 1 dened by x → [α(x) : β(x)] is a degree d real branched covering. Moreover, by Proposition 1.4, two pairs (α, β) and (α , β ) of real holomorphic sections of L dene the same real branched covering if and only if (α , β ) = (λα, λβ) for some λ ∈ R * , hence the result.

1.3 Probability on M R d (X)
Let X be a real algebraic curve equipped with a compatible volume form ω of total mass 1. In this section, we construct a natural probability measure on the space M R d (X) of degree d real branched coverings from X to CP 1 . Let L ∈ Pic d R (X) be a degree d real line bundle equipped with the real Hermitian metric h given by Proposition 1.1. We recall that in Denition 1.2 we dened the L 2 -scalar product on the space RH 0 (X; L) induced by the Hermitian metric h. This L 2 -scalar product induces a scalar product on the Cartesian product RH 0 (X; L) 2 and then a Fubini-Study metric on P(RH 0 (X; L) 2 ). We recall that the Fubini-Study metric is constructed as follows. First, we restrict the scalar product to the unit sphere of RH 0 (X; L) 2 . The obtained metric is invariant under the action of Z/2Z and the Fubini-Study metric is then the quotient metric on P(RH 0 (X; L) 2 ). Denition 1.6. Let L be a real holomorphic line bundle over X. We denote by µ L the probability measure on P(RH 0 (X; L) 2 ) induced by the normalized Fubini-Study volume form. Here, the Fubini-Study metric on P(RH 0 (X; L) 2 ) is the one induced by the Hermitian metric on L given by Proposition 1.1.

Proposition 1.7. The probability measure µ L over P(RH 0 (X; L) 2 ) does not depend on the choice of the multiplicative constant in front of the metric h given by Proposition 1.1.

Proof. The proof follows the line of [1, Proposition 1.7]

Remark 1.8. For a real holomorphic line bundle L, we denote by Λ L the space of pair of sections (s 0 , s 1 ) ∈ RH 0 (X; L) 2 with at least a common zeros. By [2, Proposition 2.11], the set Λ L has zero measure (it is an hypersurface), at least if the degree of L is large enough. This implies that µ L induces a probability measure on P(RH 0 (X; L) 2 \ Λ L ), still denoted by µ L . Denition 1.9. We dene the probability measure µ d on M R d (X) by the following equality:

M R d (X) f dµ d = L∈Pic d R (X) M R d (X,L) f dµ L dH(L)
for any f ∈ M R d (X) measurable function. Here:

• M R d (X, L) is the ber of the natural morphism M R d (X) → Pic d R (X) dened in Proposition 1.5.
• µ L denotes (by a slight abuse of notation) the restriction to M R d (X, L) of the probability measure on P(RH 0 (X, L) 2 ) dened in Denition 1.6.

• dH denotes the normalized Haar measure on Pic d R (X).

Remark 1.10. The probability measure µ d of Denition 1.9 is the real analogue of the one constructed in the complex setting in [START_REF] Ancona | Critical points of random branched coverings of the Riemann sphere[END_REF] for the study of random branched coverings from a xed Riemann surface to CP 1 . Also, in the complex setting, a similar construction has been considered by Zelditch in [START_REF] Zelditch | Large deviations of empirical measures of zeros on Riemann surfaces[END_REF] in order to study large deviations of empirical measures of zeros on a Riemann surface. Example 1.11. Let us consider the case (X, c X ) = (CP 

[X 0 , X 1 ]
and the L 2 -scalar product coincides with the Kostlan scalar product (i.e. the scalar product which makes

{ d k X k 0 X d-k 1
} 0≤k≤d an orthonormal basis, see [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF][START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF]). Then, a random real branched covering u : CP 1 → CP 1 is given by the class of a pairs of independent Kostlan polynomials.

2

Gaussian measures and estimates of higher moments

In this section, we introduce some Gaussian measures on the spaces RH 0 (X; L) 2 and H 0 (X; L) 2 , as in [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF][START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF][START_REF] Shiman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF][START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF]. We follow the notations of Section 1. In particular, (X, c X ) is a real algebraic curve whose real locus RX is not empty.

Gaussian measures

In this section, given any degree d real line L ∈ Pic d R (X), we equip the cartesian product RH 0 (X; L) 2 of the space of real holomorphic section with a Gaussian measure γ L . In order to do this, we x a compatible volume form ω of total volume 1 (i.e. c * X ω = -ω and X ω = 1). Given L ∈ Pic d R (X), we equip L by the real Hermitian metric h with curvature d • ω (the metric h is unique up to a multiplicative constant, see Proposition 1.1). In Denition 1.2, we dened a L 2 -Hermitian product on the space RH 0 (X; L) of real holomorphic global holomorphic sections of L denoted by •, • L 2 and dened by

α, β L 2 = x∈X h x (α(x), β(x))ω
for all α, β in RH 0 (X; L). Denition 2.1. The L 2 -scalar product on RH 0 (X; L) 2 induces a Gaussian measure γ L on RH 0 (X; L) 2 dened by

γ L (A) = 1 π N d (α,β)∈A e -α 2 L 2 -β 2 L 2 dαdβ
for any open subset A ⊂ RH 0 (X; L) 2 . Here dαdβ is the Lebesgue measure on (RH 0 (X; L) 2 ; •, • L 2 ) and N d denotes the dimension of RH 0 (X; L), which equals the complex dimension of H 0 (X; L).

Remark 2.2. If d > 2g-2, where g is the genus of X, then H 1 (X; L) = 0 and then, by Riemann-Roch theorem, we have

N d = d + 1 -g. Proposition 2.3. [1, Proposition 1.
12] Let f be a function on an Euclidian space (V, •, • ) which is constant over the lines, i.e. f (v) = f (λv) for all v ∈ V and all λ ∈ R * . Denote by dγ the Gaussian measure on V induced by •, • and by dµ the normalized Fubini-Study measure on the projectivized P(V ). Then, for all cones A ⊂ V , we have

A f dγ = P(A)
[f ]dµ where P(A) is the projectivized of A and [f ] is the function on P(V ) induced by f .

We will be also interested in the complex Gaussian measure on the space H 0 (X, L) 2 . Indeed, the Hermitian metric h on L denes a L 2 -Hermitian product on H 0 (X, L) by the formula

α, β L 2 = x∈Σ h x (α(x), β(x))ω
for all α, β in H 0 (Σ; L).

Denition 2.4. The complex Gaussian measure γ C

L on H 0 (Σ; L) 2 is dened by

γ C L (A) = 1 π 2N d (α,β)∈A e -α 2 L 2 -β 2 L 2 dαdβ
for any open subset A ⊂ H 0 (Σ; L) 2 . Here dαdβ is the Lebesgue measure on (H 0 (Σ; L) 2 ; •, • L 2 ) and N d denotes the complex dimension of H 0 (Σ; L).

Jet maps and peak sections

Let F and E be respectively degree 1 and 0 real holomorphic line bundles over X. We equip F and E by the real Hermitian metrics given by Proposition 1.1 which we denote by h F and h E . In particular the real Hermitian metric

h d h d F ⊗ h E on F d ⊗ E is such that its curvature equals d • ω. Finally, recall that the space H 0 (X, F d ⊗ E) is endowed with the L 2 -Hermitian product α, β L 2 = x∈X h d (α(x), β(x))ω dened by for any α, β in H 0 (X; F d ⊗ E).
Denition 2.5. For any x ∈ X, let H x be the kernel of the map s ∈ H 0 (X,

F d ⊗ E) → s(x) ∈ (F d ⊗ E) x .
Similarly, we denote by H 2x the kernel of the map s ∈ H x → ∇s(x) ∈ (F d ⊗ E) x ⊗ T * X,x . We dene the following jet maps:

ev x : s ∈ H 0 (X, F d ⊗ E)/H x → s(x) ∈ (F d ⊗ E) x , ev 2x : s ∈ H x /H 2x → ∇s(x) ∈ (F d ⊗ E) x ⊗ T * X,x .
The previous denition has the following real analogue: Denition 2.6. For any point x ∈ X, we dene the real vector spaces RH 0

x = H 0 x ∩ RH 0 (X, F d ⊗ E) and RH 0 2x = H 0 2x ∩ RH 0 (X, F d ⊗ E) and the real jet maps by ev R x : s ∈ RH 0 (X, F d ⊗ E)/RH 0 x → s(x) ∈ (F d ⊗ E) x , ev R 2x : s ∈ RH x /RH 2x → ∇s(x) ∈ (F d ⊗ E) x ⊗ T * X,x .
By the fact that F is ample (recall that deg F = 1), we get that for d large enough the maps ev R x , ev x , ev R 2x and ev 2x are invertible. The following proposition estimates the norms of this maps and of their inverses. Proposition 2.7. [6, Propositions 4 and 6] For any B > 0, then there exists an integer d B and a positive constant c B such that, for any d ≥ d B and any point

x ∈ X with dist(x, RX) ≥ B log d √ d , the maps d -1 2 ev R x , d -1
2 ev x , d -1 ev R 2x and d -1 ev 2x as well as their inverse have norms and determinants bounded from above by c B . Remark 2.8. In [6, Propositions 4 and 6], the constant B equals 1, and the line bundle E is trivial. The same proof actually holds for any xed B > 0 and any E ∈ Pic 0 R (X). Indeed, the proof is based on the theory peak sections and Bergman kernels and this theory holds in this more general setting (see for example [START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF] or [9, Theorem 4.2.1]).

Using the L 2 -Hermitian product on H 0 (X, F d ⊗ E), we can identify H 0 (X, F d ⊗ E)/H x with the orthogonal complement of H x in H 0 (X, F d ⊗ E). Similarly, we identify the quotient H x /H 2x with the orthogonal complement of H 2x in H x . We then have an orthogonal decomposition

H 0 (X, F d ⊗ E) = H 0 (X, F d ⊗ E)/H x ⊕ H x /H 2x ⊕ H 2x .
Similarly, using the L 2 -scalar product on RH 0 (X, F d ⊗ E), we have the orthogonal decomposition

RH 0 (X, F d ⊗ E) = RH 0 (X, F d ⊗ E)/RH x ⊕ RH x /RH 2x ⊕ RH 2x .
The map ev x × ev 2x (resp. ev R

x × ev R 2x ) gives an isomorphism between H 0 (X,

F d ⊗ E)/H x ⊕ H x /H 2x (resp. RH 0 (X, F d ⊗ E)/RH x ⊕ RH x /RH 2x ) and the ber (F d ⊗ E) x ⊕ (F d ⊗ E) x ⊗ T * X,x
. Moreover, remark that we have natural identications H 0 (X, 

F d ⊗ E)/H x ⊕ H x /H 2x = H ⊥ 2x and RH 0 (X, F d ⊗E)/RH x ⊕RH x /RH 2x = RH ⊥ 2x . A direct
H x .
We call these sections the peak sections at x.

The pointwise estimate of the norms (with respect to the Hermitian metric h d of curvature d • ω) of the peak sections are well known and strictly related to the estimates of the Bergman kernel along the diagonal (see [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF][START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF][START_REF] Berman | A direct approach to Bergman kernel asymptotics for positive line bundles[END_REF][START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF]). With a slight abuse of notation, we will denote by • any norm induced by h d . Lemma 2.11. ([1, Proposition 1.5]) For any x ∈ X, let s 0 and s 1 be the peak sections dened in Denition 2.10. Then, as d → +∞, we have the estimates

s 0 (x) = √ d √ π (1 + O(d -1 )) and ∇s 1 (x) = d √ π (1 + O(d -1
)), where the error terms are uniform in x ∈ X.

Wronskian and higher moments

Let F and E be respectively degree 1 and 0 real holomorphic line bundles over X. The purpose of this section is to prove Proposition 2.15, which gives key estimates of the higher moments of the random variable (α, β) ∈ RH 0 (X,

F d ⊗ E) 2 → log π d 3/2 W αβ (x)
, where W αβ is the Wronskian, given by the following Denition 2.12. Let ∇ be a connection on F d ⊗ E. For any pair of real holomorphic global sections (α, β) ∈ RH 0 (X, F d ⊗ E) 2 , we denote by W αβ the Wronskian α ⊗ ∇β -β ⊗ ∇α, which is a real holomorphic global section of

F 2d ⊗ E 2 ⊗ T * X .
Remark 2.13. The Wronskian W αβ does not depend on the choice of a connection on F d ⊗ E. Indeed, two connections ∇ and ∇ on F d ⊗ E dier by a 1-form θ, and then we have

(α ⊗ ∇β -β ⊗ ∇α) -(α∇ β -β∇ α) = α ⊗ (∇ -∇ )β -β ⊗ (∇ -∇ )α = α ⊗ β ⊗ θ -β ⊗ α ⊗ θ = 0.
Proposition 2.14. [1, Proposition 2.3] Let F and E be respectively degree 1 and 0 real line bundles over X and (α, β) ∈ RH 0 (X, F d ⊗ E) 2 be a pair of sections without common zeros. A point x ∈ X is a critical point of the map u αβ : x ∈ X → [α(x) : β(x)] ∈ CP 1 if and only if it is a zero of the Wronskian W αβ dened in Denition 2.12.

Proposition 2.15. Let X be a real algebraic curve equipped with a compatible volume form ω of total volume 1 and let F ∈ Pic 1 R (X). For any B > 0 there exists an integer d B and a constant c B such that for any

E ∈ Pic 0 R (X), any m ∈ N, any d ≥ d B and any point x ∈ X with dist(x, RX) ≥ B log d √ d , we have (α,β)∈RH 0 (X,F d ⊗E) 2 log π d 3/2 W αβ (x) m dγ d (α, β) ≤ c B (m + 1)!.
Here, dist(•, •) is the distance in X induced by ω, γ d is the Gaussian measure on RH 0 (X, F d ⊗ E) 2 constructed in Section 2.1 and • denote the norm induced by the Hermitian metrics on F and E given by Proposition 1.1.

Proof. Let us consider the integral we want to estimate:

(α,β)∈RH 0 (X,F d ⊗E) 2 log π d 3/2 W αβ (x) m dγ d (α, β). (3) 
First, remark that the function in the integral (3) only depends on the 1-jet of the sections α and β.

We will then write the orthogonal decomposition RH 0 (X,

F d ⊗ E) = RH 2x ⊕ RH ⊥ 2x
, where RH 2x is the space of real sections s such that s(x) = 0 and ∇s(x) = 0. As the Gaussian measure is a product measure, after the integration over the orthogonal of RH ⊥ 2x × RH ⊥ 2x , we get that the integral (3) is equal to

(α,β)∈RH ⊥ 2x ×RH ⊥ 2x log π d 3/2 W αβ (x) m dγ d | RH ⊥ 2x ×RH ⊥ 2x (α, β). (4) 
Using the notations of Section 2.2, and in particular Denitions 2.5 and 2.6, let

J d : H ⊥ 2x → RH ⊥ 2x be the map (ev R x × ev R 2x ) -1 • (ev x × ev 2x
) and denote by

I d = J d × J d : H ⊥ 2x × H ⊥ 2x → RH ⊥ 2x × RH ⊥ 2x .
By changing of variables given by the isomorphism I d , we get

(4) = (α,β)∈H ⊥ 2x ×H ⊥ 2x log π d 3/2 W αβ (x) m (I -1 d ) * (dγ d | RH ⊥ 2x ×RH ⊥ 2x )(α, β). (5) 
By Corollary 2.9, the maps I d and I -1

d
have determinants bounded from above by a constant which only depends on B. In particular, there exists a constant c 1 , depending only on B, such that

(5) ≤ c 1 (α,β)∈H ⊥ 2x ×H ⊥ 2x log π d 3/2 W αβ (x) m dγ C d | H ⊥ 2x ×H ⊥ 2x (α, β) (6) 
where γ C d is the complex Gaussian measure dened in Denition 2.4. In order to prove the result, we have to bound from above the quantity

(α,β)∈H ⊥ 2x ×H ⊥ 2x log π d 3/2 W αβ (x) m dγ C d | H ⊥ 2x ×H ⊥ 2x (α, β) (7) 
Let s 0 and s 1 be the peak sections at x introduced in Denition 2.10 and we write α = a 0 σ 0 + a 1 σ 1 and β = b 0 σ 0 + b 1 σ 1 . We then have

W αβ (x) = |a 0 b 1 -a 1 b 0 | (s 0 ⊗ ∇s 1 -s 1 ⊗ ∇s 0 )(x) = |a 0 b 1 -a 1 b 0 | d 3/2 π (1 + O(d -c2(B) )),
where the last equality follows from Proposition 2.11. This implies that the integral in [START_REF] Benedict | Real algebraic curves[END_REF] equals

a=(a0,a1)∈C 2 b=(b0,b1)∈C 2 log |a 0 b 1 -a 1 b 0 | π d 3/2 (s 0 ⊗ ∇s 1 -s 1 ⊗ ∇s 0 )(x) m e -|a| 2 -|b| 2 π 4 dadb = a=(a0,a1)∈C 2 b=(b0,b1)∈C 2 log |a 0 b 1 -a 1 b 0 | m e -|a| 2 -|b| 2 π 4 1 + O(d -c3(B) ) dadb ≤ 2 a∈C 2 b∈C 2 |log |a 0 b 1 -b 0 a 1 || m e -|a| 2 -|b| 2 π 4 dadb (8) 
where the last inequality holds for d ≥ d B , for some d B large enough.

In the remaining part of the proof, we will estimate the last integral appearing in [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF]. In order to do this, for any a = (a 0 , a 1 ) we make an unitary trasformation of C 2 (of coordinates b 0 , b 1 ) by sending the vector (1, 0) to v a = 1 √ |a0| 2 +|a1| 2 (a 0 , a 1 ) and the vector (0, 1) to w a = 1 √ |a0| 2 +|a1| 2 (-ā 1 , ā0 ). We will write any vector of C 2 as a sum tv a + sw a with s, t ∈ C. Under this change of variables, the integral appearing in (8) becomes

≤ 2 a∈C 2 (s,t)∈C 2 |log |s| a | m e -|a| 2 -|s| 2 -|t| 2 π 4 dadsdt = 2 a∈C 2 s∈C |log |s| a | m e -|a| 2 -|s| 2 π 3 dads. ( 9 
)
We pass to polar coordinates a = re iθ , for θ ∈ S 3 and r ∈ R + , and s = ρe iφ , for φ ∈ S 1 and ρ ∈ R + , and we obtain

2 a∈C 2 s∈C |log |s| a | m e -|a| 2 -|s| 2 π 3 dads = 8 r∈R+ ρ∈R+ |log ρr| m e -r 2 -ρ 2 r 3 ρdrdρ. (10) 
Writing log ρr = log ρ + log r, developing the binomial and using the triangular inequality, we obtain

(10) ≤ 8 r∈R+ ρ∈R+ m k=0 m k |log ρ| k |log r| m-k e -r 2 -ρ 2 r 3 ρdrdρ. ( 11 
)
Let us study the integrals ρ∈R+ |log ρ| n e -ρ 2 ρdρ and r∈R+ |log r| n e -r 2 r 3 dr . To compute these two integrals, we will use the following formula obtained by integration by part:

(log x) n dx = x log x -n (log x) n-1 dx, n > 0. ( 12 
)
• Computation of the integral ρ∈R+ |log ρ| n e -ρ 2 ρdρ. We write

ρ∈R+ |log ρ| n e -ρ 2 ρdρ = 1 ρ=0 (-log ρ) n e -ρ 2 ρdρ + ∞ ρ=1 (log ρ) n e -ρ 2 ρdρ. (13) 
For the rst term of this sum we have

1 ρ=0 (-log ρ) n e -ρ 2 ρdρ ≤ √ 2 2 1 ρ=0 (-log ρ) n dρ = √ 2 2 n! (14) 
where we used rst that e -ρ 2 ρ ≤ √ 2 2 for ρ ∈ [0, 1] and then we used n times the formula [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. For the second term of the sum in [START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF], we use rst the fact that e -ρ 2 ρ ≤ e (15) The last integral is the same as in [START_REF] Zelditch | Large deviations of empirical measures of zeros on Riemann surfaces[END_REF], so from ( 14) and (15) we obtain

∞ ρ=1 (log ρ) n e -ρ 2 ρdρ ≤ √ 2 2 n! (16) 
Putting ( 14) and ( 16) in [START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF], we obtain

ρ∈R+ |log ρ| n e -ρ 2 ρdρ ≤ √ 2n!. ( 17 
)
• Computation of the integral r∈R+ |log r| n e -r 2 r 3 dr. As before, we write

r∈R+ |log r| n e -r 2 r 3 dr = 1 r=0 (-log r) n e -r 2 r 3 dr + ∞ r=1 (log r) n e -r 2 r 3 dr. ( 18 
)
For the rst term of the sum, we get

1 r=0 (-log r) n e -r 2 r 3 dr ≤ (-1) n √ 2 √ 3 1 r=0 (log r) n dr = √ 2 √ 3 n! (19) 
where the rst inequality follows from e -r 2 r 3 ≤ √ 2 √ 3 , for r ∈ [0, 1], and the last equality is obtained using n times the formula [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF].

For the second term of the sum in the right-hand side of (18), we use integration by parts with respect to the functions -1 2 (log r) n r 2 and -2re -r 2 to obtain

∞ s=1 (log r) n e -r 2 r 3 dr = [- 1 2 (log r) n r 2 e -r 2 ] ∞ r=1 + n 2 ∞ r=1 (log r) n-1 re -r 2 dr+ ∞ r=1
(log r) n re -r 2 dr.

(20) As [- 1 2 (log r) n r 2 e -r 2 ] ∞ r=1 = 0 we obtain, by using ( 16) in (20), that

∞ s=1 (log r) n e -r 2 r 3 dr ≤ 3 √ 2 4 n!. (21) 
Putting ( 19) and ( 21) in (18), we get

r∈R+ |log r| n e -r 2 r 3 ds ≤ 4 √ 6 + 9 √ 2 12 n!. (22) 
Now, we use ( 17) and ( 22) and we obtain the following estimate:

r∈R+ ρ∈R+ m k=0 m k |log ρ| k |log r| m-k e -r 2 -s 2 r 3 ρdrdρ ≤ 4 √ 3 + 9 6 m k=0 m k k!(m -k)! ≤ 4 √ 3 + 9 6 (m + 1)!.
(23) Putting ( 23) in [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF] and using ( 10) , ( 9) and ( 8), we obtaine the desired estimate for [START_REF] Benedict | Real algebraic curves[END_REF], hence the result.

3

Proof of Theorem 0.1

In this section, we prove our main result. We follow the notations of Sections 1 and 2.

Proposition 3.1. Let X be a real algebraic curve equipped with a compatible volume form ω of total volume 1 and let 

F ∈ Pic 1 R (X).
γ F d ⊗E (α, β) ∈ RH 0 (X, F d ⊗ E) 2 , X log π d 3/2 W αβ (x) ∂ ∂ϕ d ≥ a d ≤ c B exp - a d 2 ∂ ∂ϕ d ∞ Vol(Supp(∂ ∂ϕ d ))
.

Here, dist(•, •) is the distance in X induced by ω, γ F d ⊗E is the Gaussian measure on RH 0 (X, F d ⊗E) 2 constructed in Section 2.1 and • denote the pointwise norm induced by the Hermitian metrics on F and E given by Proposition 1.1.

Proof. For any t d > 0, let us denote

exp t d X log π d 3/2 W αβ (x) ∂ ∂ϕ d = ∞ m=0 t m d m! X log π d 3/2 W αβ (x) ∂ ∂ϕ d m . (24) 
Remark that

X log π d 3/2 W αβ (x) ∂ ∂ϕ d ≥ a d d ⇔ exp t d X log π d 3/2 W αβ (x) ∂ ∂ϕ d ≥ e t d a d (25) 
so that, by Markov inequality, we have

γ F d ⊗E (α, β) ∈ RH 0 (X, F d ⊗ E) 2 , X log π d 3/2 W αβ (x) ∂ ∂ϕ d ≥ a d ≤ e -t d a d RH 0 (X,F d ⊗E) 2 exp t d X log π d 3/2 W αβ (x) ∂ ∂ϕ d dγ F d ⊗E . (26) 
Now, we have

X log π d 3/2 W αβ (x) ∂ ∂ϕ d m ≤ ∂ ∂ϕ d m ∞ Supp(∂ ∂ϕ d ) log π d 3/2 W αβ (x) ω m . (27) 
We then apply Hölder inequality with m and m/(m -1) for the functions log 

π d 3/2 W αβ (x) and 
1, so that (27) ≤ ∂ ∂ϕ d m ∞ Vol(Supp(∂ ∂ϕ d )) m-1 Supp(∂ ∂ϕ d ) log π d 3/2 W αβ (x) m ω. ( 28 
Then, by ( 26), ( 24) and (29), we have

γ F d ⊗E (α, β) ∈ RH 0 (X, F d ⊗ E) 2 , X log W αβ (x) d 3/2 ∂ ∂ϕ d ≥ a d ≤ e -t d a d c B ∞ m=0 (m + 1) ∂ ∂ϕ d ∞ • Vol(Supp(∂ ∂ϕ d )) m t m d . (30) 
Now, we have the identity

∞ m=0 (m + 1)x m = d dx ∞ m=1 x m = d dx 1 (1-x) -1 = 1 (1-x) 2 , so that the right hand side in (30) equals c B exp(-t d a d ) 1 -t d ∂ ∂ϕ d ∞ • Vol(Supp(∂ ∂ϕ d )) 2 (31) Putting t d = 2 ∂ ∂ϕ d ∞ • Vol(Supp(∂ ∂ϕ d ))
-1 , we get the result.

Lemma 3.2 (Lemma 2 of [5]

). There exist positive constants C i , i ∈ {1, . . . , 4}, and a family of cuto functions χ t : X → [0, 1], dened for t ∈ (0, t 0 ], for some t 0 > 0, such that

1. Vol(supp(∂ ∂χ t )) ≤ C 1 t; 2. Vol(X \ χ -1 t (1)) ≤ C 2 t; 3. ∂ ∂χ t L ∞ ≤ C 3 t -2 ; 4. dist(supp(χ t ), RX)) ≥ C 4 t.
We now prove the following berwise version of Theorem 0.1.

Theorem 3.3. Let (d) be a sequence of positive real numbers such that (d) ≥ B(log d) for some B > 0. Then there exist positive constants c 1 and c 2 such that

µ F d ⊗E u ∈ M R d (X, F d ⊗ E), #(Crit(u) ∩ RX) ≥ (d) √ d ≤ c 1 e -c2 (d) 2 .
Here, µ F d ⊗E is the probability measure dened in Denition 1.6 and M R d (X, F d ⊗ E) is dened in Denition 1.9. 

Remark that this set is a cone in RH 0 (X, F d ⊗E) 2 . By Proposition 2.3, this implies that the Gaussian measure of C (d) equals the Fubini-Study measure of its projectivization, which is exactly the measure we want to estimate. In order to obtain the result, we will then compute the Gaussian measure of the cone (32). Moreover, by Proposition 2.14, we have that x ∈ Crit(u αβ ) if and only if W αβ (x) = 0, so that, in order to compute #Crit(u αβ ), we can compute the number of zeros of W αβ . To do this, we will use Poincaré-Lelong formula, that is the following equality between currents

ω d - x∈{W αβ =0} δ x = 1 2πi ∂ ∂ log W αβ , ( 33 
)
where • is the (induced) metric on F 2d ⊗E 2 ⊗T * X given by Proposition 1.1 and ω d is the corresponding curvature form. Remark that ω d equals 2d • ω + O(1) (the term 2d • ω comes from the curvature form of F 2d ⊗ E 2 and the term O(1) from the curvature form of T * X ). Moreover, remark that the Hermitian metric π d 3/2 • has the same curvature of the Hermitian metric • , because the curvature form is not aected by a multiplicative constant. Then, Poincaré-Lelong formula (33), can also be read

2d • ω + O(1) - x∈{W αβ =0} δ x = 1 2πi ∂ ∂ log π d 3/2 W αβ ( 34 
)
where the equality is in the sense of currents. We will apply (34) for the functions χ t d given by Lemma 3. 

Remark that, for any pair of real global sections (α, β) in the cone C (d) dened in (32), we have

x∈{W αβ =0} χ (d) √ d (x) ≤ 2d + 2g -2 -(d) √ d, (36) 
where g is the genus of X. Then, putting (36) in (35), we get The result then follows from Proposition 3.1 and Lemma 3.2.

Proof of Theorem 0.1. We x a degree 1 real holomorphic line bundle F over X, so that for any L ∈ Pic d R (X) there exists an unique degree 0 real holomorphic line bundle E ∈ Pic 0 R (X) such that L = F d ⊗ E. The result then follows by integrating the inequality appearing in Theorem 3.3 along the compact base Pic 0 R (X) Pic d R (X) (the last isomorphism is given by the choice of the degree 1 real line bundle F ).

-1 ρ 2 ρ 3 for any ρ ≥ 1 1 ( 1 0(

 23111 and then the change t = 1/ρ, to have ∞ ρ=1 (log ρ) n e -ρ 2ρdρ ≤ log(1/t)) n te -t dt = -log(t)) n te -t dt.

  Fix a sequence of positive real numbers (a d ) d . Then, for any B > 0 there exists d B ∈ N and a constant c B such that, for any E ∈ Pic 0 R (X), any d ≥ d B and any sequence of smooth functions (ϕ d ) d with dist(supp(ϕ d ), RX) ≥ B log d √ d , the following holds

)

  By Proposition 2.15, there exists d B ∈ N and a positive constant c B such that for any d ≥ d B we get right-hand side of (28) ≤ ∂ ∂ϕ d m ∞ Vol(Supp(∂ ∂ϕ d )) m c B (m + 1)!.

  Proof. For any pair of real global sections (α, β) ∈ RH 0 (X, F d ⊗ E) 2 without common zeros, let u αβ be the real branched covering dened by x → [α(x) : β(x)]. Consider the setC (d) {(α, β) ∈ RH 0 (X, F d ⊗ E) 2 , #(Crit(u αβ ) ∩ RX) ≥ (d) √ d .

1 2π X log π d 3 / 2 W

 132 αβ ∂ ∂χ(d) for any (α, β) ∈ C (d) . Then, for d large enough, the cone (32) is included in the set(α, β) ∈ RH 0 (X, F d ⊗ E) 2 , X log π d 3/2 W αβ ∂ ∂χ (d)

  1 , conj), where CP 1 is equipped with the Fubini-Study form ω F S . For the projective line CP 1 , the unique degree d real line bundle is the line bundle O(d), which is naturally equipped with a real Hermitian metric h d whose curvature equals d • ω. The space of real holomorphic global sections RH 0 (CP 1 ; O(d)) is isomorphic to the space of degree d homogeneous polynomials R hom

	d

  consequence of Proposition 2.7 is the following Corollary 2.9. For any B > 0, there exist an integer d B and a positive constant c B such that, for any d ≥ d B and any x with dist(x, RX) ≥ B log d from above by c B and from below by 1/c B . Denition 2.10. We denote by s 0 and s 1 the global holomorphic sections of L d ⊗ E of unit L 2 -norm which generates respectively the orthogonal of H x in H 0 (X, F d ⊗ E) and the orthogonal of H 2x in

	has determinant bounded	√	x × ev R 2x ) -1 • (ev x × ev 2x ) : H ⊥ 2x → RH ⊥ 2x d , the map (ev R

  2, for t d = (d) 4C2 √ d , where C 2 is the constant appearing in Lemma 3.2. By (34), we then get W αβ ∂ ∂χ t d ≥ 2d 1 -

	1 2π X	log	π d 3/2 (d) 4 √ d	+ O(1) -	x∈{W αβ =0}	χ (d) d √	(x) .
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