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Abstract

We consider the two-dimensional stochastic damped nonlinear wave equation (SdNLW) with the cubic
nonlinearity, forced by a space-time white noise. In particular, we investigate the limiting behavior of
solutions to SdNLW with regularized noises and establish triviality results in the spirit of the work
by Hairer et al. (2012). More precisely, without renormalization of the nonlinearity, we establish the
following two limiting behaviors; (i) in the strong noise regime, we show that solutions to SdNLW with
regularized noises tend to 0 as the regularization is removed and (ii) in the weak noise regime, we
show that solutions to SdNLW with regularized noises converge to a solution to a deterministic damped
nonlinear wave equation with an additional mass term.
c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

1.1. Stochastic damped nonlinear wave equation, renormalization, and triviality

We consider the Cauchy problem for the following stochastic damped nonlinear wave
equation (SdNLW) with the cubic nonlinearity, posed on the two-dimensional torus T2

=

(R/2πZ)2:{
∂2

t u − ∆u + ∂t u + u3
= αξ

(u, ∂t u)|t=0 = (u0, u1)
(t, x) ∈ R+ × T2, (1.1)

where α ∈ R and ξ (t, x) denotes a space-time white noise on R+ × T2. The damped wave
equation (without a stochastic forcing) appears as a model describing wave propagation with
friction. It also appears as a modified heat conduction equation with the finite propagation
speed property [6] and as stochastic models such as correlated random walk [19]. See [18] for
further references. In the deterministic case, Eq. (1.1) has been studied extensively; see [16–18]
and the references therein.

The stochastic nonlinear wave equations (SNLW) have been studied extensively in various
settings; see [9, Chapter 13] for the references therein. In recent years, we have witnessed
a rapid progress on the theoretical understanding of SNLW with singular stochastic forcing.
In [12], Gubinelli, Koch, and the first author considered SNLW with an additive space-time
white noise on T2:

∂2
t u − ∆u + uk

= ξ, (1.2)

where k ≥ 2 is an integer. The main difficulty of this problem already appears in the stochastic
convolution Ψ , solving the linear equation:

∂2
t Ψ − ∆Ψ = ξ. (1.3)

It is well known that for the spatial dimension d ≥ 2, the stochastic convolution Ψ is not
a classical function but is merely a Schwartz distribution. In particular, there is an issue in
making sense of powers Ψ k and a fortiori of the full nonlinearity uk in (1.2). This requires us
to modify the equation in order to take into account a proper renormalization.

In [12], by introducing appropriate time-dependent renormalization, the authors proved
local well-posedness of (a renormalized version of) (1.2) on T2. In [13] with Tolomeo,
they constructed global-in-time dynamics for (1.2) in the cubic case (k = 3). The local
well-posedness argument in [12] essentially applies to SdNLW (1.1) with a general power-
type nonlinearity uk . When α =

√
2, Eq. (1.1) corresponds to the so-called canonical

stochastic quantization for the Φ4
2 -measure in Euclidean quantum field theory (see [28]), which

formally preserves the Gibbs measure3 for the deterministic nonlinear wave equation studied
in [26].4 By combining the local well-posedness argument with Bourgain’s invariant measure
argument [3,4], it was shown in [13] that SdNLW (1.1), with a general defocusing power-
type nonlinearity u2k+1, is almost surely globally well-posed with the Gibbs measure initial
data and that the Gibbs measure is invariant under the dynamics. We also mention a recent
extension [25] of these results to the case of two-dimensional compact Riemannian manifolds

3 Namely, the Φ4
2 -measure on the u-component coupled with the white noise measure on the ∂t u-component.

4 Strictly speaking, the results mentioned here only apply to the nonlinear Klein–Gordon case, i.e. −∆ in (1.1)
replaced by 1 − ∆.
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without boundary and a recent work [11] in establishing local well-posedness of the quadratic
SNLW on the three-dimensional torus T3.

In the works mentioned above, renormalization played an essential role, allowing us to give
a precise meaning to the equations. Our main goal in this paper is to study the behavior of
solutions to (1.1), in a suitable limiting sense, without renormalization. Namely, we consider
Eq. (1.1) with a regularized noise, via frequency truncation, and study possible limiting
behavior of solutions as we remove the regularization. In particular, we establish a triviality
result in a certain regime; as we remove the regularization, solutions converge to 0 in the
distributional sense. See Theorem 1.1.

Previously, Albeverio, Haba, and Russo [1] studied a triviality issue for the two-dimensional
SNLW:

∂2
t u − ∆u + f (u) = ξ, (1.4)

where f is a bounded smooth function. Roughly speaking, they showed that solutions to (1.4)
with regularized noises tend to that to the stochastic linear wave equation (1.3). Let us
point out several differences between [1] and our current work (besides considering the
equations with/without damping). Our argument is strongly motivated by the solution theory
recently developed in [12]. In particular, we carry out our analysis in a natural solution space
C([0, T ]; H−ε(T2)), ε > 0. On the other hand, the analysis in [1] was carried out in the
framework of Colombeau generalized functions, and as such, their solution does not a priori
belong to C([0, T ]; H−ε(T2)). Furthermore, the cubic nonlinearity u3 does not belong to the
class of nonlinearities considered in [1]. Regarding a triviality result for Eq. (1.4), we also
mention a recent work [24] on the stochastic wave equation with the sine nonlinearity.

In the parabolic setting, Hairer, Ryser, and Weber [15] studied the following stochastic
Allen–Cahn equation on T2:

∂t u = ∆u + u − u3
+ αξ. (1.5)

By suitably adapting the strong solution theory due to Da Prato and Debussche [8], they
established triviality for this equation; (i) in the strong noise regime, solutions to (1.5) with
regularized noises tend to 0 as the regularization is removed and (ii) in the weak noise regime,
solutions to (1.5) with regularized noises converge to a solution to a deterministic nonlinear
heat equation. We will establish analogues of these results in the wave equation context; see
Theorems 1.1 and 1.3.

We also mention a recent work [23] by Pocovnicu, Tzvetkov, and the first author on the
cubic NLW on T3 with random initial data of negative regularity. As a byproduct of the well-
posedness theory in this setting, they established a triviality result for the defocusing cubic
NLW (without renormalization) with deterministic initial data perturbed by rough random data.

Lastly, we point out that, in the context of nonlinear Schrödinger-type equations, instability
results in negative Sobolev spaces, analogous to triviality, are known even in the deterministic
setting; see [14,27]. See also [7,20] for analogous results in the context of the modified KdV
equation, showing the necessity of renormalization in the low regularity setting.

1.2. Main results

Given N ∈ N, we denote by PN the Dirichlet projection onto the spatial frequencies
Z2

N
def
= {|n| ≤ N }. We study the following truncated equation:

∂2
t uN − ∆uN + ∂t uN + u3

N = αN ξN (1.6)
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with the truncated noise

ξN
def
= PN ξ.

Here, {αN }N∈N is a bounded sequence of non-zero real numbers, which reflects the strength of
the noise. Our goal is to study the asymptotic behavior of uN as N → ∞ in the following two
regimes:

(i) lim
N→∞

α2
N log N = ∞ and (ii) lim

N→∞

α2
N log N ∈ [0, ∞).

We refer to the case (i) (and the case (ii), respectively) as the strong noise case (and the weak
noise case, respectively).

Let us fix some notations. We write en(x) def
=

1
2π

ein·x , n ∈ Z2, for the orthonormal Fourier
basis in L2(T2). Given s ∈ R, we define the Sobolev space H s(T2) by the norm:

∥ f ∥H s (T2) = ∥⟨n⟩
s f̂ (n)∥ℓ2(Z2),

where f̂ (n) is the Fourier coefficient of f and ⟨ · ⟩ = (1 + | · |
2)

1
2 . We also set

Hs(T2) def
= H s(T2) × H s−1(T2).

When we work with space-time function spaces, we use short-hand notations such as CT H s
x =

C([0, T ]; H s(T2)) and L p
ω = L p(Ω ). Given A, B ≥ 0, we also set A ∧ B = min(A, B).

(i) Strong noise case: We first consider the strong noise case:

lim
N→∞

α2
N log N = ∞. (1.7)

In this case, the noise remains singular (in the limit), which provides a strong cancellation
property of the solution uN to (1.6).

Given N ∈ N and αN ∈ R, fix λN = λN (αN ) ≥ 0 (to be determined later; see (1.13)). We
define a pair (zω

0,N , zω
1,N ) of random functions by the following random Fourier series:

zω
0,N =

αN
√

2

∑
|n|≤N

gn(ω)
⟨n⟩N

en and zω
1,N =

αN
√

2

∑
|n|≤N

hn(ω)en, (1.8)

where ⟨n⟩N is defined by

⟨n⟩N
def
=

√
λN + |n|

2

and {gn}n∈Z2 and {hn}n∈Z2 are sequences of mutually independent standard complex-valued5

Gaussian random variables on a probability space (Ω ,F , P) conditioned so that g−n = gn and
h−n = hn , n ∈ Z2. We also assume that {gn, hn}n∈Z2 is independent of the space-time white
noise ξ in (1.1).

We now state our main result. Given s, b ∈ R and T > 0, we define the time restriction
space

H b([0, T ]; H s(T2))

by the norm

∥u∥Hb([0,T ];H s (T2)) = inf
{
∥v∥Hb(R;H s (T2)) : v|[0,T ] = u

}
. (1.9)

5 This means that g0, h0 ∼ NR(0, 1) and Re gn, Im gn, Re hn, Im hn ∼ NR(0, 1
2 ) for n ̸= 0.



5842 T. Oh, M. Okamoto and T. Robert / Stochastic Processes and their Applications 130 (2020) 5838–5864

Here, the H b(R; H s(T2))-norm is defined by

∥v∥Hb(R;H s (T2)) = ∥⟨τ ⟩
b
⟨n⟩

s v̂(τ, n)∥L2
τ ℓ2

n
,

where v̂(τ, n) denotes the space-time Fourier transform of v.

Theorem 1.1. Let {αN }N∈N be a bounded sequence of non-zero real numbers, satisfying (1.7).
Then, there exists a divergent sequence {λN }N∈N such that given any (v0, v1) ∈ H1(T2), T > 0,
ε > 0, and N ∈ N, there exists almost surely a unique solution uN ∈ C([0, T ]; H−ε(T2)) to
(1.6) with initial data

(uN , ∂t uN )|t=0 = (v0, v1) + (zω
0,N , zω

1,N ), (1.10)

where (zω
0,N , zω

1,N ) is as in (1.8). Furthermore, uN converges in probability to the trivial solution
u ≡ 0 in H−ε([0, T ]; H−ε(T2)) as N → ∞.

Seeing the regularity of the stochastic term, one may think that the natural space for the
convergence is C([0, T ]; H−ε(T2)). We need to work in a larger space H−ε([0, T ]; H−ε(T2))
in order to establish convergence of the deterministic (modified) linear solution (defined in
(1.25)). See Lemma 2.7.

Our proof is strongly motivated by the arguments in [15,23]. The main idea can be
summarized as follows; while we consider a model without renormalization, we artificially
renormalize the nonlinearity at the expense of modifying the linear operator. More concretely,
given a suitable choice of divergent constants λN , we first rewrite the truncated equation (1.6)
as follows:

LN uN + u3
N − λN uN = αN ξN , (1.11)

where LN denotes the modified damped wave operator:

LN
def
= ∂2

t − ∆ + ∂t + λN . (1.12)

As we see below, the constant λN will play a role of a renormalization constant. See (1.23).
We now set λN = λN (αN ) to be the unique solution to

λN =
3α2

N

8π2

∑
|n|≤N

1
⟨n⟩

2
N

=
3α2

N

8π2

∑
|n|≤N

1
λN + |n|

2 . (1.13)

See Lemma 2.2. With this choice of λN , it is easy to see that the corresponding linear dynamics:

LN uN = αN ξN (1.14)

possesses a unique invariant mean-zero Gaussian measure µN on H0(T2) with the covariance
operator

α2
N

2

(
PN (λN − ∆)−1 0

0 1

)
. (1.15)

See Lemma 2.1. Our choice of random functions (zω
0,N , zω

1,N ) in (1.8) is such that the random
part of the initial data (u0, u1) in (1.10) is distributed by the Gaussian measure µN . We point
out that by setting σN by

σN
def
= E

[
(zω

0,N (x))2]
=

α2
N

8π2

∑
|n|≤N

1
⟨n⟩

2
N

, (1.16)
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we have

λN = 3σN . (1.17)

In Lemma 2.2, we show that

λN =
3

4π
α2

N log N + lower order error, (1.18)

which allows us to show that the sequence {(zω
0,N , zω

1,N )}N∈N is almost surely uniformly bounded
in H−ε(T2) for any ε > 0.

In the following, we describe an outline of the proof of Theorem 1.1. The main idea is
to apply the Da Prato–Debussche trick [8] and look for a solution to (1.6) (or equivalently
to (1.11)) of the form uN = zN + vN , where zN denotes the singular stochastic part and vN

denotes a smoother residual part.
Given N ∈ N, let zN denote the solution to the linear equation (1.14) with (zN , ∂t zN )|t=0 =

(zω
0,N , zω

1,N ). It follows from the discussion above that zN is a stationary process such that

Law
(
(zN (t), ∂t zN (t))

)
= µN

for any t ∈ R+. By expressing zN in the Duhamel formulation (= mild formulation),6 we have

zN (t) = ∂tDN (t)zω
0,N + DN (t)(zω

0,N + zω
1,N ) + αN

∫ t

0
DN (t − t ′)PN dW (t ′), (1.19)

where DN (t) is given by

DN (t) def
= e−

t
2

sin
(

t
√

λN −
1
4 − ∆

)
√

λN −
1
4 − ∆

(1.20)

and W denotes a cylindrical Wiener process on L2(T2):

W (t) =

∑
n∈Z2

βn(t)en. (1.21)

Here, {βn}n∈Z2 is a family of mutually independent complex-valued Brownian motions con-
ditioned so that β−n = βn , n ∈ Z2. Moreover, we assume that {βn}n∈Z2 is independent from
{gn, hn}n∈Z2 in (1.8). By convention, we normalize βn such that Var(βn(t)) = t . Note that the
space-time white noise ξ is given by ξ =

∂W
∂t .

By setting vN = uN − zN , it follows from (1.11) with (1.10) that vN satisfies the following
equation:{

LN vN + (vN + zN )3
− λN (vN + zN ) = 0

(vN , ∂tvN )|t=0 = (v0, v1).
(1.22)

By invariance of the Gaussian measure µN , we see that zN (t) has the same law as z0,N for any
t ∈ R+. In particular, it follows from (1.8) that there is no uniform (in N ) bound for zN (t),
when measured in L2(T2). This causes an issue in studying the powers z2

N and z3
N , uniformly

in N ∈ N.

6 One can easily derive the propagator DN (t) in (1.20) by writing the linear damped wave equation LN u = 0
on the Fourier side and solving it directly for each spatial frequency. See [17] for the case λN = 0 (on Rd ). Then,
a standard variation-of-parameter argument yields the Duhamel formulation (1.19).
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In [12,13], it is at this point that we introduced Wick renormalization and considered a renor-
malized equation to overcome this issue. Our goal is, however, to study the limiting behavior
of the solution uN to (1.6) without renormalization. In our current problem, we overcome this
difficulty by following the idea in [15,23] and artificially introducing a renormalization constant
λN in (1.11). By expanding the last two terms in (1.22), we have

(vN + zN )3
− λN (vN + zN ) = v3

N + 3v2
N zN + 3vN (z2

N − σN ) + (z3
N − 3σN zN ), (1.23)

where we used (1.17). Then, it follows from (1.16) that the last two terms precisely correspond
to the renormalized powers of z2

N and z3
N . See Section 2 for further details.

This artificial introduction of renormalization as in (1.23) allows us to study Eq. (1.22)
for vN . A standard contraction argument allows us to prove local well-posedness of (1.22),
expressed in the Duhamel formulation:

vN (t) = vlin
N (t) +

∫ t

0
DN (t − t ′)N (vN + zN )(t ′)dt ′, (1.24)

where N (vN + zN ) = (vN + zN )3
− λN (vN + zN ) and vlin

N (t) denotes the linear solution with
deterministic initial data (v0, v1):

vlin
N (t) = ∂tDN (t)v0 + DN (t)(v0 + v1). (1.25)

On the one hand, the diverging behavior (1.18) of λN and (1.20) allow us to show that the
second term on the right-hand side of (1.24) tends to 0 as N → ∞. This explicit decay
mechanism is analogous to that in the parabolic case studied in [15]. On the other hand, the
linear solution vlin

N does not enjoy such a decay property in an obvious manner. The crucial
point here is that, in view of the asymptotics (1.18), the modified linear operator LN in (1.11)
introduces a rapid oscillation and, as a result, vlin

N tends to 0 as a space-time distribution. This
oscillatory nature of the problem is a distinctive feature of a dispersive problem, not present in
the parabolic setting, and was also exploited in [23]. In this paper, we go one step further. By
exploiting the rapid oscillation in the form of oscillatory integrals, we show that vlin

N tends to 0
in H−ε([0, T ]; H 1−ε(T2)). See Lemma 2.7. This essentially explains the proof of Theorem 1.1
for short times.

In order to prove the claimed convergence on an arbitrary time interval [0, T ], we need to
establish a global-in-time control of the solutions vN . An energy bound in the spirit of Burq and
Tzvetkov [5] allows us to prove global existence of vN . Unfortunately, such an energy bound
(at the level of H1(T2)) grows in N , which may cause a potential issue. In general, it may be a
cumbersome task to obtain a global-in-time control on vN , uniformly in N ∈ N. One possible
approach may be to adapt the I -method argument employed in [13]. In our case, however, the
situation is much simpler since we know that the limiting solution is u ≡ 0, which allows us
to reduce the problem to a small data regime.

Remark 1.2. (i) For simplicity, we only consider the regularization via the Fourier truncation
operator PN in (1.6). By a slight modification of the proof, we can also treat regularization by
mollification with a mollifier ρε, ε ∈ (0, 1] and taking the limit ε → 0.
(ii) We consider the stochastic NLW with damping. This allows us to have an invariant Gaussian
measure µN for the linear dynamics (1.14), which in turn implies that the renormalization
constant λN defined in (1.13) and (1.17) is time independent. If we consider the stochastic
NLW without damping, then λN would be time dependent. This would then imply that the
modified linear operator LN in (1.12) is with a variable coefficient λN (t), introducing an extra
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complication to the problem. This is the reason we chose to study the stochastic NLW with
damping.
(iii) In the parabolic setting [15], the triviality result was stated only with deterministic initial
data. Namely, there was no need to add the random initial data as in (1.10). In [15], the residual
part vN satisfies an analogue of (1.22) with initial data essentially of the form (written in the
wave context):

(vN , ∂tvN )|t=0 = (v0, v1) − (zω
0,N , zω

1,N ). (1.26)

See the equation (Φaux
ε ) on p. 6 in [15]. In the parabolic setting, this does not cause any

difficulty since the strong parabolic smoothing allows us to handle rough initial data of the
form (1.26) in the deterministic manner. On the other hand, in the current wave context, we
cannot handle the random data in (1.26), unless we introduce a further renormalization (which
would violate the point of this paper).

Let us now try to see what happens if we directly work with the non-stationary solution to
the linear equation (1.14). Let z̃N denote the solution to (1.14) with the trivial (= zero) initial
data, given by

z̃N (t) = αN

∫ t

0
DN (t − t ′)PN dW (t ′) (1.27)

Then, by setting

λ̃N (t) = 3σ̃N (t) = 3E
[
(̃zN (t, x))2],

we can rewrite (1.6) as

LN uN +
(
u3

N − λ̃N (t)uN
)
− (λN − λ̃N (t))uN = 0, (1.28)

where LN is as in (1.12). By writing uN = vN + z̃N , we easily see that the expression
u3

N − λ̃N (t)uN can be treated as in (1.23) without causing any difficulty. On the other hand, the
weaker smoothing property of the damped wave equation (as compared to the heat equation)
causes an issue in treating the last term (λN − λ̃N (t))uN . Define zhom

N by

zhom
N (t) = ∂tDN (t)zω

0,N + DN (t)(zω
0,N + zω

1,N ), (1.29)

where (zω
0,N , zω

1,N ) is as in (1.8). Then, it follows from (1.19), (1.27), and (1.29) together with
independence of {gn, hn}n∈Z2 in (1.8) and the cylindrical Wiener process W in (1.21) that

λN − λ̃N (t) = 3E
[
(zhom

N (t, x))2]
=

3e−tα2
N

8π2

∑
|n|≤N

{
1

⟨n⟩
2
N

(
cos

(
t
√

λN −
1
4 + |n|

2
))2

+

(
sin

(
t
√

λN −
1
4 + |n|

2
))2

λN −
1
4 + |n|

2

}
+ O(1)

=
3e−tα2

N

8π2

∑
|n|≤N

1
λN −

1
4 + |n|

2 + O(1),

which is logarithmically divergent for any t ≥ 0. This shows that the last term in (1.28)
(under the Duhamel integral) cannot be treated uniformly in N ∈ N, thus exhibiting non-trivial
difficulty in the non-stationary case. Compare this with the heat case, where the corresponding



5846 T. Oh, M. Okamoto and T. Robert / Stochastic Processes and their Applications 130 (2020) 5838–5864

expression for λN − λ̃N (t) is uniformly bounded in N ∈ N for any t > 0 (and logarithmically
divergent when t = 0) thanks to the strong smoothing property.
(iv) In Theorem 1.1, we treated the cubic case. It would be of interest to investigate the issue
of triviality for a higher order nonlinearity. See also Remarks 1.5 and 4.4 on this issue in the
weak noise case.

Our argument also makes use of the defocusing nature of the equation in an essential manner.
In the focusing case, the modified linear operator LN in (1.12) would be LN = ∂2

t −∆+∂t −λN .
Namely, the diverging constant λN appears with a wrong sign and we do not know how to
proceed at this point.

(ii) Weak noise case: Next, we consider the weak noise case:

lim
N→∞

α2
N log N = κ2

∈ [0, ∞). (1.30)

In particular, we have αN → 0 and thus we expect convergence to a deterministic damped
NLW. In this case, we set

L def
= ∂2

t − ∆ + ∂t + 1. (1.31)

Namely, we can simply set λN ≡ 1 in the previous discussion. With a slight abuse of notation,
we then define µN to be the mean-zero Gaussian measure on H0(T2) with the covariance
operator

α2
N

2

(
PN (1 − ∆)−1 0

0 1

)
.

Then, it follows that µN is the unique invariant measure for the linear equation:

LuN = αN ξN . (1.32)

With a slight abuse of notation, we use zN to denote the solution to (1.32) with the random
initial data (zN , ∂t zN )|t=0 = (zω

0,N , zω
1,N ) distributed by µN as in the previous case. In particular,

the random initial data in this case is given by (1.8) with λN = 1, namely

zω
0,N =

αN
√

2

∑
|n|≤N

gn(ω)
⟨n⟩

en and zω
1,N =

αN
√

2

∑
|n|≤N

hn(ω)en. (1.33)

We now state our second result.

Theorem 1.3. Let {αN }N∈N be a bounded sequence of real numbers, satisfying (1.30) for
some κ2

∈ [0, ∞). Then, given any (v0, v1) ∈ H1(T2), T > 0, ε > 0, and N ∈ N, there exists
almost surely a unique solution uN ∈ C([0, T ]; H−ε(T2)) to (1.6) with initial data

(uN , ∂t uN )|t=0 = (v0, v1) + (zω
0,N , zω

1,N ), (1.34)

where (zω
0,N , zω

1,N ) is as in (1.33). Furthermore, uN converges in probability to wκ in C([0, T ];
H−ε(T2)) as N → ∞, where wκ is the unique solution to the following deterministic damped
NLW: {

∂2
t wκ − ∆wκ + ∂twκ +

3
4π

κ2wκ + w3
κ = 0

(wκ , ∂twκ )|t=0 = (v0, v1).
(1.35)
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Recall that, in Theorem 1.1, we needed to study the convergence in a space larger than
C([0, T ]; H−ε(T2)). This was due to the convergence property of the deterministic (modified)
linear solution vlin

N in (1.25). In Theorem 1.3, we estimate the difference of the solution uN to
(1.6) with initial data (1.34) and the limiting solution wκ to (1.35). As such, the deterministic
part (v0, v1) of the initial data cancels each other, allowing us to prove the convergence in a
natural space C([0, T ]; H−ε(T2)).

Remark 1.4. As mentioned in Remark 1.2, we consider the equation with damping so that the
linear equation (1.32) preserves the Gaussian measure µN . This naturally yields the damped
equation (1.35) as the limiting deterministic equation. In this weak noise regime, however, it
is possible to introduce another parameter α̃N and tune the parameters such that the dynamics
converges to that generated by a standard deterministic NLW without damping.

Consider the following SdNLW:

∂2
t uN − ∆uN + α̃N ∂t uN + u3

N = αN ξN , (1.36)

where α̃N is a positive number, tending to 0 as N → ∞. For N ∈ N, set γ 2
N =

α2
N

2α̃N
. We

assume that {γ 2
N }N∈N is bounded.7 Then, by repeating the proof of Theorems 1.1 and 1.3, it is

straightforward to see that the limiting behavior of the solution uN to (1.36) is determined by

lim
N→∞

γ 2
N log N = lim

N→∞

α2
N

2α̃N
log N = γ 2

∈ [0, ∞].

We have the following two scenarios. (i) If γ 2
= ∞, then the solution uN to (1.36) converges

to 0. (ii) If γ 2
∈ [0, ∞), then the solution uN to (1.36) converges to the solution wγ , satisfying

the following deterministic NLW (i.e. without damping):

∂2
t wγ − ∆wγ +

3
4π

γ 2wγ + w3
γ = 0.

The main point is that the tuning of the parameters, making the sequence {γ 2
N }N∈N bounded,

allows us to make use of certain invariant Gaussian measures for the (modified) linear
dynamics.

Remark 1.5. In the weak noise case, it is possible to adapt our argument to a general
defocusing power-type nonlinearity u2k+1. See Remark 4.4 for further details.

2. Preliminary results for the strong noise case

In this section, we go over some preliminary materials for the strong noise case
(Theorem 1.1), whose proof is presented in Section 3. In Section 2.1, we prove that the
Gaussian measure µN with the covariance operator (1.15) is the (unique) invariant measure for
the linear stochastic wave equation (1.14). In Section 2.2, we establish the asymptotic behavior
(1.18) of the renormalization constant λN . In Section 2.3, we define the renormalized powers
: zℓ

N : for the solution zN to the linear equation (1.14) with (zN , ∂t zN )|t=0 = (zω
0,N , zω

1,N ). Lastly,
in Section 2.4, we study the decay property of the deterministic linear solution vlin

N defined
in (1.25).

7 This in particular implies that αN tends to 0 since our assumption states that α̃N tends to 0.
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2.1. On the invariant measure for the linear equation

We begin by describing the invariant measure for the linear stochastic equation (1.14):

LN uN = αN ξN .

We only sketch a proof since the argument is classical; see, for example, [13,25] for a more
detailed discussion.

Lemma 2.1. The linear stochastic wave equation (1.14) possesses a (unique) invariant
mean-zero Gaussian measure µN on H0(T2) with the covariance operator given in (1.15).

Proof. We only present a sketch of the proof. For |n| ≤ N , let

Xn =

(
ûN (n)

∂t ûN (n)

)
.

Then, in view of (1.21), we can rewrite the linear equation (1.14) as the following system of
stochastic differential equations:

d Xn =

(
0 1

−⟨n⟩
2
N 0

)
Xndt +

[(
0 0
0 −1

)
Xndt +

(
0

αN dβn

)]
. (2.1)

The first part on the right-hand side corresponds to the (modified) linear wave equation (without
damping) whose semi-group acts as a rotation on each component of the vector Xn . Since the
distribution of a complex-valued Gaussian random variable is invariant under a rotation, we see
that the solution to this linear wave equation, starting from the random initial data (zω

0,N , zω
1,N )

in (1.8), is stationary.
The second part on the right-hand side of (2.1) corresponds to the Langevin equation for

the velocity ∂t ûN (n):

d(∂t ûN (n)) = −(∂t ûN (n))dt + αN dβn,

whose solution is given by a complex-valued Ornstein–Uhlenbeck process. Namely, its real
and imaginary parts are given by independent Ornstein–Uhlenbeck processes. Hence, it has
a unique invariant measure given by the Gaussian distribution NC(0,

α2
N
2 ) (see, for example,

[21, Theorem 7.4.7]), which is precisely the law of ẑω
1,N = ∂t ẑN (0) defined in (1.8).

For each n ∈ Z2 with |n| ≤ N , the generator of the dynamics (2.1) is given by the sum of
the generators of the first and second parts on the right-hand side of (2.1). Hence, we conclude
that the full linear stochastic wave equation (1.14), starting from (zω

0,N , zω
1,N ) in (1.8), is also

stationary. This means that the mean-zero Gaussian measure µN with the covariance operator
(1.15) is invariant under (1.14). One can also prove that µN is actually the unique invariant
measure for this equation; see Theorems 11.17 and 11.20 in [9]. □

Recall that zN defined by (1.19) satisfies the linear stochastic wave equation (1.14). Then,
due to the invariance of µN under the flow of (1.14), the variance of zN (t) is time independent
and given by (1.16):

σN = E
[
(zN (t, x))2]

= E
[
(zN (0, x))2]

=
α2

N

8π2

∑
|n|≤N

1
⟨n⟩

2
N

. (2.2)
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2.2. On the renormalization constant

In this subsection, we study asymptotic properties of the renormalization constant λN
implicitly defined by (1.13):

λN =
3α2

N

8π2

∑
|n|≤N

1
⟨n⟩

2
N

=
3α2

N

8π2

∑
|n|≤N

1
λN + |n|

2 . (2.3)

In particular, we prove the following lemma on the asymptotic behavior of λN as N → ∞.
See Lemma 3.1 in [15] and Lemma 6.1 in [23] for analogous results.

Lemma 2.2. Given N ∈ N, there exists a unique number λN > 0 satisfying Eq. (2.3). More-
over, if {αN }N∈N is a bounded sequence of non-zero real numbers such that limN→∞ α2

N log N =

∞, then we have

λN =
3

4π
α2

N log N + O(α2
N log log N ) (2.4)

as N → ∞.

Before proceeding to the proof of Lemma 2.2, we first recall the following bound. See
Lemma 3.2 in [15].

Lemma 2.3. Let a, N ≥ 1. Then, we have⏐⏐⏐⏐ ∑
|n|≤N

1
a + |n|

2 − π log
(

1 +
N 2

a

)⏐⏐⏐⏐ ≲ 1
√

a
min

(
1,

N
√

a

)
.

We now present a proof of Lemma 2.2.

Proof of Lemma 2.2. Given N ∈ N, let λN be as in (2.3). As λN increases from 0 to ∞, the
right-hand side of (2.3) decreases from ∞ to 0. Hence, for each N ∈ N, there exists a unique
solution λN > 0 to (1.13).

From λN > 0, we obtain an upper bound λN ≲ α2
N log N . From this upper bound and the

uniform boundedness of αN , we also obtain a lower bound λN ≳ α2
N log N for any sufficiently

large N ≫ 1. Hence, we have

λN ∼ α2
N log N (2.5)

for any N ≫ 1.
From Lemma 2.3, we have∑

|n|≤N

1
⟨n⟩2 = 2π log N + O(1).

Then, in view of the uniform boundedness of αN , the error term RN is given by

RN = λN −
3

4π
α2

N log N = λN −
3

8π2 α2
N

∑
|n|≤N

1
⟨n⟩2 + O(α2

N )

=
3

8π2 α2
N

∑
|n|≤N

(
1

λN + |n|
2 −

1
⟨n⟩2

)
+ O(α2

N )

=
3

8π2 α2
N

∑
|n|≤N

1 − λN

(λN + |n|
2)⟨n⟩2

+ O(α2
N ).

(2.6)
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Using (2.5), we can estimate the contribution to RN in (2.6) from
{
|n| ≳ |αN |

√
log N

}
as

O(α2
N ), while the contribution to RN in (2.6) from

{
|n| ≪ |αN |

√
log N

}
is O(α2

N log log N ).
Putting everything together, we obtain (2.4). □

2.3. On the Wick powers

Given N ∈ N, let zN be the solution to the linear equation (1.14) with (zN , ∂t zN )|t=0 =

(zω
0,N , zω

1,N ). In the following, we define the renormalized powers of zN and establish their
regularity and decay properties.

Recall that the Hermite polynomials Hk(x; σ ) are defined via the generating function:

F(t, x; σ ) = et x−
1
2 σ t2

=

∞∑
k=0

tk

k!
Hk(x; σ ).

In the following, we list the first few Hermite polynomials for readers’ convenience:

H0(x; σ ) = 1, H1(x; σ ) = x, H2(x; σ ) = x2
− σ, H3(x; σ ) = x3

− 3σ x . (2.7)

Then, given ℓ ∈ Z≥0
def
= N ∪ {0}, we define the Wick powers : zℓ

N : by

: zℓ
N (t, x) : = Hℓ(zN (t, x); σN ) (2.8)

in a pointwise manner, where σN is as in (2.2).
Before proceeding further, let us first state several lemmas. The first lemma states the

orthogonality property of Wick products [29, Theorem I.3]. See also [22, Lemma 1.1.1].

Lemma 2.4. Let f and g be Gaussian random variables with variances σ f and σg . Then,
we have

E
[
Hk( f ; σ f )Hm(g; σg)

]
= δkmk!

{
E[ f g]

}k
.

Here, δkm denotes the Kronecker delta function.

Next, we recall the Wiener chaos estimate. Let {gn}n∈N be a sequence of independent
standard Gaussian random variables defined on a probability space (Ω ,F , P), where F is the
σ -algebra generated by this sequence. Given k ∈ Z≥0, we define the homogeneous Wiener
chaoses Hk to be the closure (under L2(Ω )) of the span of Fourier-Hermite polynomials∏

∞

n=1 Hkn (gn), where H j is the Hermite polynomial of degree j and k =
∑

∞

n=1 kn . (This implies
that kn = 0 except for finitely many n’s.) Then, we have the following classical Wiener chaos
estimate; see [29, Theorem I.22].

Lemma 2.5. Let ℓ ∈ Z≥0. Then, we have

∥X∥L p(Ω) ≤ (p − 1)
ℓ
2 ∥X∥L2(Ω)

for any random variable X ∈ Hℓ and any finite p ≥ 1.

Our main goal here is to prove the following regularity and decay properties of the Wick
powers : zℓ

N :.

Proposition 2.6. (i) Let ℓ ∈ N. Then, given any finite p, q ≥ 1, T > 0, and ε > 0, we have

lim
N→∞

E
[
∥ : zℓ

N (t) : ∥
p
Lq

T W−ε,∞
x

]
= 0.
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(ii) Given any finite p ≥ 1, T > 0, and ε > 0, we have

lim
N→∞

E
[
∥zN ∥

p
CT H−ε

x

]
= 0. (2.9)

Proof. (i) By Sobolev’s inequality, it suffices to show that

lim
N→∞

E
[
∥ : zℓ

N (t) : ∥
p
Lq

T W−ε,r
x

]
= 0 (2.10)

for any small ε > 0 and sufficiently large r ≫ 1. We follow the argument in the proof of
Proposition 2.1 in [12]. Fix t ∈ R+ and x, y ∈ T2. Then, by Lemma 2.4 with the invariance
of the distribution of zN (t) and (1.8), we have

E
[
: zℓ

N (t, x) :: zℓ
N (t, y) :

]
= ℓ!E[zN (t, x)zN (t, y)]ℓ =

ℓ!

(8π2)ℓ

{ ∑
|n|≤N

α2
N

⟨n⟩
2
N

ein·(x−y)
}ℓ

=
ℓ!

(8π2)ℓ
∑

n1,...,nℓ∈Z2
N

( ℓ∏
j=1

α2
N

⟨n j ⟩
2
N

)
ei(n1+···+nℓ)·(x−y).

By applying the Bessel potentials ⟨∇x ⟩
−ε and ⟨∇y⟩

−ε of order ε and then setting x = y, we
obtain

E
[
|⟨∇⟩

−ε
: zℓ

N (t, x) : |
2
]

∼

∑
n1,...,nℓ∈Z2

N

( ℓ∏
j=1

α2
N

⟨n j ⟩
2
N

)
⟨n1 + · · · + nℓ⟩

−2ε

≲ λ
−

ε
2

N

∑
n1,...,nℓ∈Z2

N

1∏ℓ−1
j=1⟨n j ⟩

2 · ⟨nℓ⟩
2−ε⟨n1 + · · · + nℓ⟩

2ε

≲ λ
−

ε
2

N ,

uniformly for all sufficiently large N ≫ 1, where, in the first inequality, we used the uniform
boundedness of αN , Lemma 2.2, and the bound ⟨n⟩N ≥ λ

ε
2
N ⟨n⟩

1−ε for ε ∈ [0, 1]. Then, from
Minkowski’s integral inequality and the Wiener chaos estimate (Lemma 2.5), we obtain∥ : zℓ

N : ∥Lq
T W−ε,r

x


L p(Ω)

≤

∥⟨∇⟩
−ε

: zℓ
N (t, x) : ∥L p(Ω)


Lq

T Lr
x

≤ p
ℓ
2

∥⟨∇⟩
−ε

: zℓ
N (t, x) : ∥L2(Ω)


Lq

T Lr
x

≤ Cℓ p
ℓ
2 T

1
q λ

−
ε
4

N

(2.11)

for any finite p ≥ max(q, r ). The claim (2.10) follows from (2.11) and the asymptotic behavior
(2.4) of λN proved in Lemma 2.2.
(ii) We prove (2.9) for any small ε > 0. Given N ∈ N, define ΨN by

ΨN (t) =

∫ t

0
DN (t − t ′)PN dW (t ′),

where DN and W are as in (1.20) and (1.21). With a slight abuse of notation, define a Fourier
multiplier operator DN by the following symbol

DN (n) =

√
λN −

1
4

+ |n|
2. (2.12)
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Then, it follows from (1.19), the unitarity of e±i t DN on H s(T2), Minkowski’s integral inequality,
and Lemma 2.5 that ∥ zN − αNΨN ∥CT H−ε

x


L p(Ω)

≲
∥zω

0,N ∥H−ε


L p(Ω)

+

∥D−1
N zω

1,N ∥H−ε


L p(Ω)

≲
∥⟨∇⟩

−εzω
0,N (x)∥L p(Ω)


L2

x
+

∥D−1
N ⟨∇⟩

−εzω
1,N (x)∥L p(Ω)


L2

x

≲p

( ∑
|n|≤N

α2
N

⟨n⟩2ε⟨n⟩
2
N

) 1
2

+

( ∑
|n|≤N

α2
N

⟨n⟩2ε
(
DN (n)

)2

) 1
2
≲ λ

−
ε
4

N .

In the last step, we once again used the uniform boundedness of αN and also the following
bound:

DN (n) ∼ ⟨n⟩N ≳ λ
ε
2
N ⟨n⟩

1−ε (2.13)

uniformly for all sufficiently large N ≫ 1, in view of (2.12) and Lemma 2.2.
Hence, it suffices to show that sup

0≤t≤T
∥ΨN (t)∥H−ε


L p(Ω)

≲ λ
−

ε
4

N . (2.14)

In view of (2.13), one can easily modify the proof of Proposition 2.1 in [12] to obtain (2.14).
In the following, however, we apply the factorization method based on the elementary identity:∫ t

t2

(t − t1)γ−1(t1 − t2)−γ dt1 =
π

sin πγ
(2.15)

for any γ ∈ (0, 1) and 0 ≤ t2 ≤ t ; see [9, Section 5.3].
Recall from (1.20) and (2.12) that

DN (t) = e−
t
2

sin(t DN )
DN

. (2.16)

Together with (2.15), we have

ΨN (t) =

∑
σ∈{−1,1}

σ

∫ t

0

eiσ (t−t ′)DN

2i DN
PN dW (t ′)

=
sin πγ

π

∑
σ∈{−1,1}

σ

∫ t

0

eiσ (t−t1)DN

2i DN
(t − t1)γ−1Yσ,N (t1)dt1,

(2.17)

where

Yσ,N (t1) =

∫ t1

0
eiσ (t1−t2)DN (t1 − t2)−γ PN dW (t2).

Then, from (2.17) and the boundedness of eiσ t DN on H s(T2), we have

∥ΨN ∥L p
ω L∞

t ([0,T ])H−ε
x

≲
∑

σ∈{−1,1}

(t − t1)γ−1 D−1
N Yσ,N (t1)


L p

ω L∞
t ([0,T ])L1

t1
([0,t])H−ε

x

By Hölder’s inequality in t1, we continue with

≲
∑

σ∈{−1,1}

∥D−1
N Yσ,N ∥L p

ω L p
T H−ε

x
, (2.18)

provided that p > 1
γ

.
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By applying Fubini’s theorem and Hölder’s inequality, it suffices to estimate ∫ t1

0
eiσ (t1−t2)DN (t1 − t2)−γ D−1

N PN dW (t2)


L p
ω H−ε

x

,

uniformly in t1 ∈ [0, T ]. From Minkowski’s integral inequality (for p ≥ 2), the Wiener chaos
estimate (Lemma 2.5), and (2.13), we estimate this term by ∫ t1

0
eiσ (t1−t2)DN (t1 − t2)−γ D−1

N PN dW (t2)


H−ε
x L2

ω

∼

[ ∑
|n|≤N

⟨n⟩
−2ε

(
DN (n)

)−2
∫ t1

0
(t1 − t2)−2γ dt2

] 1
2

≲ λ
−

ε
4

N

(2.19)

uniformly for all sufficiently large N ≫ 1, provided that γ < 1
2 . The desired bound (2.14)

follows from (2.18) and (2.19). This completes the proof of Part (ii). □

2.4. On the deterministic linear solution

In [23], the authors exploited a rapid oscillation to show that a deterministic linear solution
tends to 0 as a space-time distribution. In the following lemma, by using a rapid oscillation to
evaluate relevant oscillatory integrals, we show that the deterministic linear solution vlin

N defined
in (1.25) converges to 0 in H−ε([0, T ]; H 1−ε(T2)), ε > 0. This is the last ingredient for the
proof of Theorem 1.1.

Lemma 2.7. Given (v0, v1) ∈ H1(T2), let vlin
N be the solution to the linear wave equation

with (v, ∂tv)|t=0 = (v0, v1) defined in (1.25). Then, given any T > 0 and ε > 0, vlin
N converges

to 0 in H−ε([0, T ]; H 1−ε(T2)) as N → ∞.

Proof. Fix χ ∈ C∞
c (R) such that χ ≡ 1 on [0, 1] and set χT (t) = χ (T −1t) for T > 0. By

setting

V0 = e−
t
2 cos

(
t DN

)
v0 and V1 = DN (t)(v1 +

1
2v0),

we have vlin
N = V0 + V1. Then, from the definition (1.9) and Hölder’s inequality in time, we

have
∥vlin

N ∥H−ε
T H1−ε

x
≤ ∥χT vlin

N ∥H−ε
t H1−ε

x

≤ ∥χT V0∥H−ε
t H1−ε

x
+ CT ∥V1∥L∞

t H1−ε
x

.
(2.20)

In view of (2.16) with (2.13), the second term on the right-hand side of (2.20) can be
estimated by

∥⟨∇⟩
1−ε D−1

N (v0 + v1)∥L2
x
≲ λ

−
ε
2

N ∥(v0, v1)∥H1 −→ 0 (2.21)

as N → ∞. As for the first term, we have

Ft,x (χT V0)(τ, n) =

∫
R

χT (t)e−
t
2 cos

(
t DN (n)

)
e−i tτ v̂0(n)dt

=
1
2

[
Ft (χT e−

t
2 )(τ − DN (n)) + Ft (χT e−

t
2 )(τ + DN (n))

]̂
v0(n).
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Here, Ft and Ft,x denote the temporal and space-time Fourier transforms, respectively.
Integrating by parts and using the properties of χT , we have⏐⏐Ft (χT e−

t
2 )(τ )

⏐⏐ =

⏐⏐⏐⏐ ∫
R

χT (t)e−
t
2 e−i tτ dt

⏐⏐⏐⏐ = ⟨τ ⟩
−2M

⏐⏐⏐⏐ ∫
R

(1 − ∂2
t )M[

χT (t)e−
t
2
]
e−i tτ dt

⏐⏐⏐⏐
≤ CT,M ⟨τ ⟩

−2M

for M ∈ Z≥0 (and hence for any M ≥ 0), uniformly in τ ∈ R. Therefore, we obtain

∥χT V0∥
2
H−ε

t H1−ε
x

≲
∑

|n|≤N

⟨n⟩
2(1−ε)

|̂v0(n)|2
∑

σ∈{−1,1}

∫
R
⟨τ ⟩

−2ε
⏐⏐Ft (χT e−

t
2 )(τ + σ DN (n))

⏐⏐2dτ

≲
∑

|n|≤N

⟨n⟩
2(1−ε)

|̂v0(n)|2
∑

σ∈{−1,1}

∫
R
⟨τ ⟩

−2ε
⟨τ + σ DN (n)⟩−1dτ

≲
∑

|n|≤N

⟨n⟩
2(1−ε)

|̂v0(n)|2⟨DN (n)⟩−ε

≲ λ
−

ε
2

N ∥v0∥
2
H1 −→ 0 (2.22)

as N → ∞, where in the penultimate step we used the estimate∫
R
⟨τ ⟩

−a
⟨τ − τ0⟩

−bdτ ≲ ⟨τ0⟩
1−a−b

for any τ0 ∈ R and any a, b < 1 with a + b > 1; see for example [10, Lemma 4.2]. Putting
(2.20), (2.21), and (2.22) together, we conclude that vlin

N converges to 0 in H−ε([0, T ]; H 1−ε

(T2)) as N → ∞. □

3. Trivial limit in the strong noise case

In this section, we prove triviality in the strong noise case (Theorem 1.1). In particular, we
assume (1.7) in the following. As described in Section 1, we apply the Da Prato–Debussche
trick and work in terms of the residual term vN = uN − zN . From (1.22), (1.23), (2.7), and
(2.8), we see that vN satisfies{

LN vN + v3
N + 3v2

N zN + 3vN : z2
N : + : z3

N := 0
(vN , ∂tvN )|t=0 = (v0, v1).

(3.1)

The main idea is to use the decay properties of the Wick powers : zℓ
N : and the deterministic

linear solution vlin
N proved in Section 2.

We first establish almost sure global well-posedness of (3.1). Given s ∈ R and T > 0, define
the solution space X s(T ) by setting

X s(T ) def
= C([0, T ]; H s(T2)) ∩ C1([0, T ]; H s−1(T2)). (3.2)

Proposition 3.1. Let N ∈ N. The Cauchy problem (3.1) is almost surely globally well-posed
in H1(T2). More precisely, given any (v0, v1) ∈ H1(T2) and any T > 0, there exists a set
ΩT ⊂ Ω of full probability such that, for any ω ∈ ΩT and N ∈ N, there exists a unique
solution vN ∈ X1(T ) to (3.1).

We recall the following lemma from [12].

Lemma 3.2. Let 0 ≤ s ≤ 1.
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(i) Suppose that 1 < p j , q j , r < ∞, 1
p j

+
1

q j
=

1
r , j = 1, 2. Then, we have

∥⟨∇⟩
s( f g)∥Lr (Td ) ≲ ∥ f ∥L p1 (Td )∥⟨∇⟩

s g∥Lq1 (Td ) + ∥⟨∇⟩
s f ∥L p2 (Td )∥g∥Lq2 (Td ).

(ii) Suppose that 1 < p, q, r < ∞ satisfy the scaling condition 1
p +

1
q ≤

1
r +

s
d . Then, we

have

∥⟨∇⟩
−s( f g)∥Lr (Td ) ≲ ∥⟨∇⟩

−s f ∥L p(Td )∥⟨∇⟩
s g∥Lq (Td ).

The first estimate is a consequence of the Coifman–Meyer theorem and the transference
principle. See [12] for the references therein. Note that while the second estimate was shown
only for 1

p +
1
q =

1
r +

s
d in [12], the general case 1

p +
1
q ≤

1
r +

s
d follows from a straightforward

modification.
We now present a proof of Proposition 3.1.

Proof of Proposition 3.1. Let (v0, v1) ∈ H1(T2) and fix a target time T > 0 as in the statement.
We first briefly go over local well-posedness of (3.1) with a control on [0, T ]. By writing (3.1)
in the Duhamel formulation, we have

vN (t) = ΓN (vN )(t)
def
= ∂tDN (t)v0 + DN (t)(v0 + v1)

−

∫ t

0
DN (t − t ′)

(
v3

N + 3v2
N zN + 3vN : z2

N : + : z3
N :

)
(t ′)dt ′.

(3.3)

Let DN (n) be as in (2.12). Recall from Lemma 2.2 that we have λN > 0. Then, by separately
estimating the cases DN ≳ 1 and DN ≪ 1, we have⏐⏐⏐⏐e−

t
2

sin t DN (n)
DN (n)

⏐⏐⏐⏐ ≲ ⟨n⟩
−1 (3.4)

for any N ≥ 1, n ∈ Z2, and t ≥ 0. Hence, in view of (2.16), we have

∥ΓN (vN )∥X1(δ) ≲ ∥(v0, v1)∥H1 + ∥v3
N + 3v2

N zN + 3vN : z2
N : + : z3

N : ∥L1
δ L2

x
(3.5)

for any δ > 0.
Next, observe that from its definition (1.19), zN satisfies

zN = PN zN ,

which implies that we have

: zℓ
N : = PℓN : zℓ

N :

for ℓ = 2, 3. Hence, by Hölder’s, Sobolev’s and Bernstein’s inequalities with the frequency
support property of the Wick powers, we obtain

∥ v3
N + 3v2

N zN + 3vN : z2
N : + : z3

N :∥ L1
δ L2

x

≲ δ
1
2

(
∥vN ∥

3
L∞

δ L6
x
+ ∥vN ∥

2
L∞

δ L4
x
∥zN ∥L2

δ L∞
x

+ ∥vN ∥L∞
δ L2

x
∥ : z2

N : ∥L2
δ L∞

x
+ ∥ : z3

N : ∥L2
δ L∞

x

)
≲ δ

1
2

(
∥vN ∥

3
X1(δ) + N ε

∥vN ∥
2
X1(δ)∥zN ∥L2

δ W−ε,∞
x

+ N ε
∥vN ∥X1(δ)∥ : z2

N : ∥L2
δ W−ε,∞

x
+ N ε

∥ : z3
N : ∥L2

δ W−ε,∞
x

)
(3.6)

for 0 < δ ≤ 1.
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Given a large target time T > 0, M ≥ 1, and N ∈ N, we set

ΩM
N ,T =

{
ω ∈ Ω : ∥ : zℓ

N : ∥L2
T W−ε,∞

x
≤ M, ℓ = 1, 2, 3

}
.

Then, for any ω ∈ ΩM
N ,T , it follows from (3.5) and (3.6) that

∥ΓN (vN )∥X1(δ) ≤ C0∥(v0, v1)∥H1 + C1δ
1
2
(
∥vN ∥

3
X1(δ)

+ N ε M∥vN ∥
2
X1(δ) + N ε M∥vN ∥X1(δ) + N ε M

)
.

In particular, if we set

R = 1 + 2C0∥(v0, v1)∥H1 and δN ,R = (100C1 R2 N ε M)−2,

then we see that ΓN maps the ball BN ,R = {vN : ∥vN ∥X1(δN ,R ) ≤ R} into itself. Furthermore,
by a similar computation, we can show that ΓN is a contraction on BN ,R , establishing existence
of a unique solution vN ∈ BN ,R to (3.1). A standard continuity argument allows us to extend
the uniqueness to the whole space X1(δN ,R).

It follows from (2.11) and Chebyshev’s inequality (as in [2, Lemma 3]8) that

P
(
∥ : zℓ

N : ∥L2
T W−ε,∞

x
> M

)
≤ Ce−cM

2
ℓ T −

1
ℓ λ

ε
2ℓ
N . (3.7)

Then, defining ΩT by

ΩT =

⋂
N∈N

ΩN ,T =

⋂
N∈N

⋃
M∈N

ΩM
N ,T ,

it follows from (3.7) that ΩN ,T has probability 1 and therefore ΩT is a set of full probability.
Furthermore, given ω ∈ ΩT and N ∈ N, there exists M = M(N ) ∈ N such that ω ∈ ΩM

N ,T and
thus the argument above shows local existence of a unique solution vN to (3.1) on the time
interval [0, δN ,R(ω)]. This proves almost sure local well-posedness of (3.1). Note that we have
the following blowup alternative for the maximal time T ∗

N ,R = T ∗

N ,R(ω) of existence; given
ω ∈ ΩT and N ∈ N, we have either

lim
t↗T ∗

N ,R

∥vN ∥X1(t) = ∞ or T ∗

N ,R ≥ T . (3.8)

Next, we prove almost sure well-posedness on the entire time interval [0, T ]. We follow
the argument introduced by Burq and Tzvetkov [5] in the context of random data global well-
posedness of the cubic NLW on T3. In view of the blowup alternative (3.8), it suffices to show
that, for each ω ∈ ΩT , the H1-norm of (vN (t), ∂tvN (t)) remains finite on [0, T ].

Define the energy EN (v) by setting

EN (v)(t) =
1
2
∥∇v(t)∥2

L2 +
1
2
∥∂tv(t)∥2

L2 +
1
4
∥v(t)∥4

L4 +
1
2
λN ∥v(t)∥2

L2 .

Then, for a solution vN to (3.1), we have

∂tE(vN ) = −

∫
T2

∂tvN

(
∂tvN + 3v2

N zN + 3vN : z2
N : + : z3

N :

)
dx

≲ −∥∂tvN ∥
2
L2 + N ε

∥∂tvN ∥L2

(
∥vN ∥

2
L4∥zN ∥W−ε,∞

+ ∥vN ∥L4∥ : z2
N : ∥W−ε,∞ + ∥ : z3

N : ∥W−ε,∞

)
8 Lemma 2.2 in the arXiv version. See also Lemma 4.5 in [30].
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By Young’s inequality,

≲
(

1 + N ε
∥zN ∥W−ε,∞

)
E(vN ) + N 4ε

∥ : z2
N : ∥

4
W−ε,∞ + N 2ε

∥ : z3
N : ∥

2
W−ε,∞

x
.

Then, it follows from Gronwall’s inequality that given T > 0 and N , M ∈ N, there exists a
constant C(N , T, M) > 0 such that for any ω ∈ ΩM

N ,T , we have

∥vN ∥X1(T ∗
N ,R ) ≲ sup

t∈[0,T ∗
N ,R )

E(vN )(t) ≤ C(N , T, M)E(vN )(0) < ∞.

Since the choices of N and M are arbitrary, this implies that T ∗

N ,R(ω) ≥ T for any ω ∈ ΩT .
This completes the proof of Proposition 3.1. □

We are now ready to present a proof of Theorem 1.1.

Proof of Theorem 1.1. Let (v0, v1) ∈ H1(T2). Fix T > 0. Given N ∈ N, set

VN = vN − vlin
N , (3.9)

where vlin
N is the linear solution defined in (1.25). Proposition 3.1 ensures that VN exists almost

surely on the time interval [0, T ], where it satisfies the Duhamel formulation. In the following,
we show that VN tends to 0 in C([0, T ]; H 1−ε(T2)).

Fix ε > 0 sufficiently small. Then, from Lemma 3.2, we have

∥zN (VN + vlin
N )2

∥L1
T H−ε

x
≲ T

1
2 ∥zN ∥

L2
T W

−ε, 1
ε

x

⟨∇⟩
ε
[
(VN + vlin

N )2]
L∞

T L
2

1−ε
x

≲ T
1
2 ∥zN ∥L2

T W−ε,∞
x

∥⟨∇⟩
ε(VN + vlin

N )∥
2

L∞
T L

4
1−ε
x

≲ T
1
2 ∥zN ∥L2

T W−ε,∞
x

∥VN + vlin
N ∥

2
CT H1−ε

x
.

(3.10)

Similarly, we have

∥ : z2
N : (VN + vlin

N )∥L1
T H−ε

x
≲ T

1
2 ∥ : z2

N : ∥
L2

T W
−ε, 1

ε
x

∥⟨∇⟩
ε(VN + vlin

N )∥
L∞

T L
2

1−ε
x

≲ T
1
2 ∥ : z2

N : ∥L2
T W−ε,∞

x
∥VN + vlin

N ∥CT H1−ε
x

.

(3.11)

By Hölder’s inequality, we have

∥ : z3
N : ∥L1

T H−ε
x

≤ T
1
2 ∥ : z3

N : ∥L2
T H−ε

x
. (3.12)

In order to estimate the term (VN + vlin
N )3, we use (2.13) by assuming that N ≫ 1 such that

DN is bounded from L2(T2) to C([0, T ]; H 1−ε(T2)) with norm less than λ
−

ε
2

N .9 Then, Hölder’s
and Sobolev’s inequalities yield ∫ t

0
DN (t − t ′)

[
(VN + vlin

N )3(t ′)
]
dt ′


CT H1−ε

x

≲ λ
−

ε
2

N ∥(VN + vlin
N )3

∥L1
T L2

x

≤ λ
−

ε
2

N T ∥VN + vlin
N ∥

3
L∞

T L6
x

≲ λ
−

ε
2

N T ∥VN + vlin
N ∥

3
CT H1−ε

x
.

(3.13)

9 Note that this gain of λ
−

ε
2

N is not true for ∂tDN . This is the reason we only prove convergence of VN in
C([0, T ]; H1−ε(T2)) instead of the smaller space X1−ε(T ).
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Moreover, from (3.4), we have

∥vlin
N ∥CT H1−ε

x
≲ ∥(v0, v1)∥H1−ε , (3.14)

uniformly in N .
From (3.9), we have

VN = ΓN (VN + vlin
N ) − vlin

N

where ΓN is as in (3.3). Then, putting (3.10)–(3.14) together along with the boundedness of
DN from H−ε(T2) to C([0, T ]; H 1−ε(T2)), we obtain

∥VN ∥CT H1−ε
x

≲ λ
−

ε
2

N T
(
∥VN ∥CT H1−ε

x
+ ∥(v0, v1)∥H1

)3

+ T
1
2

(
∥zN ∥L2

T W−ε,∞
x

(
∥VN ∥CT H1−ε

x
+ ∥(v0, v1)∥H1

)2 (3.15)

+ ∥ : z2
N : ∥L2

T W−ε,∞
x

(
∥VN ∥CT H1−ε

x
+ ∥(v0, v1)∥H1

)
+ ∥ : z3

N : ∥L2
T H−ε

x

)
.

As in [15], we introduce a sequence of stopping times

τ
ρ

N = T ∧ inf
{
τ ≥ 0 : ∥VN ∥Cτ H1−ε

x
> ρ

}
(3.16)

for ρ > 0. Then, the bound (3.15) and the continuity in time of VN (with values in H 1−ε(T2))
show that for any ρ > 0,

∥VN ∥C
τ
ρ
N

H1−ε
x

≲ λ
−

ε
2

N T (ρ + ∥(v0, v1)∥H1 )3

+ T
1
2

(
∥zN ∥L2

T W−ε,∞
x

(
ρ + ∥(v0, v1)∥H1

)2

+ ∥ : z2
N : ∥L2

T W−ε,∞
x

(
ρ + ∥(v0, v1)∥H1

)
+ ∥ : z3

N : ∥L2
T H−ε

x

)
.

Taking an expectation, we conclude from Lemma 2.2 and Proposition 2.6 that

lim
N→∞

E
[
∥VN ∥C

τ
ρ
N

H1−ε
x

]
= 0.

When τ
ρ

N < T , it follows from the definition (3.16) of τ
ρ

N and the continuity in time of VN

that

∥VN ∥C
τ
ρ
N

H1−ε
x

= ρ.

Hence, we obtain

P(τ ρ

N < T ) ≤
1
ρ
E

[
∥VN ∥C

τ
ρ
N

H1−ε
x

1[0,T )(τ
ρ

N )
]

≤
1
ρ
E

[
∥VN ∥C

τ
ρ
N

H1−ε
x

]
−→ 0

as N → ∞. This in turn implies that, for any ρ > 0, we have

P(∥VN ∥CT H1−ε
x

> ρ) = P(τ ρ

N < T ) −→ 0 (3.17)

as N → ∞.
Finally, recalling the decompositions uN = zN + vN and (3.9) and applying the embedding

C([0, T ]; H s(T2)) ⊂ H−ε([0, T ]; H s(T2)) for any s ∈ R, we obtain

∥uN ∥H−ε
T H−ε

x
= ∥zN + vlin

N + VN ∥H−ε
T H−ε

x

≲ ∥zN ∥CT H−ε
x

+ ∥vlin
N ∥H−ε

T H1−ε
x

+ ∥VN ∥CT H1−ε
x

.
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The first and third terms on the right-hand side converge to 0 in probability by
Proposition 2.6 (ii) and (3.17), respectively, while the second term on the right-hand side
converges to 0 by Lemma 2.7. This completes the proof of Theorem 1.1. □

4. Deterministic limit in the weak noise case

In this section, we work in the weak noise case:

lim
N→∞

α2
N log N = κ2

∈ [0, ∞) (4.1)

and present a proof of Theorem 1.3. First, note that by setting λN = 1, the results in Section 2
hold in this case. In particular, the linear stochastic wave equation (1.32) admits a unique
invariant measure, still denoted by µN .

Let (zω
0,N , zω

1,N ) be as in (1.33), distributed by the Gaussian measure µN . Denote by zN the
solution to (1.32) with (zN , ∂t zN )|t=0 = (zω

0,N , zω
1,N ). Then, by invariance of µN , the variance

of zN (t) is given by

σN
def
=

α2
N

8π2

∑
|n|≤N

1
⟨n⟩2 . (4.2)

We now define the Wick powers : zℓ
N : as in (2.8) with this new variance σN defined in (4.2).

Note that from (4.2) with (4.1) and Lemma 2.3, we have

lim
N→∞

σN =
1

4π
κ2. (4.3)

As in the proof of Theorem 1.1, we proceed with the Da Prato–Debussche trick. Namely,
write the solution uN to (1.6) as uN = vN + zN . Then, the residual term vN satisfies{

LvN + (3σN − 1)(vN + zN ) + v3
N + 3v2

N zN + 3vN : z2
N : + : z3

N : = 0
(vN , ∂tvN )|t=0 = (v0, v1),

(4.4)

where L = ∂2
t − ∆ + ∂t + 1 is as in (1.31).

Proceeding as in the proof of Proposition 2.6, we obtain the following lemma on the
regularity and decay properties of the Wick powers : zℓ

N :.

Lemma 4.1. Let ℓ ∈ N. Given any finite p, q ≥ 1, T > 0, and ε > 0, we have10

lim
N→∞

E
[
∥ : zℓ

N (t) : ∥
p
Lq

T W−ε,∞
x

]
= 0 and lim

N→∞

E
[
∥zN (t)∥p

X−ε(T )

]
= 0,

where X s(T ) is as in (3.2).

Lemma 4.1 follows as in Proposition 2.6 once we note the following; under (4.1), we have
αN → 0 as N → ∞, which yields

E
[
|⟨∇⟩

−ε
: zℓ

N (t, x) : |
2]

= ℓ!
∑

n1,...,nℓ∈Z2
N

( ℓ∏
j=1

α2
N

⟨n⟩2

)
⟨n1 + · · · + nℓ⟩

−2ε ≲ℓ α2ℓ
N

−→ 0,

as N → ∞.

10 In this case, we also have convergence of ∂t zN to 0 in C([0, T ]; H−1−ε(T2)) since the convergence to 0 comes
from αN → 0, not from a gain of a negative power of λN .
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By arguing as in the proof of Proposition 3.1, we can show that Eq. (4.4) is almost surely
globally well-posed in H1(T2) in the sense that for any T > 0, there exists a set ΩT of full
probability such that for any ω ∈ ΩT and N ∈ N, there exists a unique solution vN ∈ X1(T )
to (4.4), satisfying the bound

∥vN ∥X1(T ) ≤ C(N , T, ω)∥(v0, v1)∥H1 .

Our main goal in this section is to prove the following proposition.

Proposition 4.2.
Let vN be the solution to (4.4). Then, given any T, ε > 0, vN converges in probability to

the solution wκ to (1.35) in X1−ε(T ).

Once we have Proposition 4.2, Theorem 1.3 follows from the decomposition uN = zN +vN

and the decay of zN to 0 in X−ε(T ) presented in Lemma 4.1. Hence, it remains to prove
Proposition 4.2.

Proof of Proposition 4.2. Fix T > 0. By proceeding as in the proof of Proposition 3.1, we
can show that the deterministic equation (1.35) admits a unique global solution wκ ∈ X1(T ),
satisfying the energy bound

∥wκ∥X1(T ) ≤ Rκ
def
= Cκ (T )∥(v0, v1)∥H1 . (4.5)

Define βN by setting

βN = 3
(

σN −
κ2

4π

)
. (4.6)

Then, we rewrite (4.4) as

∂2
t vN − ∆vN + ∂tvN +

3
4π

κ2vN + v3
N + QN (vN ) = 0,

where QN (vN ) is the “error” part given by

QN (vN ) = βN vN + (3σN − 1)zN + 3v2
N zN + 3vN : z2

N : + : z3
N : .

By setting VN = vN − wκ , we see that VN then solves⎧⎪⎨⎪⎩
∂2

t VN − ∆VN + ∂t VN +
3

4π
κ2VN + V 3

N

+ 3V 2
N wκ + 3VN w2

κ + QN (VN + wκ ) = 0
(VN , ∂t VN )

⏐⏐
t=0 = (0, 0).

(4.7)

We first establish a good control on VN on short time intervals. With a slight abuse of notations,
we set

X s(I ) def
= C(I ; H s(T2)) ∩ C1(I ; H s−1(T2))

for an interval I ⊂ R+.

Lemma 4.3. Given κ as in (4.1), let Rκ be as in (4.5). Then, for any ρ > 0 and small ε > 0,
there exist T0 = T0(ρ, Rκ ) and C0 > 0 such that if

∥VN ∥X1−ε([t0,t0+τ ]) ≤ ρ (4.8)
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for some t0 ∈ [0, T ) and 0 < τ ≤ T0 such that t0 + τ ≤ T , then we have

∥VN ∥X1−ε([t0,t0+τ ]) ≤ C0

{
∥(VN (t0), ∂t VN (t0))∥H1−ε + βN τ (ρ + Rκ )

+ τ∥zN ∥L∞
T H−ε

x
+ τ

1
2

(
∥zN ∥L2

T W−ε,∞
x

(ρ2
+ R2

κ )

+ ∥ : z2
N : ∥L2

T W−ε,∞
x

(ρ + Rκ ) + ∥ : z3
N : ∥L2

T H−ε
x

)}
.

(4.9)

Proof. Given t0 ∈ [0, T ) and 0 < τ ≤ T − t0, set I = [t0, t0 + τ ]. By estimating the Duhamel
formulation of (4.7) on I as in the previous section, we have

∥VN ∥X1−ε(I ) ≲ ∥(VN (t0), ∂t VN (t0))∥H1−ε

+ τ∥VN ∥X1−ε(I )
(
∥VN ∥

2
X1−ε(I ) + ∥wκ∥

2
CT H1

x

)
+ βN τ

(
∥VN ∥X1−ε(I ) + ∥wκ∥CT H−ε

x

)
+ (3σN − 1)τ∥zN ∥L∞

T H−ε
x

+ τ
1
2

(
∥zN ∥L2

T W−ε,∞
x

(∥VN ∥
2
X1−ε(I ) + ∥wκ∥

2
CT H1

x
)

+ ∥ : z2
N : ∥L2

T W−ε,∞
x

(∥VN ∥X1−ε(I ) + ∥wκ∥CT H1
x
) + ∥ : z3

N : ∥L2
T H−ε

x

)
,

where the first term comes from the contribution of the linear evolution associated with the
operator Lκ

= ∂2
t − ∆ + ∂t +

3
4π

κ2, starting from initial data (VN (t0), ∂t VN (t0)). Hence, from
(4.5) and (4.8), we obtain

∥VN ∥X1−ε(I ) ≲ ∥(VN (t0), ∂t VN (t0))∥H1−ε + τ (ρ2
+ R2

κ )∥VN ∥X1−ε(I )

+ βN τ (ρ + Rκ ) + τ∥zN ∥L∞
T H−ε

x
+ τ

1
2

(
∥zN ∥L2

T W−ε,∞
x

(ρ2
+ R2

κ )

+ ∥ : z2
N : ∥L2

T W−ε,∞
x

(ρ + Rκ ) + ∥ : z3
N : ∥L2

T H−ε
x

)
,

where we used the boundedness of 3σN − 1 in view of (4.3).11 Then, by choosing T0 =

T0(ρ, Rκ ) > 0 sufficiently small, we obtain the desired bound (4.9). □

We continue with the proof of Proposition 4.2. Fix small ε > 0. In the following, we proceed
as in the previous section and introduce a sequence of stopping times

τ
ρ

N = T ∧ inf
{
τ ≥ 0 : ∥VN ∥X1−ε(τ ) > ρ

}
(4.10)

for ρ > 0.
Let Rκ and T0 be as in (4.5) and Lemma 4.3, respectively. Given j = 0, . . . ,

[ T
T0

]
+ 1, set

t j = jT0 for 0 ≤ j ≤
[ T

T0

]
and t[ T

T0
]+1 = T .12 Then, our goal is to apply Lemma 4.3 iteratively

and show that

lim
N→∞

P(t j ≤ τ
ρ

N < t j+1) = 0, (4.11)

11 The bound on 3σN − 1 depends on the entire sequence {αN }N∈N but this does not cause an issue since we
work with a fixed sequence {αN }N∈N.

12 If T is a multiple of T0 > 0, then we do not need to consider j =
[ T

T0

]
+ 1 and it suffices to prove (4.11) for

all j = 0, . . . ,
[ T

T0

]
− 1.
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for all j = 0, . . . ,
[ T

T0

]
. Once we prove (4.11), we obtain

P(∥VN ∥X1−ε(T ) > ρ) = P(τ ρ

N < T ) ≤

[
T
T0

]∑
j=0

P(t j ≤ τ
ρ

N < t j+1) −→ 0

as N → ∞.
From the definition (4.10) of τ

ρ

N , the continuity in time of (VN , ∂t VN ) (with values in
H1−ε(T2)), and applying Lemma 4.3 along with Lemma 4.1 and βN → 0 (which follows
from (4.3) and (4.6)), we have

P(t j ≤ τ
ρ

N < t j+1) =
1
ρ
E

[
∥VN ∥X1−ε([t j ,τ

ρ
N ])1[t j ,t j+1)(τ

ρ

N )
]

≤
C0

ρ
E

[
∥(VN (t j ), ∂t VN (t j ))∥H1−ε 1[t j ,t j+1)(τ

ρ

N )
]

+ o(1),
(4.12)

as N → ∞. When j = 0, we obtain (4.11) from (4.12) since (VN (0), ∂t VN (0)) = (0, 0). In
general, by noting that

∥(VN (t j ), ∂t VN (t j ))∥H1−ε ≤ ∥VN ∥X1−ε([t j−1,t j ]),

we apply the bound (4.12) iteratively and obtain

P(t j ≤ τ
ρ

N < t j+1) ≤
C0

ρ
E

[
∥VN ∥X1−ε([t j−1,t j ])

]
+ o(1)

≤
C2

0

ρ
E

[
∥(VN (t j−1), ∂t VN (t j−1))∥H1−ε

]
+ o(1)

≤ · · · ≤
C j

0

ρ
E

[
∥(VN (0), ∂t VN (0))∥H1−ε

]
+ o(1)

−→ 0

as N → 0 since (VN (0), ∂t VN (0)) = (0, 0). This proves (4.11). □

Remark 4.4. As mentioned in Remark 1.5 we can easily adapt the proof of Theorem 1.3
presented above to a general defocusing power-type nonlinearity u2k+1, k ∈ N, by using the
following identity:

u2k+1
N =

k∑
j=0

(
2k + 1

2 j

)
(2 j − 1)!!σ j

N :u2k+1−2 j
N :

in place of u3
N = :u3

N : + 3σN uN . Here, (2 j −1)!! = (2 j −1)(2 j −3) · · · 3·1 with the convention
(−1)!! = 1. In this case, the solution uN to{

(∂2
t − ∆ + ∂t )uN + u2k+1

N = αN ξN

(uN , ∂t uN )
⏐⏐
t=0 = (v0, v1) + (zω

0,N , zω
1,N )

converges to the solution wκ to{
(∂2

t − ∆ + ∂t )wκ +
∑k

j=0

(2k+1
2 j

)
(2 j − 1)!!( κ2

4π
) jw

2k+1−2 j
κ = 0

(wκ , ∂twκ )
⏐⏐
t=0 = (v0, v1)

as N → ∞.
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