
HAL Id: hal-02434766
https://hal.science/hal-02434766v1

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DRMF: a Distributed Resource Management
Framework for industry 4.0 environments

Asma Lahbib, Khalifa Toumi, Anis Laouiti, Steven Martin

To cite this version:
Asma Lahbib, Khalifa Toumi, Anis Laouiti, Steven Martin. DRMF: a Distributed Resource Man-
agement Framework for industry 4.0 environments. NCA 2019: 18th IEEE International Sympo-
sium on Network Computing and Applications, Sep 2019, Cambridge, MA, United States. pp.1-9,
�10.1109/NCA.2019.8935019�. �hal-02434766�

https://hal.science/hal-02434766v1
https://hal.archives-ouvertes.fr

DRMF: A Distributed Resource Management Framework for Industry 4.0
Environments

Asma LAHBIB∗, Khalifa Toumi∗∗, Anis Laouiti∗, and Steven Martin∗∗∗

∗SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier 91011 Evry, France.
Email: {asma.lahbib, anis.laouiti}@telecom-sudparis.eu

∗∗IRT SystemX, 8 Avenue de la Vauve, 91127 Palaiseau, France.
Email: {khalifa.toumi}@irt-systemx.fr

∗∗∗LRI, Université Paris-Sud, 15 Rue Georges Clemenceau, 91400 Orsay, France.
Email: {steven.martin}@lri.fr

Abstract— While smart factories are becoming widely recognized as
a fundamental concept of Industry 4.0, their implementation has posed
several challenges insofar that they generate, process, and exchange
vast amounts of security critical and privacy sensitive data, which
makes them attractive targets of attacks and unauthorized access.
Security requirements in such scenario include integrity, confidentiality,
traceability and notarization of exchanged data in the one hand plus
access control, privacy and trust in the other one. In this context,
we design a distributed resource management framework using the
emerging smart contracts technology for Industry 4.0 applications
and more specifically for smart factories environments. This last,
named DRMF, utilizes three Ethereum smart contracts specifically a
Governance Contract (GC), an Access Contract (AC) and a Lookup
Contract (LC) that are respectively responsible for the registration of
new joining entities as well as those requesting consensus partaking
permissions, second the dynamic access authorization and third the
mapping between the required services and contracts ensuring their
management. Using the blockchain technology, this framework is
expected to achieve distributed, flexible, verifiable and trustworthy
access control in addition to a transparent, traceable and notarized
resource usage and sharing. Results from a real implementation plus
performance evaluation prove the proposed concept and demonstrate
its feasibility.

Index Terms— Blockchain, smart contracts, notarization, access man-
agement, governance, Smart factories

I. INTRODUCTION

With the introduction of the Internet of Things (IoT) and Cyber
Physical System (CPS) concepts in addition to the current big
data and data analytics environments within industrial application
scenarios, industrial automation is undergoing a tremendous change
introducing as a consequence thereof the fourth industrial revolution
sometimes referred to as Industry 4.0 [1], [2], [3]. This concept has
introduced what has been called the Smart Factory, the revolution-
ized version of traditional factory in which CPSs communicate over
the IoT to monitor the physical processes of the factory and to make
decentralized decisions.
This revolution includes the introduction of highly flexible and
greatly efficient supply chains, manufacturing on demand, logistics
operations and production processes, the provision of new services
and the allowance of mass-customization and virtual production.
However, the deployment of such technologies in addition to the
heterogeneous and constrained nature of IoT devices, is expected
to intensify encountered security threats and issues. In such envi-
ronments, security is one of the most important concerns, given
that vulnerabilities introduced during manufacturing can be hard
to detect and harder to react especially with open connectivity to
the external world in addition to the increasing amount of data

shared between devices deployed in heterogeneous, distributed and
unknown sites while collaborating altogether along the production
process. For example, attackers can manipulate and infiltrate indus-
trial systems, malware injection can disturb their functioning and
put them out of action, which could cause significant damage to
the whole production area. Also, users with different motivations,
roles and in different contexts can utilize the terminals to interact
with data storage systems. They may query data or attempt to
take control of some physical resources (i.e. terminals and the
communication channel are the target). Or an attacker can seek to
collect available data through harvesting and exfiltration of sensitive
information from these terminals. Consequently, it is not feasible
to design a solution that can comprehensively address and mitigate
in once all encountered security threats.
In this work, our study mainly focuses on the following security
properties:

• Integrity, confidentiality and notarization: Entities and re-
sources related information are generally recorded in a local
storage structure. Hence, there is a risk that these structures
can be subject to unauthorized access and modification. Con-
sequently, traceability and auditability of both the flow of data
and their access history records will be challenging.

• Dynamic access management: Dynamic reconfiguration of
access rules in response to time, events and more importantly
to entities changing behavior and attitudes.

• Distributed system governance: Distributed management of the
shared resources plus the authorization of new entities willing
to partake in the system without the need for a third party that
could be itself vulnerable to attacks.

Recently, blockchain technology has attracted a lot of interest in
both the research and the industrial communities. The decentral-
ized, fault tolerant computing, storage and sharing of blockchain
technology [4] can lead to a whole wave of security innovations.
This last consists of [4], [5] blocks chained together as a ledger.
Any single transaction is verified and validated by entities in the
peer to peer network, then packaged into block and chained within
the blockchain network according to an established consensus
mechanism. The security of this technology returns to the fact
that it uses hash functions to chain blocks in order to ensure
immutability in addition to the use of digital signatures to secure
information. Availability is also ensured because of blockchain’s
distributed characteristics. Besides in smart factories environments,
the transmission, the distribution and the storage of information
require high confidentiality, integrity, validity, and authenticity. In
this context and regarding the different benefits provided by the978-1-7281-2522-0/19/$31.00 c©2019 IEEE

blockchain technology, we propose in this paper to use it within
a resource management framework in order to take advantage
of security features it provides regarding reliability, traceability,
control, information integrity and notarization. The proposed frame-
work utilizes blockchain to keep a living document trace about the
flow of resources being distributed and shared among collaborating
parties while using the OrBAC access control model to implement
distributed, fine grained, flexible and secure resource access au-
thorization. Moreover, and in order to better support the security
requirement, this framework adds the notion of trust management
to the access control model. Here a trust framework is integrated
to evaluate access requester entities’ behavior guaranteeing thereof
dynamicity of security policies insofar that they would be defined
and validated function of the access requester entity’s behavior.
Finally our proposal is conceived to support distributed and dynamic
governance of the system. Herein, all relevant parts can make a
comprehensive decision of access requests, policies definition and
even consensus management through the registration of new entities
requesting mining permissions. To do so, it is essential to confirm
before that they do not pose a threat to the system, otherwise, they
would be eliminated and rejected.
To demonstrate the application of the framework, we provide a case
study, in which we set an Ethereum private blockchain network and
we implement three smart contracts respectively responsible for: the
access control, the governance and the entities registration.
The rest of this paper is organized as follows. Section 2 presents
the proposed case study. Section 3 recalls the basic concepts of
blockchain, Ethereum plus access control systems and presents
related proposals carried out in the area of blockchain based access
control. Thereafter, an overview of the proposed scheme as well
as its detailed design is given in Section 4. Section 5 delves into
the implementation of the proposed scheme, a set of experimental
results validating our approach are shown, and finally in Section
6, the paper ends up with some conclusions and an outlook of our
future work in this area.

II. MOTIVATION AND USE CASE STUDY

Throughout this paper, we will project and illustrate our approach
with a scenario example inspired from a real world study of existing
applications related to Industry 4.0.
As a case study, let us take the example of three automaker
factories SF1, SF2 and SF3 respectively responsible for: (i) the
manufacturing of mechanical and electrical components, (ii) the
assembly operations and (iii) the test plus the performance and
quality control. These factories over time interact all together along
the production processes and alongside with automotive suppliers,
as an example a raw material supplier SP1 and a component supplier
SP2 proposing, buying and shipping goods and products through
transportation partners. These parties while looking to ensure
sophisticated shipping and logistics operations, agreed to invest
in shipping and logistic equipments as well as technologies and
personnel to manage their day-to-day trucking operations instead
of relying on third parties to ensure them. Obviously, the fact of
using their own resources for shipping operations will increase the
efficiency of processes, the immediate availability of vehicles, the
reduction of cost and the increase of profits insofar that they could
rent these resources to other companies and help them load, deliver
and unload their items and products. Another important advantage
within such decision is the fact of preserving their privacy as well as
those related to their resources especially when the third part is not
trustful enough so that they could rely on it to ensure such service
which could lead to several issues as they put a non trustful third

part in control of one of the business functions with the most impact
on the smooth running of production processes and the greatest
effect on their customers satisfaction.
That’s why having their own shipping and logistic resources is
really important to overcome such limitations. We notice here that
to share such resources among several parties collaborating and
working all together and especially that could not always have
a strong confidence established in advance, different challenges
should be firstly resolved as follows:

• Fully distributed management framework: where we don’t need
to pass through a third part or to involve several services to
manage shared resources and to perform common processes.

• High security level: that guarantees integrity, confidentiality,
traceability and auditability of both established transactions
and access records and procedures.

• Dynamic access control: insofar that security rules can change
dynamically in response to time, events and more importantly
to involved parties changing behavior and attitudes.

• Distribute governance: where collaborating parties could join,
leave the system and partake in the consensus mechanism
any moment they want without worrying neither about the
well conduct nor about the security of common processes and
shared resources obviously after a consortium is established
between the collaborating parties.

III. BACKGROUND AND PROBLEM STATEMENT

In this section, we will introduce first the main preliminaries used
in our proposal, we will review then related works and discuss the
main features and benefits of distributed peer to peer networks.

A. Blockchain technology

Originally designed for keeping a financial ledger and meet-
ing the purpose of cryptocurrency applications, the blockchain
paradigm can be extended to provide a generalized framework
for managing any movements of data related to goods, devices,
information records, etc. This last could be defined as a distributed
ledger of transactions whereby records of all established interactions
are registered providing thereof a proof of existence, of ownership
and modification of this data during interaction [4], [6]. The
established transactions are held within blocks chained together
and containing within their headers the hash of the previous block
in order to ensure immutability since blocks once chained, data
contained within will be available and couldn’t be easily changed or
altered. To ensure that all entities have the same copy of the ledger,
a consensus is required to maintain the blockchain architecture and
to ensure its functioning. This last makes sure that an agreement is
reached between a set of predefined entities to support a decision
making. After reaching consensus, valid blocks are added to the
blockchain. Moreover, each node in this distributed peer-to-peer
network holds the same copy of transaction records, which provides
robustness against single point of failure attacks.

B. Ethereum and smart contracts

Ethereum is a global, open source blockchain based distributed
computing platform for decentralized applications [7]. The novelty
of such protocol is considering the blockchain technology not only
to track the flow of value’s exchange but also to carry out executable
code through transactions created and sent by Externally Owned
Accounts (EOA). [8] Those pieces of code deployed and residing
at a specific address on the Ethereum blockchain, are called smart
contracts (SC). These last include a set of data which are the state
variables and code corresponding to the executable functions. SC

functions are executed when transactions are made and broadcast
to the network. These transactions include input parameters, as a
result an eventual return value is shown to the outside.
SC are written in a low level bytecode language interpreted by
the Ethereum Virtual Machine (EVM) which corresponds to the
run time environment in Ethereum. High level languages whose
programs can be compiled in EVM bytecode have also been
developed. The most widespread language is Solidity [9] which
is a JavaScript style contract-oriented, statically-typed, high-level
programming language designed for implementing smart contracts.

C. Access control systems and blockchain

In the current literature several models were proposed to define
access rights and to control access requests [10], [11], among
them: Mandatory Access Control (MAC), Discretionary Access
Control (DAC), Role Based Access Control (RBAC), Attribute-
based Access Control (ABAC), and Organization Based Access
Control (OrBAC). Many derivatives have been deduced as well from
these models in order to resolve a specific need.
In the context of smart factories and considering the need for
dynamic security rules definition and parameterization, context
awareness, security rules abstraction, scalability of resources, ac-
tions, subjects and situations, plus expressivity and fine-granularity,
we can consider OrBAC as a good candidate for providing an
adequate access control model for such environments.
Reminding that within a multi factories based environment, entities
belonging to different factories interact with each other in order to
realize a common goal where the concept of multi organizational
environment characterized by large scale and independent structures
with decentralized systems, where each factory defines its own
model, assigns its own roles and specifies its own access control
policies. The question to be asked here how to verify the role
attribution procedure and how can we provide flexibility to entities
to fully control their roles as well as access requests related to their
resources? Another issue is the integrity and the confidentiality
where entities access requests and operations history are stored
within a local database or a cloud infrastructure. Hence, there
is a risk that these databases can be subject to unauthorized
access and modification. Consequently, traceability, notarization and
auditability of access records will be challenging. A last but not
least issue is the difficulty of managing security policies according
to the context dynamicity especially with the colossal number
of entities supposed to be managed and that could change their
behavior over time.
That’s why providing an adequate solution to distributively govern
the system and to dynamically, securely and contextually manage
the access while keeping a living document trace about the flow of
resources data being shared become crucial and no more important
than ever.
In this direction and given the noted features of blockchain
technology, this last applied to such systems provides promising
possibilities and solutions to issues they encounter as it was
previously discussed. Few proposals of blockchain related access
control systems have been presented in the current literature.
This technology was used as a storage structure for access control
policies in [12]. Therefore, its computing feature was examined
in [13] where it plays the role of a decentralized access control
manager. In this work, FairAccess was proposed to offer a fully
decentralized pseudonymous and privacy-preserving authorization
management framework for IoT devices. The proposed framework
used OrBAC access control model to enable users to own and

control their data whose policies were stored in a private blockchain.
However, it can handle only policy-based compatible systems and
use cases, which cannot be applied to smart factories contexts.
Subsequently, the idea of using smart contracts for achieving access
control has been adopted in [14], [15], [17] for different access
control systems.
In [14], authors proposed RBAC-SC, a Role Based Access Control
system using Smart Contracts. In this model, Ethereum’s Smart
Contract technology was used to realize a trans-organizational
utilization of an organizations roles.
In [17], a blockchain-based secure mutual authentication with fine-
grained access control system for industry 4.0 was presented. The
proposed framework leverages the underpinning characteristics of
blockchain as well as several cryptographic materials to realize a
decentralized, privacy preserving solution. However an implemen-
tation of the proposal is missing as well as the evaluation and the
proof of its performance.
In [16], a Transaction based access control platform was proposed
where the ABAC model was integrated within the blockchain
system to manage subject registration, object escrowing and publi-
cation plus access request and grant.

D. Discussion

As seen, the blockchain technology has been used for several
purposes and within various models of access control. However, just
few studies have focused on integrating the blockchain technology
within access control systems in the context of smart factories
environments [17]. Our focus in this work is not only to ensure fine
grained, flexible and secure resource access authorization in the con-
text of smart factories environments but also to support distributed
and dynamic governance and management of the overall system
where all relevant parts can make a comprehensive decision of
joining entities registration and consensus management for entities
requesting mining permissions. Another focus of this framework is
the integration of trust management with the access control model
in order to determine whether subjects are trusted and well behaved
enough so that they could access resource data.

IV. PROPOSED APPROACH

A. Overview

In this paper we present DRMF, a Distributed Resource Manage-
ment Framework based on the blockchain technology for Industry
4.0 deployments. The main objectives of this work are as follow:

• Information notarization: The use of blockchain to keep a
living document trace about the flow of data and resources
being shared by collaborating entities guarantees an extra level
of transparency, control and notarization during collaboration
where a proof of existence, of ownership, of access and
modification is essential for decision making process.

• Distributed system governance: For each entity willing ei-
ther to partake in the consensus mechanism or to join the
blockchain network and sharing common resources, a veri-
fication of its behavior by most participants in the system is
made in order to ensure its legitimacy absolutely necessary
to confirm its joining request. The registration of new entities
as well as the management and the elimination of joined ones
require an agreement to be reached between the pool of entities
taking in charge the consensus mechanism.

• Dynamic access management: this framework achieves dis-
tributed, dynamic, contextual and trustworthy access autho-
rization through the integration of the OrBAC access control

Fig. 1. System architecture

model within a distributed ledger where transactions serve
as verifiable and traceable medium of policies definition and
parametrization, access request procedures as well as related
operations.

Fig. 1 shows the overall structure of the proposed system.
As illustrated in Fig. 1, each domain (e.g. SF1, SF2) holds its own
entities with different roles, for example a human worker in the
manufacturing subfactory SF1, a supervisor agent in the quality
control subfactory SF3, these last could perform several actions on
each shared resource such as using the shipping trucks, sharing their
trust records, querying for available ones, etc. Let us assume that
a human worker within SF1 wants to have access over the shared
resource Truck 3 to perform a shipping operation. To do so, the
process would work as follows: the agent needs to get authenticated
first along with an authentication system, which is responsible
for making authorization decisions, verifying devices identities
and generating authorization tokens. Furthermore and instead of
statically evaluating the access request, a DRMF trust-module is
involved to assess the trustworthiness degree of the requesting entity
and to judge its behavior taking into account different trust aspects
and parameters (that will be discussed in Section. IV-B.3). The
result of this evaluation will be incorporated within the context
structure to be sent to the DRMF policymanager-module which is in
charge of formulating the corresponding transaction to be broadcast
via the DRMF client to the DRMF distributed network where
the corresponding smart contract will be executed. Reminding that
within a smart factory environment, IoT devices are used to collect
and analyze data coming from smart products, other smart devices
and related smart services, that’s why in the case of IoT devices
with tight resource constraints, DRMF modules are assumed to
be deployed in more powerful network components that will be
connected directly to each device, otherwise it is deployed within
the device/entity itself.

B. System composition

In the following we will detail the different software modules
composing our system, the specific role and the operation of each
smart contract as well as the workflow of the overall architecture.
As shown in Fig. 1, our framework consists of the following
components:

1) DRMF distributed network: This component is the main core
of our system. It defines: (1) a set of smart contacts ensuring the
notarization, the distributed governance and the dynamic access
management, (2) a distributed network composed by a set of
peers responsible mainly for receiving the established transactions,

verifying and validating its state and executing the functions
contained within.

In this work, we utilize Geth technology to create a secure
and a distributed structure for managing data related to shared
resources which are the shipping trucks according to our use case.
Besides, the proposed framework consists of three Ethereum smart
contracts, namely: Access Contract (AC) designed to manage access
authorization made over shared resources, Governance Contract
(GC) used to ensure a distributed governance of the overall system,
and Lookup Contract (LC) acting as a register to map between
the required services and the contracts ensuring their management.
More details about each smart contract will be provided in the
following subsections.

2) DRMF client: This component implements the full function-
ality required to join and to participate in the DRMF distributed
network. This handles a broad set of tasks, such as connecting to the
peer-to-peer network, encoding and sending transactions, keeping
and exploring blocks copies and deploying and interacting with
smart contracts.

3) DRMF-Trust module: this component is in charge of as-
sessing the trustworthiness degree of shared resources as well as
requesting entities in order to capture their ability and willingness
to behave as expected. The realized assessment will be linked
with access control decisions through the context structure defined
within security rules that will no longer be statically defined
and parametirized, but instead will depend on entities behavior
in addition to the environment dynamicity and context change.
We remind here that our proposal is based on the OrBAC access
control model where the integration of trust management to enhance
the security level of the corresponding system has been studied
by the research area during the last years. There are multiple
ways to define trust and to evaluate it. This last could be based
on a set of paramaters where the most relevant ones defined
in the literature are experience, reputation and knowledge [18],
the experience parameter corresponds to the interpretation of the
previous interactions established with immediate neighbors. These
evaluations will be propagated as trust recommendations to other
network nodes to constitute the reputation parameter, that once kept,
will be considered after as the knowledge part of trust. How to
evaluate trust is not the topic of this paper, however we will provide
an example of metrics that matching with the proposed use case,
could be considered as effective ones within the trust evaluation
process.
We remind here that according to our use case, the evaluation of

trust will focus on both access requesting entities and requested
resources (which are the shipping trucks) as target nodes addressed
by the trust model. The trustworthiness assessment of the ship-
ping resources could be based on their speed, position, direction
of motion, engine coolant temperature, battery voltage, real-time
diagnostics and performance evaluation results of vehicle status,
the trustworthiness degree of their drivers, etc, [19].

4) DRMF-PolicyManager module: This component serves in the
one side as the defining part of access rules to be encapsulated
into transactions and reloaded to the blockchain after validation,
on the other side this module serves as the acquisition source of
attribute values required for policy evaluation that once received
and intercepted will be sent to the corresponding smart contract.

5) Authentication system: this component is mainly responsible
for verifying the validity of entities’ identities as well as the
legitimacy of demands and requests sent to both DRMF-Trust and
DRMF-PolicyManager modules. Participating entities are authenti-
cated based on the provided credentials. In our framework, we rely
on the openID Connect [20] (OIDC) which is an identity layer on
top of the OAuth 2.0 protocol [21]. We have chosen OIDC since
it is free, open and decentralized (no central authority approves or
registers relying parties or service providers). Its integration does
not require complicated update in the deployed application. Indeed,
it follows a restful approach which makes it easy to use and to
interoperate.
Remembering here that at the beginning of the authentication pro-
cess, participating entities are authenticated based on the provided
credentials. These last can be represented by using different mech-
anisms, such as login/password, digital certificates, authentication
keys, etc. In case of a successful authentication process, this module
generates an access token which is delivered in order to avoid
subsequent authentication procedures.

6) Smart contracts: : In our work, we proposed three smart
contracts: LC, AC and GC.
Lookup contract (LC): The main role of this smart contract
is to map between the required services and contracts ensuring
their management. To do so, it maintains a lookup structure that
registers the required information to find and execute the methods
in question. This structure contains the name of the smart contract
in which the method is developed, its address, the address of its
creator and the name of the requested method. The operation of
this smart contract will be mainly based on the following methods:

• lookup(): This method receives in input the name of the
requested method to return the address of the corresponding
contract (i.e., the access contract AC, the governance contract
GC).

• addFunction(): This method receives in input the information
details of a new function to add to the lookup structure,
obviously only the creator of the corresponding smart contract
can add new methods.

• deleteFunction(): This method receives the name of an existing
function to delete from the lookup structure.

Access contract (AC): This smart contract is mainly designed
to achieve distributed, interoperable, contextual, trustworthy and
secure access control for multi organization systems where par-
ticipating parties interacting and collaborating all together share
common resources for which access rules should be maintained and
parameterized by the collaborating parties. This smart contract is
based on the integration of the OrBAC access control model within
a distributed ledger to express access control policies. We opt here
for such integration firstly to guarantee the fact that access policies

View Activity Role Context Access
type

Truck
related
file

update Supervisor Sup.Trust-score > T-Th1
AND
Current-time IS IN
Working-hours

Permission

Genesis-
block-
addr

mine BC-
node

BC-node.Trust-score >
T-Th2
AND
Node-registered

Permission

Truck 3 use human
worker

Worker.Trust-score > T-Th3
AND
Current-time IS IN
Working-hours
AND
Department IS IN
Shipping

Permission

TABLE I
SECURITY RULES LIST EXAMPLE

are available at any time and evaluated in distributed environments
where there is no central authority to define roles and to generate
security rules what would overcome the problem of having a single
point of failure. Secondly to ensure verifiable and transparent role
assignments where any entity can verify if another one own really
the role it pretends to have and that this last is managed and
issued by its factory or belonging organization. Third to enable the
dynamic reconfiguration of access rules in response to time, events
and more importantly to entities changing behavior and attitudes.
To ensure such features, this smart contract maintains a set of
security rules. Table. I illustrates a simple example of rules where
each row corresponds to the policy defined on a certain tuple. Basic
fields of each row are:

• View: it represents the resource for which the access is
requested. According to our use case scenario, this last could
be a record related to production data, manufacturing entities,
trust records, etc.

• Activity: it represents the action to be performed on the
resource such as check, update, use, etc.

• Role: that represents the entity requesting the access for a
certain resource.

• Context: it is used to express different types of extra conditions
or constraints that control activation of rules expressed in the
access control policy.

• Access type: it defines the access type defined on the view,
according to the OrBAC model, this last could be permission,
prohibition, obligation and recommendation.

Returning to the use case presented in Section. IV-A, to perform the
shipping operation using the Truck 3, an evaluation of the agent’s
access request is needed first to allow or not the demanded access.
To do so a verification of the well conduct and functioning of
both the requesting entity and the requested resource is essential,
hence an authorization over the access control smart contract is
required to decide whether the access is permitted or prohibited.
The access authorization and according to the OrBAC access control
model depends on a set of contextual conditions whose activation
will activate the corresponding rule. In this example, to have the
requested access accepted, the human agent should have a trust
score above the defined threshold for the corresponding role, he
should belong to the shipping department and request to use the
Truck during his working hours. We can notice here that the fact
of using trust management within the access control would enable

the dynamic reconfiguration of security rules that will change in
response to involved parties’ changing behavior and attitudes. To
do so, we have added a novel type of context which is related
to trust management. The role of this latest is to check if the trust
levels of both the access requesting and the requested entity respect
well the threshold defined.
The operation of the Access contract will be based on the following
methods:

• addpolicy(factory id, role id, string activity, view id, struct
context, string permName): this function launched by resource
owners aiming to define and to add a new access control policy
for a newly shared/stored resource. It takes as input the owner’s
belonging factory public key, the role id of the subject, the view
id of the object, the context in which the access is demanded,
the permission to be attributed. As a result of this function, a
new policy item will be added to the policies list.

• Updatepolicy(factory id, role id, string activity, view id, struct
context, string newPerm): this function launched by resource
owners in order to update an already added access control
policy.

• deletepolicy(factory id, role id, string activity, view id, struct
context): this function receives the main identification infor-
mation of a policy to be deleted from the policy list.

• accesscontrol(factory id, entity id, string activity, view id,
struct context): this function executed by a subject requesting
entity in order to authorize its access request upon a certain
resource identified with its view id within a certain context.
To do so a verification of the request is made to check the
validity of the subject role, the existence of the policy within
the defined ones and the behavior of the requesting entity to
detect a potential doubtful/suspect access demand. As a result
an access result will be returned to both the requesting and the
requested entities and the access process will be executed.

Governance contract (GC): This contract is mainly designed to
govern consensus and to manage who can partake in the consen-
sus mechanism within the blockchain network. More specifically
it is responsible for determining the consensus algorithm to be
executed for the mining procedures, as well as for registering
and managing miner entities. To do so, this contract is supposed
to store blockchain addresses related to entities having either
transaction validation, mining or voting permissions. For registering
miner entities, the consensus contract is used to validate entities
requesting mining permissions in order to be allowed either to
validate, create and add new blocks to the ledger. Here we note
that once the system is deployed, this contract would contain initial
validators representing the collaborating parties. For overwriting
miner entities, a request to delete the entity in question is submitted
by the one who has noticed its malicious behavior or its breakdown.
Thus once the rest of entities have reached a majority, the miner
will be removed from the consensus contract.
We remind here that in order to be registered, or to send overwriting
instruction, the requesting entity needs first to get authenticated and
authorized over the access control smart contract, then the request
will be transmitted to the pool of entities taking in charge the
consensus mechanism, once confirmed that it does not pose a threat
to the system, its address will be added to the governance contract.

C. Prototype workflow

The proposed framework involves a succession of operations
wherein: (i) DRMF distributed network is created and a consortium
is defined in order to reach the desired agreement among collab-
orating parties that once identified get registered and involved in

the consensus procedure. (ii) given the existence of resources to be
shared, these last are identified in order to be accessed and used
in a notarized manner. (iii) to do so, first security rules should
be defined in order to manage the access among the collaborating
parties, (iv) entities requesting to join the system or to partake in
the consensus mechanism, are registered obviously after evaluation
of their behavior, corresponding roles are identified and attributed
as well, (v) when willing to perform an action over an existing
resource, the requesting entity sends an access request that further
to which a decision is made.
These five scenarios our proposed framework is made up of are
detailed in the next paragraphs.

1) DRMF distributed network creation and entities registration:
Once the DRMF distributed network is created and becomes oper-
ational, the process of adding new entities with different roles and
classifications can be launched. Here, it should be assumed that new
entites have been already identified within the authentication system
and possess a public identifier that is unique to their organization.
It should also be assumed that they have received an Ethereum
address required to partake in the Ethereum network. Therefore,
the process of adding a new entity begins by having the pool of
consensus entities validate that the public identifier corresponds to
the pretended role and suits the requested classification.

2) Security rules definition: When collaborating sub factories
agree on adding an access control policy for a newly deployed
resource to be shared among them during a certain time, e.g.,
collaborating sub factories SF1, SF2, and SF3 agree on adding a
new truck identified with a new attributed address R addr1. To
manage the access over the shared resource, an access policy needs
to be added to the AC smart contract and shared within the DRMF
distributed network. The proposed framework works as illustrated
in the UML sequence diagram in Fig. 2. The resource holder needs
to get authenticated first along with the authenticator, in case it is
already authenticated, the attributed token is used to have access
to the system. Therefore, the DRMF-Trust module evaluates the
resource trust value, defines the trust threshold to be satisfied by
the access requesting entity and generates the context structure to
be sent to the DRMF-PolicyManager module. This last defines the
possible roles, the activity to be performed and encapsulates the
defined access control policy in form of a scripting language in
order to be added to the policies list within the AC and sends it to
the DRMF client in order to be broadcast to the DRMF network.
The peer to peer nodes verify the transaction, and record it within
the distributed ledger in case of success validation. At this stage,
a new AC is created and deployed on the blockchain, obviously
a new entry is added to the LC in order to register the required
information of the newly created AC via the addFunction() method.

3) Access request transaction workflow: In case of access re-
quest, the proposed framework works as follows: A subject (e.g.,
a human worker within the supervision service of the performance
and quality control subfactory SF3, identified with his ethereum
address E Addr) wants to perform an action (e.g., execute) on
a protected resource (e.g., a controlled robotic arm responsible
for auto body panels spot welding operations within the assem-
bly subfactory SF2, identified as well with its ethereum address
R addr). The subject E addr after being authenticated within the
authentication system for a first authentication case or after vali-
dating the access token it uses, will submit its access request to
perform the execute action on the resource R addr. The DRMF-
Trust module at this stage receives the access request, assesses

Fig. 2. Policy creation transaction workflow

the entity trustworthiness, derives its trust value, prepares context
related attributes and generates the context structure to be sent to
the DRMF-Policymanager module acting as a Policy Enforcement
Point (PEP). This last formulates the access request to an access
transaction and broadcasts it to the peer to peer network via the
DRMF client in order to run the AC. We remind here that before
sending the access demand transaction, the DRMF client needs
to have the address of the AC, to do so it calls the getContract
method of the LC to retrieve the AC address and concerned method.
Once received, the access demand transaction is sent to the AC
acting as a Policy Decision Point (PDP) that evaluates the access
demand by verifying the validity of the subject role, the existence
of the access policy within the defined policies list and especially
checking the subject’s behavior, as a result it determines whether
the request should be permitted or denied. Finally, if it is permitted
the transaction is valid and it will be recorded in the blockchain
else the transaction will be rejected and a notification will be sent
to the requester.
The described workflow is illustrated in Fig. 3.

V. IMPLEMENTATION AND EVALUATION

In this section, we will introduce first the different tools used
for the implementation of our framework therefore we will show
experiment results demonstrating its feasibility.

A. Work environment

For the implementation of our proposal, we have set up a testbed
as illustrated in Fig.4 featuring several hardware and software
components as listed below:

• a Dell Precision M6800 machine with 4th Generation Intel
Core i7 processor and 8Gb of RAM in which we have
configured a private Ethereum blockchain network consisting
of three nodes having the functionalities of Ethereum miners.

• an Intel Core i5-3210M laptop with 6 Gb of RAM and 2.40
GHz of CPU frequency in which an Ethereum node was set
up.

Fig. 3. Access request transaction workflow

• two Raspberry Pi 3 Model B configured to act as shipping
resources shared among the collaborating factories.

According to the use case study we introduced in Sec. II, our
scenario consists of 3 subfactories SF1, SF2 and SF3, where the
administration service is represented by each Ethereum node within
the Dell machine. These factories collaborate altogether alongside
the production process and sharing as common resources two trucks
responsible for the trucking and shipping operations. These last are
represented by the two single boards (RPi3) that are connected
to the blockchain network where related information according to
their real-time diagnostics and performance evaluation in addition to
their trustworthiness degree are collected, sent and stored within the
distributed ledger. Moreover a human worker within the shipping
service willing to perform a shipping operation using a truck

Fig. 4. Work environment

resource is represented by the laptop machine.
As illustrated in Fig.4, a geth client [22] is configured on each
entity so that it could act as an Ethereum node. For each entity
we have created an account and set it to form the DRMF network.
Mining tasks are ensured by the Dell machine insofar that it has
a relatively large computing software and storage capability where
the Proof of Work (PoW) consensus mechanism is supported by
each node. This entity took in charge also the creation and the
deployment of solidity smart contracts. In what concerns the trust
module integrated within either the laptop machine or the RPi share
resources, we have used the model presented and implemented in
our previous work [23].

B. Proof of concept

As it was presented in Sec.IV-B.6, each smart contract is based
on a set of methods developed under specific algorithms according
to the defined use case scenario. Reminding that our DRMF frame-
work is based on the following main functionalities: (1) Registering
a new resource with a corresponding address. (2) Definition of
security rules. (3) Access request. (4) Behavior evaluation. (5)
System governance.
In order to show the feasibility of our proposal, we conducted
some experiments related to the access control and the consensus
governance procedures. For the validation of the access contract, we
added a new role ’shipping worker’, a new context with the trust
threshold, the affiliation and the working hours, a corresponding
policy then is added to the policies list that according to the OrBAC
model, is specified as follow:
permission(org: SF1, shipping worker, use, truck3, shipping
worker.trust-score > trust-th3
AND current-time IS IN working-hours
AND shipping worker.department IS IN shipping)
Therefore, we defined a malicious behavior where an on-off attack
is launched to cause a low trust score that was calculated by the
DRMF-trust module. As a penalty for the malicious behavior, access
requests from the subject will be blocked for a certain period of
time (until the trust score is above the trust threshold fixed to 0.4).
Fig.5 and Fig.6 show access results displayed after a legitimate
behavior and a malicious one respectively.
For the validation of the consensus contract, we need here to prove

the well achievement of consensus while dynamically adding and
removing nodes to and from the network. We will consider the
case of a new node willing to partake in the consensus mechanism
within the blockchain network. This last needs to get authenticated
and authorized first over the access control smart contract, then the

Fig. 5. permission of access

Fig. 6. prohibition of access

request will be transmitted to the pool of entities taking charge of
the consensus mechanism, once confirmed that it does not pose a
threat to the system, its address will be added to the consensus
contract.
We added a new role ’supervisor’, a new context with the trust
threshold, the affiliation and the working hours. We specify there-
after the policy to be added as follow:
Obligation(org: SF1, supervisor, mine, genesis-block-addr, regis-
tered AND supervisor.trust-score > trust-th2
AND current-time IS IN working-hours
AND supervisor.department IS IN administration)
Fig.7 shows corresponding access results.

Fig. 7. registration of a new entity within the consensus mechanism

C. Performance evaluation

To evaluate the performance of our proposal, we have evaluated
the gas it consumes to perform required task. Gas is the unit used for
measuring the computational work of running transactions or smart
contracts in the Ethereum network. This unit reflects the complexity
of executed tasks as the more complex they become, the higher
amount of gas they require to complete. Table. II enumerates the
amount of gas required for the completion of specific transactions
specifically the creation of a new access rule, the access request,
the registration of a new entity within the consensus mechanism,
the deployment of GC, LC and AC.

D. Discussion

In this paragraph, we analyze the different features provided by
DRMF that utilizes blockchain to keep a living document trace
about the flow of resources being distributed and shared among
collaborating parties while implementing distributed, dynamic and
secure resource access authorization.
Transparency
The DRMF framewwork achieves the transparency property since

Executed transaction Required gas
The creation of a new access rule 475200
The access request 420500
The registration of a new entity 350000
The deployment of GC 1513300
The deployment of LC 1320000
The deployment of AC 1681500

TABLE II
SECURITY RULES LIST EXAMPLE

all functions executed within smart contracts are reflected on
the corresponding log of both the respective smart contract and
the DRMF distributed network. By this way, an entity could
not perform any transaction without other entities’ knowing
and validation, and also it cannot deny any transaction it has
committed.
Verification
The DRMF framewwork effectively achieves verifiable access
control through the verification of role assignments, access rules
existence and non violation in addition to the legitimacy of access
requests implemented within the AC.
Flexibility
Our proposal gives participating entities the flexibility to join
or to leave the system or even to partake in the consensus
mechanism easily. Functions implemented within the GC ensure
the registration of new joining entities, the overwriting of existing
ones and the management of those taking in charge the consensus
mechanism.
Dynamicity
Dynamic reconfiguration of access rules in response to entities’
changing behavior and attitudes is ensured within the AC that
does not only verify and validate access authorization statically
by checking access rules’ defined conditions are met, but also
dynamically by checking the behavior of the access requesting
entity and judging its legitimacy or maliciousness according to the
trust score derived by the DRMF-Trust module.

VI. CONCLUSION AND FUTURE WORK

We have presented in this paper the design and the implemen-
tation of a distributed resource management framework based on
the Blockchain technology in order to (1) notarize the flow of data
and resources being shared by collaborating parties, (2) achieve
a secure, trustworthy, fine-grained, and traceable access control
and (3) dynamically and distributively manage new joining entities
as well as those willing to partake in the consensus mechanism.
Combining the resource management system with the blockchain
technology, we enable a more reliable resource data confidentiality
and integrity verification during sharing and we make a time-
stamped log of both entities’ access transactions and behavior.
Our evaluation shows that our proposal is feasible, deployable and
suited for smart factories environments given its features of being
decentralized, ensuring security and requiring a low overhead in
addition to low resources. For future work, we plan to implement
other benchmarking blockchain consensus mechanisms in order to
more ameliorate the overhead and the performance of our proposal.

REFERENCES

[1] R. C. Schlaepfer and M. Koch. Industry 4.0 Chal-
lenges and solutions for the digital transformation and
use of exponential technologies. [Online]. Available:

https://www2.deloitte.com/content/dam/Deloitte/ch/Documents
/manufacturing/ch-en-manufacturing-industry-4-0-24102014.pdf

[2] K. Schwab. The Fourth Industrial Revolution. World Economic Forum,
2016.

[3] H. Kagermann and W. Wahlster, Industrie 4.0 - Smart Manufacturing
for the Future. German Trade and Investment, July 2014. [Online].
Available: https://www.gtai.de/GTAI/Content/EN/Invest/ SharedDocs
/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-
manufacturing-for-the-future-en.pdf

[4] Zheng, Zibin, et al. An overview of blockchain technology: Architec-
ture, consensus, and future trends. 2017 IEEE International Congress
on Big Data (BigData Congress). IEEE, 2017.

[5] Crosby, Michael, et al. Blockchain technology: Beyond bitcoin. Ap-
plied Innovation 2 (2016): 6-10.

[6] Abeyratne, Saveen A., and Radmehr P. Monfared. Blockchain ready
manufacturing supply chain using distributed ledger. (2016).

[7] Ethereum. Blockchain App Platform. Available online:
https://ethereum.org/

[8] Vujii, Dejan, Dijana Jagodi, and Sinia Rani. Blockchain technology,
bitcoin, and Ethereum: A brief overview. 2018 17th International
Symposium INFOTEH-JAHORINA (INFOTEH). IEEE, 2018.

[9] Solidity. Programming language for smart contracts. Available online:
https://solidity.readthedocs.io/en/v0.5.3/

[10] Ouaddah, Aafaf, et al. Access control in the Internet of Things: Big
challenges and new opportunities. Computer Networks 112 (2017):
237-262.

[11] Toumi, Khalifa, Ana Cavalli, and Mazen EL Maarabani. ”Role based
interoperability security policies in collaborative systems.” 2012 In-
ternational Conference on Collaboration Technologies and Systems
(CTS). IEEE, 2012.

[12] Maesa, Damiano Di Francesco, Paolo Mori, and Laura Ricci.
Blockchain based access control. IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer, Cham,
2017.

[13] Ouaddah, Aafaf, Anas Abou Elkalam, and Abdellah Ait Ouahman.
FairAccess: a new Blockchainbased access control framework for
the Internet of Things. Security and Communication Networks 9.18
(2016): 5943-5964.

[14] Cruz, Jason Paul, Yuichi Kaji, and Naoto Yanai. RBAC-SC: Role-
based access control using smart contract. IEEE Access 6 (2018):
12240-12251.

[15] Dagher, Gaby G., et al. Ancile: Privacy-preserving framework for
access control and interoperability of electronic health records using
blockchain technology. Sustainable cities and society 39 (2018): 283-
297.

[16] Zhu, Yan, et al. TBAC: transaction-based access control on blockchain
for resource sharing with cryptographically decentralized authoriza-
tion. 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC). Vol. 1. IEEE, 2018.

[17] C. Lin, D. He, X. Huang, K.-K. R. Choo, A. V. Vasilakos, Bsein:
A blockchain-based secure mutual authentication with fine-grained
access control system for industry 4.0, Elsevier Journal of Network
and Computer Applications, vol. 116, pp. 42-52, 2018.

[18] Toumi, Khalifa, Csar Andrs, and Ana Cavalli. Trust-OrBAC: A trust
access control model in multi-organization environments. International
Conference on Information Systems Security. Springer, Berlin, Heidel-
berg, 2012.

[19] Zhang, Jie. A survey on trust management for vanets. 2011 IEEE
International Conference on Advanced Information Networking and
Applications. IEEE, 2011.

[20] N. S. et al., Openid connect core 1.0, OpenID Foundation, Tech. Rep.,
February 2014

[21] Hardt, Dick. The OAuth 2.0 authorization framework. (2012).
[22] Geth Client for Building Private Blockchain Networks. Available

online at: https://github.com/ethereum/go-ethereum/wiki/geth
[23] Lahbib, Asma, et al. ”Blockchain based trust management mechanism

for IoT.” 2019 IEEE Wireless Communications and Networking Con-
ference (WCNC). 2019. (to appear)

