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I. SCALAR ANTIPLANE ELASTICITY PROBLEM � DETERMINATION OF YOUNG MODULUS IN
THE DIFFERENT LATTICE GEOMETRIES

The 2D fuse networks considered here are electrical analogs of a scalar antiplane elasticity problem so that the
local voltage, u(x, y), maps to the out-of-plane displacement, u = u(x, y)ez. To compute Young's modulus, we then
consider a given node i and its connected neighbors j. The components of the stress tensor associated to i is given
by[1]:

σ =
1

2Ai

∑
j

(rj − ri)× Fji, (S1)

where Ai is the area of the Voronoi polyedra associated with node i, ri and rj the position of nodes i and j, and Fji
the force applied by node j on node i. Here, Fji = Fjiez, and Fji = (uj − ui) where ui refers to the voltage at node i
(the fuse conductance is recalled to be one). As a result, only σxz and σyz are di�erent from zero; they are given by:

σxz =
1

2Ai

∑
j

(vj − vi)(rj − ri) · ex andσyz =
1

2Ai

∑
j

(vj − vi)(rj − ri) · ey (S2)

Considering now the strain tensor, only the components εxz and εyz are di�erent from zero. Then, vj − vi can be
written as: vj − vi = 2εxz(rj − ri) · ex + 2εyz(rj − ri) · ey. Introducing this expression into Eq. S2 leads to:

σxz =
1

Ai
εxz
∑
j

(xj − xi)2 and σyz =
1

Ai
εyz
∑
j

(yj − yi)2 (S3)

Finally, since in this 2D scalar elastic problem, σxz = Eεxz and σyz = Eεyz, one gets the following expression for
Young's modulus E:

E =
1

Ai

∑
j

(xj − xi)2 =
1

Ai

∑
j

(yj − yi)2 (S4)

In the square, triangular, and honeycomb lattices studied here:

• Ai is 1,
√

3/2 and 3
√

3/4, respectively;

• the sequence xj − xi is {1, 0,−1, 0}, {1, 1/2,−1/2,−1,−1/2, 1/2} and {
√

3/2, 0,−
√

3/2}, respectively;

• the sequence yj − yi is {0, 1, 0,−1}, {0,
√

3/2,
√

3/2, 0,−
√

3/2,−
√

3/2} and {−1/2, 1,−1/2}, respectively.

Numerical application of Eq. S4 with the values above provides the values reported in the �rst column of Tab. 1
(main text).
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II. SCALAR ANTIPLANE ELASTICITY PROBLEM � WILLIAMS'S EXPANSION FOR THE
DISPLACEMENT/VOLTAGE FIELD

FIG. S1. Slit crack embedded in a 2D plate: sketch and notations

In the 2D antiplane scalar elasticity problem considered here, the equilibrium equation writes:

4u = 0 (S5)

Consider a straight slit crack embedded in the medium [Fig. S1], locate the origin at the crack tip, and recast Eq. S5
in polar coordinates:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0 (S6)

The condition of free surfaces along the crack imposes:

σyz(r,±π) = µ
∂u

∂r
(r,±π) = 0, (S7)

where µ is the shear modulus: µ = 2E. Let us seek solutions of the form u(r, θ) = rλf(θ, λ). Equation S6 yields:

f ′′(θ) + λf(θ) = 0, (S8)

whose solutions take the form f(θ) = A cos (λθ) + B sin (λθ). Hence, the elementary solutions for u(r, θ) write
u(r, θ) = rλ(A cos (λθ) + B sin (λθ)). The problem symmetry imposes uz(r, θ) = uz(r,−θ), hence A = 0. At this
stage, the elementary solutions for u write:

u(r, θ) = Brλ sin(λθ) (S9)

Boundary conditions (Eq. S7) now impose rλ−1B cos(±π(λ − 1)) = 0, yielding λ = n/2 with n = ±1,±3,±5, ....
Equation S9 now writes:

u(r, θ) =
∑

n=±1,±3,...
anr

n/2 sin
nθ

2
(S10)

Finally, continuity at the crack tip imposes u(r = 0, θ) = 0; hence n ≥ 0 and Eq. S10 takes the form of Eqs. 3 and 4
(main text).
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III. SCALAR ANTIPLANE ELASTICITY PROBLEM � DETERMINATION OF CRACK-TIP
MIS-POSITIONING WITH AN ARBITRARY NUMBER OF NODES

FIG. S2. Determination of fracture toughness with an arbitrary number of nodes. (a) E�ect of the number of considered
nodes, n, onto the determined value for mispositioning, d in the scalar elastic problem. Here, d is computed using Eq. S16.
The considered nodes P are those the closest to the initial frame origin O, located at the center of the next fuse to burn. (b)
Variation with n of the fracture toughness, Kc obtained by inserting these values for d in Eq. 6 (main text). In both panels,
the insets show the relative variation with respect to the last values d(nmax) and Kc(nmax), with nmax = 100.

As in main text, the crack tip is �rst placed ad hoc at the center of the next bond about to break, O, and the
reference frame is placed at this location. Let us consider a set of nodes, P, in the vicinity of this crack tip, and call
Pi their nearest neighbors, that is the nodes connected to P via an element. In the limit of large lattices (L → ∞)
the voltage at P writes:

u(P) = a−1ΦIII−1 (rP, θP) + a1ΦIII1 (rP, θP), (S11)

where (rP, θP) are the polar coordinates of point P and ΦIIIn (r, θ) are the elementary functions provided in Eq. 4
(main text). The voltage at Pi takes the very same form. Kirchho� law then imposes

∑
i (u(P)− u(Pi)) = 0 at each

node P. This leads:

a−1S−1(P,Pi) + a1S1(P,Pi) = 0, (S12)

where:

Sn(P,Pi) =
∑
i

(
ΦIIIn (rP, θP)− ΦIIIn (rPi , θPi)

)
. (S13)

To �rst order in a−1/a1, the mispositioning is given by d = 2a−1/a1. Hence, Eq. S12 writes:

dS−1(P,Pi) + 2S1(P,Pi) = 0. (S14)

The value of d should satisfy at best Eq. S14 for all P. As such, it should minimize the function:

f(d) =
∑
P

(dS−1(P,Pi) + 2S1(P,Pi))
2

(S15)

This is satis�ed for f ′(d) = 0, so:
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d = −2

∑
P

S−1(P,Pi)S1(P,Pi)∑
P

S2
−1(P,Pi)

(S16)

This equation provides a generalization of Eq. 5 (main text) in the case where several nodes P are considered. Figure
S2(a) shows how d evolves with the number n of nodes considered (sorted by distance from O). Very rapidly, d
becomes independent of n; the relative variation in d is found to be smaller than 10−4 as soon as n is larger than 20.
The fracture toughness is subsequently deduced by applying Eq. 6 (main text), after having shifted the frame origin
over d. Its variation with n is plotted in Fig. S2(b).

IV. SCALAR ANTIPLANE ELASTICITY PROBLEM � ITERATIVE PROCEDURE TO DETERMINE
THE CRACK-TIP MIS-POSITIONING

FIG. S3. Determination of fracture toughness with an arbitrary number of nodes. (a) E�ect of the number of iterations, n,
onto the determined value for mispositioning, d. At each iteration, d is computed using Eq. S16 by considering the 100 nodes
the closest from the crack tip position as determined at the previous iteration. The initial crack tip position is placed at the
middle O of the next fuse to burn. (b) Variation with n of the fracture toughness, Kc obtained by inserting these values for
d in Eq. 6 (main text). In both panels, the insets show the relative variation with respect to the last values d(nmax) and
Kc(nmax), with nmax = 100.

As in main text, the crack tip is �rst placed ad-hoc at the center of the next bond about to break and the reference
frame, O is placed at this location. The tip mispositioning is then computed using Eq. S16 by considering the n = 100
nodes the closest to O, denoted P. The frame origin O is then shifted to the new position O → O − dex with ex
parallel to the crack. The mis-positioning is computed again and the frame origin is switched again. The procedure is
repeated 100 times. Figure S3(a) shows how d evolves with the number n of iterations. After 6 iterations, the relative
variation in d is found to be smaller than 10−4. The fracture toughness is subsequently deduced by applying Eq. 6
(main text) after having shifted the frame origin over the �nal d. Its variation with n is plotted in Fig. S3(b).
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V. PLANE STRESS TENSORIAL ELASTICITY � DETERMINATION OF CRACK TIP
MIS-POSITIONING WITHIN A BIDIMENSIONAL CRYSTAL

FIG. S4. Lattice geometry and atomistic deformation modes. (a) The honeycomb lattice geometry is chosen as an illustration;
such a geometry is that presented by graphene. Each atom is bonded to three nearest-neighbors at equal distance `, so that the
bond angle at rest is θ0 = 2π/3. A straight slit crack is introduced in the lattice by withdrawing the bonds along a horizontal
line in the middle. Atoms A and B denote the edges of the next bond about to break, Ai and Bi are the atoms connected to
them. The frame is chosen so that ex is parallel to the crack, and ey is perpendicular to it. The frame origin O is placed in
the middle of the bond AB. The true position of the continuum-level scale crack tip is labeled C. The mispositioning d is the
distance |CO|. (b) Bond stretching and bending modes involved in the deformation of a bidimensional crystal at the atomistic
scale. Superscript 0 denotes the reference lattice con�guration while no superscript indicates the atom position after the lattice
deformation: The displacements at A and Ai due to the elastic deformations write u(A) = A0A and u(Ai) = A0

iAi. ks and
kb refer to the bond stretching and bending sti�ness, respectively.

Let us consider a two-dimensional crystal embedding a straight slit crack as depicted in Fig. S4(a). ex is de�ned
parallel to the crack, and ey is perpendicular to it. For sake of simplicity, the bond angle θ0 and bond length ` are
assumed to be the same for all atoms. Let us now assume that the lattice is very large (L→∞) and loaded remotely
under pure tension (mode I fracture).

A. Williams expansion in plane stress conditions

As shown by Williams [2], the displacement �eld u(z) takes the form:

u(z) =
∑
n≥0

anΦIn(z), (S17)

Complex notations are used here: The position of a material point is represented by a complex number z = x+ iy or
in polar coordinates z = reiθ. Accordingly, u (and ΦIn) are complex numbers, the real and imaginary part of which
provides the component along x and y, respectively. For the following, it is worth to note that the inner product u ·v
of two vectors and the vectorial product u× (v ×w) write, within this complex notations:
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u · v ≡ Re{zu zv},
u× (v ×w) ≡ i zu Im{zv zw}

, (S18)

where z is the conjugate of z, Re{z} is its real part, and Im{z} is its imaginary part.
In Eq. S17, the prefactors an are real numbers. The elementary solutions ΦIn(z) are generic and write [3]:

ΦIn(z) = rn/2
(
κeinθ/2 − n

2
ei(4−n)θ/2 +

(n
2

+ (−1)n
)
e−inθ/2

)
, (S19)

where κ = (3 − ν)/(1 + ν) for the plane stress conditions encountered in two-dimensional crystals; ν is the Poisson
ratio. The term n = 1 is the usual square root singular term of LEFM where a1 relates to the (mode I) stress intensity
factor K as:

a1 =
K(1 + ν)

E
√

2π
, (S20)

B. First order approximation of the crack tip mis-positioning

As for the scalar elastic problem addressed in the main text, the di�culty is to place properly the frame origin at
the true tip of the continuum-level scale crack in a lattice which is discrete at the atomistic scale. As a �rst guess,
we place it at the middle, O, of the bond about to break [Fig. S4(a)]. By doing so, we make a small error, d, in the
positioning. This introduces an additional super-singular term a−1ΦI−1(z) in Eq. S17, where a−1/a1 = d/2 [3].
To determine a−1/a1, we consider the force balance at one of the two edge atoms of the bond about to break,

A [Fig. S4(a)]. At the discrete atomistic scale, elastic deformations are accommodated via two lattice deformation
modes, bond stretching and bond bending. They are examined successively.
The force applying to A due to the stretching of the bond connecting A to its neighbors Ap writes:

Fs(Ap → A) = ks∆`eAAp
, (S21)

where ks is the bond stretching sti�ness and eAAp
is the unit vector parallel to A0A0

p; here and thereafter, superscript
0 denotes the point position in the reference state, in absence of any elastic deformations. ∆` = |AAp|−|A0A0

p| is the
length increment due to the displacements u(A) and u(Ap) at A and Ap. Since these displacements are in�nitesimal,
only the �rst order terms in u are kept, leading to:

∆` =
1

`
AAp · (u(Ap)− u(A)), (S22)

using the complex notations de�ned previously, Eq. S21 becomes:

Fs(Ap → A) =
ks
`2

Re{(u(zAp)− u(zA))(zAp − zA)}(zAp − zA). (S23)

The force applying to A due to the bending of bonds connecting A to Ap and A to Aq [Fig. S4(b)] writes:

Fb({Ap,Aq} → A) = −kb
`

∆θe⊥ApAq
. (S24)

where kb is the bond bending sti�ness and e⊥ApAq
is the unit vector perpendicular to A0

pA
0
q: e

⊥
ApAq

= (1/`3)A0
pA

0
q×

(A0A0
p ×A0A0

q). ∆θ is the change in the bond angle due to the displacements u(A), u(Ap) and u(Aq). To �rst
order in u, it writes:
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∆θ = − 1

sin θ0
(cos θ − cos θ0)

=
1

`2 sin θ0
A0A0

p ·
(
u(Ap) cos θ0 − u(Aq) + (1− cos θ0)u(A)

)
+

1

`2 sin θ0
A0A0

q ·
(
u(Aq) cos θ0 − u(Ap) + (1− cos θ0)u(A)

)
,

(S25)

And, using the complex notations de�ned previously, Eq. S24 becomes:

Fb({Ap,Aq} → A) =− kb
`6 sin θ0

i×
(
zAq
− zAp

)
× Im

{
(zAp

− zA)(zAq
− zA)

}
× Re

{(
zAp − zA

) (
u(zAp) cos θ0 − u(zAq ) + (1− cos θ0)u(zA)

)
+
(
zAq − zA

) (
u(zAq ) cos θ0 − u(zAp) + (1− cos θ0)u(zA)

)} (S26)

Force balance at A imposes:

∑
p

Fs(Ap → A) +
∑
<p,q>

Fb({Ap,Aq} → A) = 0, (S27)

where p runs over each bond Ap and < p, q > runs over each bond angle ÂpAAq. In the very vicinity of the crack tip
and in the limit L→∞, u(z) only involves two terms: the super-singular (n = −1) term due to the tip mispositioning
and the singular (n = 1) term associated with the K-dominant elastic �eld: u(z) = a−1ΦI−1(z) + a1ΦI1(z). Note that
the term n = 0 is independent of z and corresponds to a constant translation term in the displacement, which has no
e�ect in Eqs. S23 and S26. Equation S27 supplemented with Eqs. S17, S23 and S26 yields:

{
dSx−1 + 2Sx1 = 0
dSy−1 + 2Sy1 = 0

(S28)

with:

Sxn =
∑
p

Re{(φIn(zAp
)− φIn(zA))(z̄Ap

− z̄A)}Re{zAp
− zA}

+
kb

ks`4 sin θ0

∑
<p,q>

Im(zAq − zAp) Im{(zAp − zA)(zAq − zA)}

× Re
{(
zAp
− zA

) (
φIn(zAp

) cos θ0 − φIn(zAq
) + (1− cos θ0)φIn(zA)

)
+
(
zAq
− zA

) (
φIn(zAq

) cos θ0 − φIn(zAp
) + (1− cos θ0)φIn(zA)

)}
Syn =

∑
p

Re{(φIn(zAp)− φIn(zA))(z̄Ap − z̄A)} Im{zAp − zA}

− kb
ks`4 sin θ0

∑
<p,q>

Re(zAq
− zAp

) Im{(zAp
− zA)(zAq

− zA)}

× Re
{(
zAp
− zA

) (
φIn(zAp

) cos θ0 − φIn(zAq
) + (1− cos θ0)φIn(zA)

)
+
(
zAq
− zA

) (
φIn(zAq

) cos θ0 − φIn(zAp
) + (1− cos θ0)φIn(zA)

)}

(S29)

where n = {−1, 1}.
The value of d should satisfy at best Eq. S28. As such, it should minimize the function f(d) = (dSx−1 + 2Sx1 )2 +

(dSy−1 + 2Sy1 )2. Hence, d ful�lls f ′(d) = 0, so:

d = −2
Sx−1S

x
1 + Sy−1S

y
1

(Sx−1)2 + (Sy−1)2
(S30)
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C. n order determination of the crack tip mis-positioning

As in scalar antiplane elastic problem, the above procedure can be improved to reach any prescribed accuracy by
(i) imposing force balance to an arbitrary number of atoms and (ii) by applying an iterative procedure to correct
mispositioning.
The procedure to account for an arbitrary number of atoms follows the same route as that described in Sec. III.

Equation S30 then becomes:

d = −2

∑
P

{Sx−1(zP, zPi)S
x
1 (zP, zPi) + Sy−1(zP, zPi)S

y
1 (zP, zPi)}∑

P

{(Sx−1(zP, zPi
)2 + (Sy−1(zP, zPi

)2}
, (S31)

where S
x/y
n (zP, zPi

) are given by Eq. S29. The iterative procedure here mimics that described in Sec. IV.

D. Subsequent determination of toughness

Once d has been determined and the true position of the crack tip is known, the value of fracture toughness Kc is
deduced, by stating that the stretching applying to the bond A−B [Fig. S4(a)] is equal to the bond strength Fc:

‖Fs(B→ A)‖ =
ks
`

Re{(u(zB)− u(zA))(zB − zA)} = Fc (S32)

Now that the position of the crack tip is well placed with respect to the frame origin O, and in the limit L → ∞,
the displacement at A and B are given by:

u(zA) =
Kc(1 + ν)

E
√

2π
ΦI1(zA + d) and u(zB) =

Kc(1 + ν)

E
√

2π
ΦI1(zB + d) (S33)

where a1 in Eq. S17 has been replaced by its expression involving Kc in Eq. S20. The expression for Kc follows:

Kc =
E
√

2π

ks(1 + ν)

Fc`

Re{
(
ΦI1(zA + d)− ΦI1(zB + d)

)
(zA − zB)}

(S34)

VI. APPLICATION TO GRAPHENE

Graphene is a crystalline allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal
lattice of mesh size ` = 0.142 nm [Fig. S4(a)]. Each atom is bonded to its three nearest neighbors via sp2 covalent
bonds, so that θ0 ' 120◦. The bond stretching sti�ness and bond bending sti�ness reported in such structures [4]
are generally in the range ks = 688− 740 N m−1 and kb = 0.769− 0.776× 10−18 N m rad−2. In addition, there is an
additional π-bond oriented out of plane. In such a 2D bidimensional crystal, the position of atom A is zA = i`/2 and

that of its three nearest-neighbors is zA1
= (−2

√
3/2 + i)`, zA2

= (2
√

3/2 + i)` and zA3
= −i`/2. Finally, the Poisson

ratio is reported to be ν = 0.18. Application of Eq. S30 yields:

d[approx.] ' 0.060 nm (S35)

The application of the iterative procedure (100 iterations) with the most re�ned Eq. S31 using the �rst 100th atoms
the closest to frame origin yields:

d[exact] = 0.0934 nm (S36)

Finally, the application of Eq. S34 with the values E = 340 N m−1 reported for the Young modulus [5] and Fc =
13.6 nN for the bond strength [6] yields:
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Kc[exact] = 1.204× 10−3 N m−1/2 (S37)
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