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Abstract: Life cycle assessment (LCA) methodology has been used to evaluate the performance of the
following lighting systems: compact fluorescent lamps (CFL), light-emitting diode (LED) lamps, and
fluorescent tubes (T5 type). This work covers the singularity of the French electricity mix for indoor
workplaces lighting and describes the best strategy for lamp replacement. We have defined the light
loss factor to integrate the following additional parameters: lumen depreciation, dirt accumulation,
and risks of failure. Therefore, we propose a new definition of the functional unit (maintained
megalumen hour), and we conduct this assessment to be compliant with the standards of lighting
system equipment (NF EN 12464-1). Unlike previous studies, we observed that the manufacturing
phase is the most impacting over the whole life cycle, thus making the extension of LED lamps’
lifetime a more effective strategy to reduce the potential environmental impacts than increasing their
efficacy. This paper highlights how the light loss factor affects the LCA results and proves that it
should be taken into account for subsequent assessments. Finally, this new approach includes the
real usage of the lamps in the study and contributes to lay the foundation for life cycle sustainability
assessment to also evaluate the economic, social, and human impacts of lighting.

Keywords: life cycle assessment (LCA); light-emitting diode (LED); indoor lighting; functional unit;
light loss factor (LLF); maintained lumen output (M-lmO)

1. Introduction

“The increased awareness of the importance of environmental protection, and the possible impacts associated
with products, both manufactured and consumed, has increased interest in the development of methods to better
understand and address these impacts. One of the techniques being developed for this purpose is life cycle
assessment (LCA)” (ISO 14040:2006). LCA is an internationally standardized methodology to identify
and evaluate not only greenhouse gas (GHG) emissions, but also the impacts of products and services
on the environment and ecosystems including soil, air, and water, as well as the impacts on human
health (ISO 14040:2006 [1] and 14044:2006 [2]).

“LCA addresses the environmental aspects and potential environmental impacts (e.g., use of resources and
the environmental consequences of releases) throughout a product’s life cycle from raw material acquisition through
production, use, end-of-life treatment, recycling and final disposal (i.e., cradle-to-grave).” (ISO14040:2006).
The flows of materials and energy of each product’s life cycle phase are associated with impact
indicators, and allow determining the potential impacts on our environment and health.
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Focusing on lighting systems, several comparative or single-case LCAs have been published over
the last decades. Manuela Franz and Franz P. Wenzl [3] present a review of 12 published LCAs of
lighting systems. These studies compared the environmental impacts of light-emitting diode (LED)
lamps with other lighting systems, especially by assessing the pros and cons of adding electronic
components (manufacturing phase) to improve their efficiency and lifetime (use phase). They highlight
that different methods, data sources, assumptions, or simplifications lead to different results and
interpretations. Therefore, it’s almost impossible to make a general statement on LED environmental
performance without defining a precise use case: “It is recommended [ . . . ] to conduct comparative LCA
of the same lamp technologies. These studies should consider no-name products and premium products, and
different applications scenarios” [3] (e.g., country of use, type of use, product availability in the market,
lighting norms of the country, and application scenarios).

It appears that most of these studies have been conducted considering a country of use where
electricity is mostly generated by fossil fuel (e.g., the United Kingdom [4], United States [5], India [6],
and Italy [7]). They conclude that the use phase is the most impacting phase along the complete
life cycle of LED lamps. The International Energy Agency (2014) states that, on average, 85% of the
environmental impact is due to the use phase, while the remaining 15% is shared mainly between
manufacturing and end-of-life treatment [8]. Nevertheless, France presents the singularity of using
nuclear plants to generate electricity, and this specific situation has not been studied yet. Wang et al. [9]
compare the LCA of nuclear, wind, and hydropower production, and show that hydropower and
nuclear plants are the two least impacting means of producing electricity, followed by wind power.
These three energy production processes represent 92.8% of the French electricity mix [10]. Therefore,
using the French mix should reduce significantly the potential impacts of the use phase. Tähkämö
et al. [11] confirm this intuition when they compared European and French electricity mixes. They
highlight that when switching from European to French electricity mixes, the use phase share decreases
from 93% to 76% of potential impacts for a LED downlight luminaire (62 lm/w efficacy and 25,000-h
lifetime). In 2017, the Center for Economic Studies and Research on Energy (CEREN) showed that in
French indoor workplaces, only 10% of installed lamps were LED lamps while 80% were fluorescent
tube (T5, T8, or T12) [12]. The “T” in lamp nomenclature represents the shape of the lamp tubular.
The number following the “T” usually represents the diameter of the lamp in eighths of an inch (1-inch
equals 2.5 cm). T5 lamps have a diameter equal to 5 times an eighth of an inch, or 5/8”. Over the
next few years, the transition to the most efficient way of lighting will continue, and it’s necessary
to establish strategies for lamp replacement. This paper studies further the French singularity in
front of recent improvements on LED lamps (efficacy, lifetime, and manufacturing processes) and
discusses the consequences of lamp replacement strategies. The following systems commonly used for
indoor lighting have been studied: light-emitting diode (LED), compact fluorescent lamp (CFL), and
fluorescent tube (T5).

On the other hand, one of the key parameters that guides LCA studies is the functional unit. It is
defined as the “quantified performance of a product system for use as a reference unit” [1]. A variety of
functional units have been used in previous studies: mega lumen hour [4–6,13–15], hour of light [13,16],
and lux hour [7]. The International Energy Agency states that the most coherent functional unit that is
applicable to lighting systems is megalumen hour (Mlm-h) [8]. It consists of equalizing the lumen
output during a defined period of time before comparing lamps’ potential environmental impacts.
However, LCA studies are generally conducted by considering what a perfect lighting system can
potentially achieve (using manufacturer specifications), rather than how it is actually being used and
what it actually achieves. Through the classical definition of Mlm-h as the functional unit, some
parameters associated to the use phase are not considered:

• First, LED lifetime estimation can vary from one model to another, and it does not specify the
actual lifetime before the lamp stops emitting light, but rather the time needed to reach a specific
ratio of its initial lumen output (i.e., 70% for an L70 LED lamp) [17–19].
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• Second, initial lumen output is considered constant during the whole life of the product. Only a
few LCAs (Osram [15], DEFRA [20], Slocum [21]) acknowledge the lumen depreciation, but none
of them provide a clear method or results regarding it.

• Third, neither the risk of failure nor dirt accumulation on lamp and luminaire are considered
during the functional unit definition.

This can lead to confusion about the actual performance of each lighting system. While we expect
a decrease in energy consumption for lighting purposes, a case study in Austria showed an increase
of 29% during the period of lighting technology transformation (Franz and Nicolics [22]). In order
to address this issue, a light loss factor has been defined for each lamp. The light loss factor (LLF)
combines several parameters such as the room dirt depreciation (RDD), the luminaire dirt depreciation
(LDD), the lamp survival factor (LSF), and the lamp lumen depreciation (LlmD) for each system
studied at the end of its lifetime [23]. The light loss factor is used by lighting professionals to size
lighting systems in working places, but also to plan maintenance operation [24]. The light loss factor
helps to ensure that businesses comply with standards of lighting equipment for indoor workplaces
in France [25]. These standards define the minimum illuminance that should be maintained in work
places, depending on the activity (e.g., 500 lux for data treatment). To verify that this minimum
illuminance is respected, the lumen output that can be maintained (maintained lumen output) by each
lamp over its respective lifetime has been calculated thanks to the light loss factor.

Finally, this paper contributes to enhance the LCA of lighting systems by considering the real
utilization of lamps. The introduction of the light loss factor will facilitate the interaction between the
environmental and the economic aspects by using similar parameters to define the use phase. This new
approach and the introduction of the maintained megalumen hours (M-Mlmh) as the new functional
unit will help to lay the foundation for the life cycle sustainability assessment of lighting systems,
as developed by Zimek et al. [26].

2. Materials and Methods

2.1. LCA Framework

LCA is conducted following the four steps presented in Figure 1.
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Figure 1. Life cycle assessment (LCA) framework (adapted from ISO 14040:2006 [1]).

The goal and scope definition should describe the intended application and audience; the system
to be studied, including its functions and boundaries; the functional unit, the methodology of impact
assessment; and the assumptions and limitations of the study. The life cycle inventory (LCI) phase
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is “an inventory of input/output data with regards to the system being studied. It involves the collection of
the data necessary to meet the goals of the defined study” [1,2]. The life cycle impact assessment (LCIA)
aims at “providing additional information to help assess a product system’s life cycle inventory results so as to
better understand their environmental significance” [1,2]. Life cycle interpretation is the final phase of the
LCA procedure. The results of life cycle impact assessment are “summarized and discussed as a basis
for conclusions, recommendations and decision-making in accordance with the goal and scope definition” [1,2].
In addition, uncertainties are introduced in the results of an LCI due to the compounded effects of input
uncertainties and data variability. “An analysis of results for sensitivity and uncertainty shall be conducted for
studies intended to be used in comparative assertions intended to be disclosed to the public” [2]. One approach
is to characterize the uncertainty in results by ranges and/or probability distributions. Whenever
feasible, such analysis should be performed to better explain and support the LCI conclusions.

2.2. Goal and Scope of the Study

The goal of the study is to compare the potential environmental impacts of various LED technology
(in terms of lifetime, efficacy, and manufacturing process) with the most common light sources (CFL
and T5) for the replacement of lamps in indoor workplaces in France.

First of all, incandescent lamps are not considered in this work, as they were definitively prohibited
in the European Union in 2012. In addition, it has already been established in numerous studies that
the environmental impact of incandescent lamps is too high to consider this technology as viable
for lighting purposes [27]. They have been initially replaced by compact fluorescent lamps with the
ambition of a reduction of the energy consumption. On the other hand, since the 2000s, T5 lamps with
high efficacy (100 lm/W) are progressively replacing older models such as the T8 and T12. In 2017,
compact fluorescent lamps and tubular fluorescent lamps represented approximately 80% of installed
lighting systems in French indoor workplaces [12]. However, thanks to continuous improvements
in efficacy and lifetime, the LED market is growing quickly. McKinsey has projected a penetration
rate of 67% to 80% for LED lighting in 2022 (percent of the total lighting revenue) [28]. Therefore,
this paper focuses on comparing these three types of lamp (CFL, T5, and LED) to assess the potential
environmental impacts of lighting systems for indoor workplaces.

Five models of LED lamps have been studied to reflect the evolution of this technology over the
years and to compare their respective environmental performance with the two systems they are aiming
to replace. LED A represents the firsts lamps available on the French market, and LED B represents the
latest product available following a projection plan from the US Department of Energy [5]. The lamps’
parameters have been adjusted to ensure that the lamps will deliver a similar maintained lumen output
during their respective lifetime, thus enabling professionals to switch lamps while keeping the same
illumination level in the room. Several LED lamps with various lifetimes, efficacy, and manufacturing
processes have been considered to evaluate the impacts of these parameters on LED performance.
All the lamps studied are presented in Table 1.

Table 1. Performance parameters for lamps. LED A: the firsts lamps available on the French market,
LED B: the latest product available following a projection plan from the US Department of Energy.

Lamps Power
Consumption [W]

lumen
Output [lm]

Efficacy
[lm/W]

Lamp Lifetime
[k.hours]

Luminaire
Lifetime [k.hours]

LED A1 11 1045 95 15 N/A
LED A2 11 1045 95 25 N/A
LED B1 8 1072 134 15 N/A
LED B2 8 1072 134 25 N/A
LED B3 8 1072 134 40 N/A
2 × T5 * 10 990 99 24 48 *

CFL 23 1380 60 10 N/A

* Luminaire lifetime is 48,000 h and it can hold one T5. In order to respect luminaire lifetime, two consecutive T5
lamps (10 W and 24,000 h lifetime) are considered in this work.
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The intended audience includes lighting designers, policy makers, and more broadly, researchers
and technical experts considering LED technology in general illumination.

2.3. System Boundaries

This paper is based on the inventories realized by the US Department of Energy (DOE) and
Navigant UK [4,5]. The same methodology has been used to study the French case while being
compliant with this previous work. The ideal life cycle assessment considers the following five life
cycle phases: (1) Raw material, (2) Manufacturing, (3) Transportation, (4) Use, and (5) End of Life.
To simplify the model, the raw material and manufacturing phase have been merged into one unique
phase. The boundaries of the system are presented in Figure 2.
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2.3.1. Raw Material and Manufacturing

This first stage of the life cycle accounts for the emissions and resource usage associated with the
production and transport of the various raw materials and intermediate products that are inputs to
the final product. The manufacturing phase accounts for the energies used and emissions associated
with fabricating the lamp. In this analysis, all of the major component parts are depicted in Figure 2 to
highlight these component parts.

This LCA study will focus on the following archetype of an LED lamp system defined by the
DOE [5]:

• Three-inch sapphire wafer substrate
• Indium gallium nitride grown on sapphire substrate
• High brightness LED packages (i.e., greater than 0.5 watt/package)
• Deep-blue LEDs (which are pumping a remote phosphor)

2.3.2. Transportation

The transportation phase covers the distribution of the product from its point of production to its
point of installation and use. The following assumptions have been made for transport and distribution
along the whole life cycle of the products: (1) all lamps are produced in China, and (2) the distance



Electronics 2019, 8, 1278 6 of 19

from China to France, which is 14,838 km by sea (distance calculated with https://sea-distances.org/),
and 2000 km more by road.

2.3.3. Use Phase

The use phase scenario considered is indoor workplaces in France as defined by NF EN 12464-1 [25].
This European Standard prescribes the lighting requirements for indoor workplaces, which must meet
the needs of visual comfort and visual performance. All common visual tasks are considered, including
screen work. The French electricity mix used is nuclear 71.7%, hydraulic 12.5%, renewable 8.8%, and
fossil 7.2% [10].

2.3.4. End of Life (EoL)

The end-of-life scenario for packaging is 40% landfill and 60% recycling. For lamps, only waste
glass and electronic equipment are considered in the end-of-life phase. The recycling rate is 20% and
the landfill rate is 80%, except for LED B, for which we expect to see an increase of the recycling rate
(70% landfill and 30% recycling) [5]. All other materials are considered to be either landfilled or burned.

2.4. Impact Assessment Methodology

To conduct this LCA, we have used software to define all inventories, parameters, and scenarios
(Simapro 9.0.0.33) as well as a life cycle inventories database (Ecoinvent 3.5), which allows for the
characterization of all impacts along a complete life cycle. This study is performed using real data
as the foreground source and the Ecoinvent database as the background source. The chosen impact
assessment method is Recipe 2016 with the Hierarchist perspective (H). It is the most common policy
principle with regards to time frame and other issues [29], and it allows us to derive characterization
factors at both the midpoint level (problem oriented) and the endpoint level (damage oriented). Figure 3
shows the impact categories for the midpoint level and the damage pathways until the endpoint level.
Impact categories are aggregated into three endpoint areas of damage: human health, ecosystems, and
resource availability.
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2.5. Life Cycle Inventory

In order to reflect the wide differences of parameters between LED lamp panels, five models
have been studied. LED materials and manufacturing process inventories have been collected from
the Navigant US Department of Energy (DOE) [5]: LED A for LED lamp-2012 and LED B for LED
lamp-2017. Both LED lamps are phosphor-converting LEDs (pc-LED). LED lifetime is improved from
LED A1 to A2 (respectively 15,000 h and 25,000 h) and from LED B1 to B3 (respectively 15,000 h and
40,000 h). The manufacturing process and the efficacy are improved from LED A (95 lm/W) to LED B
(134 lm/W) (Table 1). CFL inventories have been collected from the Navigant US DOE (60 lm/W efficacy,
10,000 h lifetime) [5]. The last system considered is the T5 lamp (99 lm/W efficacy, 24,000 h lifetime) and
one luminaire (48,000 h lifetime). T5 inventory has been collected from Navigant Europe [4]. For LED
A, CFL, and T5, specifications have been adjusted in order to reflect available products on the French
market. LED B has been adjusted to ensure a similar lumen output for each lamp. It is assumed that
only new materials are used at all stages of the LCA process, thus providing a conservative estimate of
the impacts.

All details of the life cycle inventory are available in the previous work from Navigant US [5]
for LED lamps and CFLs and from Navigant Europe [4] for T5. In addition, all input data are also
available as Supplementary Materials.

2.6. Definition of Light Loss Factor and Maintained Lumen Output

In the case of lighting in indoor workplaces, French norms explain that a minimum illuminance
should be maintained in workspaces, which varies depending upon the activity (e.g., 500 lux for data
treatment or 700 lx for industrial drawing) [25]. In order to respect these norms, the maintained lumen
output has been determined for each lamp. It defines the function that each lamp will perform and
reflects the use for each lamp.

Room dirt depreciation and luminaire dirt depreciation represent dirt and dust that will be
attracted to and trapped in electrical equipment and luminaires. To define room dirt depreciation and
luminaire dirt depreciation, it is assumed that a three-year maintenance is performed. Over this period,
the RDDxLDD value will not go below 0.96 [23]. The chosen median value is 0.98.

LSF describes the failure of light sources over the use duration, while LlmD describes the decrease
in lamp luminous flux. LSF and LlmD have been collected from the specifications of similar lamps
available on the French market from the Philips lighting catalogs.

Light loss factor (LLF) is defined in Equation (1), using room dirt depreciation (RDD), luminaire
dirt depreciation (LDD), lamp survival factor (LSF), and lamp lumen depreciation (LlmD). Maintained
lumen output (M-lmO) is defined in Equation (2):

LLF = RDD × LDD × LSF × LlmD (1)

M-lmO = Initial lumen output × LLF (2)

An example of maintained lumen output for LED A1 is presented in Figure 4.
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The light loss factor and the maintained lumen output for each lamp are presented in Table 2.

Table 2. Lamp light loss factor (LLF), maintained lumen output (M-lmO), functional unit and reference
flow (RF). M-Mlmh: maintained megalumen hours, RDD: room dirt depreciation.

Lamps RDD ×
LDD LSF LlmD LLF M-lmO

[lm] M-Mlmh RF Global Consumption
[kWh]

LED A1 0.98 0.96 0.70 0.66 688 10.32 3.37 556.5
LED A2 0.98 0.96 0.70 0.66 688 17.20 2.02 556.5
LED B1 0.98 0.96 0.70 0.66 706 10.59 3.29 394.5
LED B2 0.98 0.96 0.70 0.66 706 17.65 1.97 394.5
LED B3 0.98 0.96 0.70 0.66 706 28.24 1.23 394.5
2 × T5 0.98 0.84 0.89 0.73 725 34.82 1.00 480
CFL 0.98 0.84 0.65 0.54 738 7.38 4.71 1084

The chosen functional unit is 34.82 maintained megalumen hours (M-Mlmh). It corresponds to
the quantity of light emitted during 48,000 h (approximately 15 years with 8 h of light per day) by T5
lamps. T5 lamp is chosen as a reference as it is the lamp with the highest M-Mlmh, and it is commonly
used in indoor workplaces in France [12]. The choice of reference lamp is arbitrary and does not
modify the LCA results. The reference flow (RF) is calculated after ensuring that the maintained lumen
output is similar for each lamp (close to 700 lm). Reference flow is defined by “the measure of the outputs
from processes in a given product system required to fulfill the function expressed by the functional unit” [1].
In this study, it represents the number of lamps needed to reach 34.82 M-Mlmh over 15 years of the
building lifetime.

3. Results

3.1. Life Cycle Impact Assessment (LCIA)

The life cycle impact assessment is presented in the following sub-sections from both the midpoint
and the endpoint level. When the LED industry proposed new lamps with improved efficacy and/or
lifetime, this LCA presents the best strategy for lamp replacement in France when a minimum
illuminance is required
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3.1.1. Problem Oriented (Midpoint)

The recipe midpoint characterization evaluates the impacts according to 18 indicators (Figure 3).
However, each indicator does not contribute equally to the potential impacts. The characterization of
the 10 most impacting indicators (98.8% of cumulated impacts) are presented in Figure 5. For a better
understanding and visibility of the results, all remaining indicators are included in the category “Other
Impacts” (Figure 5).
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Figure 5. Midpoint potential impacts of lighting systems.

All impacts are normalized compared to the most impacting systems for each indicator. The
following statements can be made:

• CFL has the lowest impact for nine out of 11 categories, and it appears to be the lowest performing
lamp compared to all other systems studied.

• LED A1 and LED B1 have very similar scores despite the improved efficacy (from 95 to 134 lm/W)
and manufacturing processes for LED B1.

• LED A2 has a better score for nine out of 11 categories compared to LED B1, which has a lower
efficacy but a longer lifetime (from 15,000 h to 25,000 h).

• LED B2 is slightly better than LED A2, but improving the efficacy does not seem to result in
matching the reduction in environmental impacts.

• LED B3 competes with T5 to be the best lamp (the best for seven out of 11 categories), despite the
additional materials from the T5 luminaire.

• LED B global power consumption is the lowest (29% lower than LED A, 18% lower than T5 and
64% lower than CFL).

These first statements tend to prove that in order to reduce environmental impacts, switching to a
similar product with a longer lifetime (i.e., from LED A1 to A2) is a better strategy than switching to a
product with higher efficacy, less power consumption, and a similar maintained lumen output (i.e.,
from LED A1 to B1).

Table 3 shows the distribution of the potential impact for each life cycle phase.
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Table 3. Distribution of the potential environmental impacts for each LCA phase.

Phase LED A1 LED A2 LED B1 LED B2 LED B3

Manufacturing 72.8% 61.7% 79.3% 69.8% 59.2%
Use 26.9% 38.0% 20.3% 29.8% 40.5%

Transport 0.2% 0.2% 0.2% 0.2% 0.2%
End of Life 0.1% 0.1% 0.2% 0.2% 0.2%

While the use phase is the most impacting phase of the life cycle for LED lamps in countries where
electricity is mostly generated from fossil fuel [27], in France, the use phase represents only between
20.3% and 40.5% of the potential impacts, depending upon the LED lamp in question. The distribution
of impacts is inverted compared to other countries. This can be explained by the lower potential
environmental impact generated by French electricity production [9]. The transport and the end-of-life
phases represent between 0.1% and 0.2% of the potential impacts for each lamp.

The reduction of energy consumption and higher efficacy only have an impact on the use phase.
However, the use phase has less impact than the manufacturing one. Thus, the reduction of energy
consumption does not significantly improve the environmental performance in the case of lamp
replacement. Contrarily, a longer lifetime will distribute manufacturing impacts over a longer time
period and will consistently reduce the potential impacts of LED products. Nevertheless, reducing
global consumption has beneficial effects such as a cost-saving effect and the reduction of the global
need in electricity at the country level. These beneficial effects have not been considered in this work.

3.1.2. Damage Oriented (Endpoint)

These findings are now compared to the endpoint level, by pondering each category of impacts
and grouping them into three damage-oriented categories: Resources, Ecosystems, and Human Health
(Figure 6)
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The following statements can be made:

• CFL and LED A1 have a similar score.
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• LED A1 and B1 scores are close, with only a 6.1% improvement by switching to LED B1. The same
statement can be made between LED A2 and B2 (a 9.6% improvement).

• LED A2′s potential environmental impact is 28.9% and 24.3% lower than that of LED A1 and
B1, respectively.

• T5 is the best studied system despite LED B3 showing a better performance for seven categories
of impacts at the midpoint level.

Passing from the midpoint to the endpoint level allows the presentation of assessment in a unique
score. However, it induces several uncertainties during the deliberation process. These uncertainties
are generated by the variation and stochastic error of the values that describe the exchanges, due to
measurement uncertainties, activity specific variations, or temporal variations. When the relevant
information to completely describe an activity in detail is unavailable, the average data applied will
have a basic uncertainty that reflects the lack of knowledge regarding their precise nature. A Monte
Carlo sensitivity analysis has been run to evaluate these uncertainties, and the results are presented in
Figure 7. For each lamp, the model has been executed 1000 times.
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Globally, the endpoint level analysis confirms previous statements made at the midpoint level,
except for the highest and lowest performing systems. At the endpoint level, CFL and LED A1 are
the lowest performing systems, while LED A1 is performing better both at the midpoint level and
during the sensitivity analysis. Finally, it is difficult to determine which lamp has a better performance
between the LED A1 and the CFL lamp. While comparing the performances of the two LEDs with a
15,000 h lifetime (A1 and B1) to the CFL, there isn’t a significant improvement, and a life cycle cost
analysis would help to determine which system should be preferred.

The sensitivity analysis and the endpoint level confirm that improving the lifetime of an LED
lamp has a greater effect on potential environmental impacts than improving the efficacy: LED A2 and
B2 with 25,000 h lifetime have significantly less impacts respectively than LED A1 and B1 with 15,000 h
lifetime. Furthermore, the LED A2 and B2 performances remain similar, despite a better efficacy for
LED B2. It is difficult to conclude which system should be preferred, even if LED B2 presents fewer
uncertainties than LED A2.

Finally, it is difficult to make a statement when comparing T5 and LED B3. Despite LED B3
having a better performance in seven out of 11 categories, the endpoint level reveals T5 as the best
system, and the sensitivity analysis shows fewer uncertainties and standard deviation for the T5 lamp.
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However, the potential impacts are close, and LED bulbs with a 40,000-h lifetime may compete with T5
in the future.

3.2. Impacts of Constant Lighting Output (CLO)

CLO is a function that is available for several products. This solution is gaining popularity among
lighting professionals due to its ability to save energy while keeping a constant lumen output during
the whole lifetime of LED lamps. For an L70 LED lamp, CLO compensates for lumen depreciation by
monitoring the power consumption. The power supply is adjusted to 70% at the beginning of the lamp
service, and will increase to 100% at the end of lifetime. Lumen output is maintained at a constant
level of 70% of the initial value during its complete lifetime. Compared to LEDs without CLO, CLO
maintains the same lumen output with a global 15% reduction of energy consumption over the lamp
lifetime (Figure 8).
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To evaluate the performance of such a solution, we need to evaluate the increase in electronic
components required for CLO. However, there is no detail about these extra materials. From a life cycle
inventory point of view, we only applied a reduction of the global power consumption of 15% (Table 4),
while keeping the inventories the same. Instead of estimating the amount of added materials, we have
evaluated the maximum possible increase of the manufacturing phase that will be compensated by
energy saving.

Table 4. Global power consumption with and without CLO.

Global Consumption [kWh] LED A1 LED A2 LED B1 LED B2 LED B3

Without CLO 556.5 556.5 394.5 394.5 394.5
With CLO 473.0 473.0 335.3 335.3 335.3

Endpoint LCIA results are presented in Figure 9.
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When switching to a similar LED with CLO, endpoint indicators globally show only a low
environmental improvement. The relative reduction of potential impacts induced by energy saving,
when using for CLO lamps, are presented in Table 5. This reduction is compared to the allowed
increased of manufacturing impacts. This value represents the threshold of the relative increase in
manufacturing impacts to not exceed in order to ensure that the impacts of added materials will be
compensated by energy saving.

Table 5. Potential impact reduction and increase of manufacturing impacts with CLO.

Effects of CLO on Potential Impacts (%) LED A1 LED A2 LED B1 LED B2 LED B3

Potential impact reduction 3.9% 5.6% 3.0% 4.4% 6.0%
Maximum increased of manufacturing impacts 5.4% 9.0% 3.7% 6.3% 10.0%

Table 5 shows that the additional materials and components required should not generate an
increase of manufacturing phase impacts higher than 5.4% for LED A1. The higher the lifetime of the
lamp, the higher the potential impact reduction generated by CLO lamps, and the higher the amount
of extra materials that could be added. A more precise inventory of the additional materials and
components required should be conducted to ensure that CLO will not lead to an increase of potential
impacts. The benefits of adding electronic components to reduce energy consumption are mitigated by
the specific electricity mix in France.

Nevertheless, even if the potential impacts of lighting are only marginally reduced, lowering
energy consumption should remain part of the main goal. Providing the same illuminance with less
energy shows cost-reduction effects as well as a reduction of the global need of electricity production
at the country level.

Moreover, the positive impacts of having a constant lumen output in people’s perception, comfort,
and well-being are not taken into account, and will be investigated in further studies. A long life
product may be replaced before it reaches its end of useful life for several reasons: the premises
reach their end of life or are refurbished, the product becomes obsolete or out of fashion, or a new
generation of products provides greater energy saving [8]. Another reason is that lumen depreciation
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and misdefining the maintained lumen output could incite people to under-use LED lamps: users
would tend to replace their LED lamps when they notice a decrease in illumination below their
expectation. While this behavior can be seen as normal, the problem lies in the fact that the moment
when users change their lamps doesn’t necessarily coincide with the theoretical end of life (L70, i.e.,
needed time for lumen output to decrease to 70% of its initial value [18,19]). CLO helps to mitigate this
behavior by indicating more precisely when the rated lifetime of an LED is attained (i.e., when the
lumen depreciation will be actually visible), and could ensure an optimal usage of LEDs

Finally, even if LCA show only a few improvements when using CLO, some beneficial social and
economic effects have not been considered, and will be investigated at a later time to evaluate the
relevance of this solution, especially regarding the impact induced by adding electronic components.

3.3. New Buildings and Refurbishment Scenario

In the case of new buildings or refurbishment, there is no longer any logic of lamp replacement.
This scenario gives the opportunity to install new lighting systems without being limited by the
previous installation (case of lamp replacement). Therefore, we can compare lamps with different
maintained lumen output because they are still able to perform the same function (i.e., maintaining
a defined lumen output over its lifetime). If they are well placed, two lamps with 1500 lumen can
potentially deliver the same illuminance as three lamps with 1000 lumen. This will only cause a change
in the number and types of luminaires. LED B 11W has been added to the study to evaluate this
possibility (Table 6).

Table 6. Performance parameters for lamps.

Lamps Power
[W]

Lumen
Output

[lm]

Efficacy
[lm/W]

Lifetime
[k.hours] LLF M-lmO

(1) [lm]
[M-Mlm.h]

(2)
RF
(3)

Global
Consumption

[kWh]

LED A1 11 1045 95 15 0.66 688 10.32 3.37 556.5
LED A2 11 1045 95 25 0.66 688 17.20 2.02 556.5
LED B1 8 1072 134 15 0.66 706 10.59 3.29 394.5
LED B2 8 1072 134 25 0.66 706 17.65 1.97 394.5
LED B3 8 1072 134 40 0.66 706 28.24 1.23 394.5

LED B1 * 11 1474 134 15 0.66 971 14.56 2.39 394.5
LED B2 * 11 1474 134 25 0.66 971 24.27 1.43 394.5
LED B3 * 11 1474 134 40 0.66 971 38.83 0.90 394.5

2 × T5 10 990 99 24 0.73 725 34.82 1.00 480
CFL 23 1380 60 10 0.54 738 7.38 4.71 1084

(1) Maintained lumen output (2) Maintained megalumen hour (3) Reference flow.

When switching from LED B 8 W to a respective LED B 11 W, each lamp uses more energy
individually, while the global energy consumption remains the same (394.5 kWh). Only the reference
flow is lowered, as fewer lamps are needed. The LCIA results are presented in Figure 10.



Electronics 2019, 8, 1278 15 of 19

Electronics 2019, 8, x FOR PEER REVIEW 15 of 19 

 

 
Figure 10. Endpoint potential impacts of lighting systems (new building or refurbishment scenario). 

At constant efficacy, LEDs with higher power consumption (11 W) perform better than LEDs 
with lower power consumption (8 W) because they are able to provide the same luminous ambiance 
using fewer lamps. This led to a major reduction of the manufacturing phase contribution to the 
environmental impacts, and logically to a consistent improvement of the potential impacts, as 
manufacturing represents between 59.2% and 79.3% of that impact, depending upon LED lamps’ 
parameters and manufacturing processes. 

In the case of new building and refurbishment, LED lamps with a longer lifetime and a higher 
lumen output should be preferred, as they could consistently reduce the number of lamps required 
to respect minimal illuminance, while keeping the same energy consumption.  

3.4. Lamp Replacement Recommendations 

This work aims to define the best strategies for lighting indoor workplaces in France. Two main 
scenarios have been conducted: lamp replacement (1) and new buildings or refurbishment (2). For each 
scenario, the impact of the lifetime, efficacy, and maintained lumen output has been evaluated with 
the LCA methodology. Table 7 sums up 10 scenarios for lamp replacements and highlights the 
respective potential reduction of impacts and energy consumption. 

Table 7. Reduction in potential impacts and energy consumption for lamp replacement scenarios. 

Scenario 

Lamps 
compared (I 

to II) 
Lifetime [k.hours] Efficacy [lm/w] M-LmO (3) Potential 

impacts 
reduction 
between I 
and II [%] 

Energy 
Consumption 

Reduction 
[kWh] I II 15 25 40 

15 
to 
25 

25 
to 
40 

95 134 
95 to 
134 

= + 

1(1) A1 A2    x  x   x  29.5 0 
2(1) B1 B2    x   x  x  32.1 0 
3(1) B1* B2*    x   x  x  29.9 0 
4(1) B2 B3     x  x  x  26.6 0 
5(1) B2* B3*     x  x  x  24.0 0 
6(2) B1 B1* x      x   x 21.9 0 

Figure 10. Endpoint potential impacts of lighting systems (new building or refurbishment scenario).

At constant efficacy, LEDs with higher power consumption (11 W) perform better than LEDs
with lower power consumption (8 W) because they are able to provide the same luminous ambiance
using fewer lamps. This led to a major reduction of the manufacturing phase contribution to
the environmental impacts, and logically to a consistent improvement of the potential impacts,
as manufacturing represents between 59.2% and 79.3% of that impact, depending upon LED lamps’
parameters and manufacturing processes.

In the case of new building and refurbishment, LED lamps with a longer lifetime and a higher
lumen output should be preferred, as they could consistently reduce the number of lamps required to
respect minimal illuminance, while keeping the same energy consumption.

3.4. Lamp Replacement Recommendations

This work aims to define the best strategies for lighting indoor workplaces in France. Two main
scenarios have been conducted: lamp replacement (1) and new buildings or refurbishment (2). For each
scenario, the impact of the lifetime, efficacy, and maintained lumen output has been evaluated with the
LCA methodology. Table 7 sums up 10 scenarios for lamp replacements and highlights the respective
potential reduction of impacts and energy consumption.

Scenarios 1 to 5 show a potential environmental impact reduction of 24% to 32.1%, thanks to the
lifetime improvement of LEDs. Scenarios 6 to 8 represent the opportunities created by new buildings
or refurbishment. Using LEDs with a higher lumen output leads to a 16.5% to 21.9% reduction of
potential impacts. Scenarios 9 and 10 simulate an improvement of efficacy from 95 lm/W to 134 lm/W,
which leads to a 5.9% to 9.4% reduction of potential environmental impacts. Finally, scenarios 1 to
8 maintain a constant global consumption, while scenarios 9 and 10 reduce it by 162.5 kWh.

Table 6 confirms that choosing a lamp for replacement could result in a significant reduction of
the potential impacts when oriented toward the mitigation of the manufacturing phase impacts. Until
the manufacturing phase is the most impacting, efforts should be focused on it to efficiently reduce the
potential environmental impacts. This could be done by extending the rated lifetime (scenarios 1 to 5),
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reducing the number of lamps needed in each room (scenarios 6 to 8), or improving the end-of-life
phase, as suggested by Dzombak et al. (2017) [30]. Even if the end-of-life phase represents only 0.2%
of the potential impacts, developing lamp reparation, reuse, or recycling has the potential to greatly
reduce impacts of the manufacturing phase. Specific scenarios should be investigated to evaluate the
impact of such improvements.

Table 7. Reduction in potential impacts and energy consumption for lamp replacement scenarios.

Scenario

Lamps
Compared

(I to II)
Lifetime [k.hours] Efficacy [lm/w] M-LmO (3) Potential

Impacts
Reduction
between I
and II [%]

Energy
Consumption

Reduction
[kWh]I II 15 25 40 15 to

25
25 to

40 95 134 95 to
134 = +

1 (1) A1 A2 x x x 29.5 0

2 (1) B1 B2 x x x 32.1 0

3 (1) B1 * B2 * x x x 29.9 0

4 (1) B2 B3 x x x 26.6 0

5 (1) B2 * B3 * x x x 24.0 0

6 (2) B1 B1 * x x x 21.9 0

7 (2) B2 B2 * x x x 19.3 0

8 (2) B3 B3 * x x x 16.5 0

9 (1) A1 B1 x x x 5.9 −162.5

10 (1) A2 B2 x x x 9.4 −162.5
(1) Lamp replacement scenario – (2) New building or refurbishment scenario, (3) “=”: M-lmO stays the same between
two lamps and “+”: M-lmO has been increased.

4. Discussion

This paper aims to evaluate the potential impacts of lighting systems by introducing the light
loss factor. There are currently no similar published LCA studies for France. In order to discuss these
results, we have conducted an additional life cycle impact assessment with an LLF = 1. The same
functional unit has been used, and the results are presented in Figure 11.
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Compared to Figure 6., the life cycle impact assessment is significantly impacted by introduction
of the light loss factor. Without using the LLF, LED lamps with a 15,000 h lifetime (LED A1 and B1) are
no longer less impacting than a CFL lamp. On the other hand, the potential impacts of LED B3 and T5
are getting closer. This is mostly due to a higher LLF for T5 (0.73) than for LED A3 (0.66).

When comparing only LED lamps, introduction of the LLF does not modify the relative
environmental performance or the recommendation to favor an LED lamp with a longer lifetime.
As developed by Tähkämö et al., this study confirms that the life cycle results are mostly sensitive to
the lifetime of the product and the electricity mix in use [11].

On the other hand, when comparing LED lamps with other systems (CFL and T5), the introduction
of the LLF modifies the ranking of lamps. Figures 6 and 11 highlight that conducting an LCA of
lighting systems with or without considering the LLF of each lamp leads to different results, which
will impact lamp replacement strategies. This finding contradicts Osram, who stated that the lumen
depreciation is too small to impact the results [15].

Moreover, considering the LLF for LCA studies helps to evaluate the performance of technical
solutions to mitigate or avoid the lumen depreciation (CLO). The introduction of new materials could
lead to an increase of potential environmental impacts, and LLF and LCAs help to anticipate the pros
and cons of such technology.

Finally, using the LLF highlights some interactions between the environmental, economic, and
human aspects of lighting. From an economic point of view, the LLF (or maintenance factor [24]) is
used to define the installation process and the maintenance operation for indoor workplaces. It is
directly linked to the cost of lighting, and will facilitate the identification of consequences and indirect
impacts in the intersection of LCA and life cycle cost [31]. From a human point of view, Section 3.2
explains that the perception of lumen depreciation by humans could lead to a decrease in the real
useful lifetime of lamps. This can be seen as a rebound effect of lumen depreciation and should be
considered when assessing lighting systems.

We found that using LLF better describes the real usage of the lamps as well as its function, and
therefore we recommend its use when comparing several lamps.

5. Conclusions

Life cycle assessment methodology has been used to evaluate the environmental performance of
lighting systems for indoor workplaces in France. The light loss factor has been introduced to analyze
the real usage of the product and to be compliant with French norms. Thanks to the light loss factor,
the maintained lumen output has been defined for each lighting system and a life cycle assessment has
been conducted using maintained megalumen hour as the new functional unit for several scenarios
(lamp replacement, constant lighting output, new buildings and refurbishment).

First, the life cycle impact assessment shows that the T5 and LED B3 (40,000 h lifetime and 134lm/w
efficacy) are currently the lowest impacting systems for lighting indoor workplaces. To consider
replacing a CFL lamp with an LED lamp, the rated lifetime of the LED should be higher than 15,000 h
to ensure a reduction of the potential environmental impacts.

Regarding constant lighting output, the life cycle assessment shows almost no improvement in
the potential impacts, while the constant lighting output reduces global consumption and improves
the users’ quality of life by producing a constant lighting output. This can be done by introducing new
electronic components, and these effects should be considered to determine if constant lighting output
is a relevant technical solution to improve the environmental, economic or social aspects of lighting.

This life cycle assessment of lighting systems helped to establish strategies for lamp replacement.
From an environmental point of view, improving the lifetime will always be the best strategy for both
lamp replacement as well as for new buildings or refurbishment. The next best strategy is to use
LED lamps with higher lumen output to reduce the number of luminaires required. However, this is
dependent upon the LED’s ability to recreate an adequate light ambiance respecting French norms.
Finally, even if improving the efficacy of LED lamps leads to a reduction of global energy consumption,
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we can safely state that enhancing LED lamps’ lifetime and manufacturing processes results in a greater
reduction of potential environmental impacts.

To conclude, even if the life cycle assessment methodology focuses on environmental aspects,
it helps to prove that economic and social factors must also be considered to establish a coherent
lamp replacement strategy. The price of the most performing LED lamps could be an issue for its
expansion in indoor workplaces, especially when considering that T5 is a more economic option and
presents a similar potential environmental impacts. A life cycle cost analysis will be conducted to
answer this question. In addition, the rebound effect induced by how people use lamps should not be
neglected, as well as the impact of light on human well-being and comfort. A multi-criteria approach
is recommended to deepen our understanding of the performance of each lighting system.

Supplementary Materials: The inventories for all lamps are available online at http://www.mdpi.com/2079-9292/
8/11/1278/s1, Table S1: Life Cycle Inventory.
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