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Minimal graphs for hamiltonian extension

C. Picouleau ∗

December 11, 2019

Abstract

For every n ≥ 3 we determine the minimum number of edges of graph
with n vertices such that for any non edge xy there exits a hamiltonian cycle
containing xy.

Keywords: 2-factor, hamiltonian cycle, hamiltonian path.

1 Introduction

For all graph theoretical terms and notations not defined here the reader is referred
to [1]. We only consider simple finite loopless undirected graphs. For a graph
G = (V,E) with |V | = n vertices, an edge is a pair of two connected vertices x, y,
we denote it by xy, xy ∈ E; when two vertices x, y are not connected this pair form
the non-edge xy, xy 6∈ E. In G a 2-factor is a subset of edges F ⊂ E such that every
vertex is incident to exactly two edges of F . Since G is finite a 2-factor consists of
a collection of vertex disjoint cycles spanning the vertex set V . When the collec-
tion consists of an unique cycle the 2-factor is connected, so it is a hamiltonian cycle.

We intend to determine, for any integer n ≥ 3, a graph G = (V,E), n = |V | with
a minimum number of edges such that for every non-edge xy it is always possible to
include the non-edge xy into a connected 2-factor, i.e., the graph Gxy = (V,E∪{xy})
has a hamiltonian cycle H, xy ∈ H. In other words for any non-edge xy of G there
exits a hamiltonian path between x and y.

This problem is related to the minimal 2-factor extension studied in [3] in which
the 2-factors are not necessary connected. It is also related to the problem of finding
minimal graphs for non-edge extensions in the case of perfect matchings (1-factors)
studied in [2].

Definition 1.1 Let G = (V,E) be a graph and xy 6∈ E an non-edge. If Gxy =
(V,E ∪{xy}) has a hamitonian cycle that contains xy we shall say that xy has been
extended (to a connected 2-factor, to an hamiltonian cycle).

Definition 1.2 A graph G = (V,E) is connected 2-factor expandable or hamiltonian
expandable (shortly expandable) if every non-edge xy 6∈ E can be extended.
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Definition 1.3 An expandable graph G = (V,E) with |V | = n and a minimum
number of edges is a minimum expandable graph. The size |E| of its edge set is
denoted by Exph(n).

The case where the 2-factor is not constrained to be hamiltonian is studied in
[3]. In this context Exp2(n) denotes the size of a minimum expandable graph with
n vertices. It follows that Exph(n) ≥ Exp2(n).

We use the following notations. For G = (V,E), N(v) is the set of neighbors of
a vertex v, δ(G) is the minimum degree of a vertex. A vertex with exactly k neigh-
bors is a k-vertex. When P = vi, . . . , vj is a sequence of vertices that corresponds
to a path in G, we denote by P̄ = vj, . . . , vi its mirror sequence (both sequences
correspond to the same path).

We state our result.

Theorem 1.1 The minimum size of a connected 2-factor expandable graph is:

Exph(3) = 2, Exph(4) = 4, Exph(5) = 6;Exph(n) = d3
2
ne, n ≥ 6

Proof: For n ≥ 3 we have Exph(n) ≥ Exp2(n).
In [3] it is proved that the three graphs given by Fig. 1 are minimum for 2-factor

extension. They are also minimum expandable for connected 2-factor extension.

Figure 1: P3, the paw, the butterfly.

Now let n ≥ 6. From [3] we know the following when G a minimum expandable
graph for the 2-factor extension:

• G is connected;

• if δ(G) = 1 then Exp2(n) ≥ 3
2
n;

• for n ≥ 7, if u, v are two 2-vertices such that N(u)∩N(v) 6= ∅ then Exp2(n) ≥
3
2
n;

The graph given by Fig. 2 is minimum for 2-factor extension (see [3]). One
can check that it is expandable for connected 2-factor extension. So we have
Exph(6) = 9 = 3

2
n.
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Figure 2: A minimum hamiltonian expandable graph with 6 vertices.

Suppose that G is a minimum expandable graph with n ≥ 7 and δ(G) = 2. Let
v ∈ V with d(v) = 2, N(v) = {u1, u2}. If u1u2 6∈ E then u1u2 cannot be expanded
into a hamiltonian cycle. So u1u2 ∈ E. If d(u1) = 2 then u2 ∈ N(u1) ∩ N(v) and
Exph(n) ≥ 3

2
n. So from now one we may assume d(u1), d(u2) ≥ 3. Suppose that

d(u1) = d(u2) = 3. Let N(u1) = {v, u2, v1}, N(u2) = {v, u1, v2}. If v1 6= v2 then
u1v2 is not expandable. If v1 = v2 then vv1 is not expandable. From now we can
suppose that d(u1) ≥ 3, d(u2) ≥ 4. Moreover v is the unique 2-vertex in N(u2). It
follows that every 2-vertex u ∈ V can be matched with a distinct vertex u2 with
d(u2) ≥ 4. Then Σv∈V d(v) ≥ 3n and thus m ≥ 3

2
n.

When δ(G) ≥ 3 we have Σv∈V d(v) ≥ 3n. Thus for any expandable graph we
have |E| = m ≥ 3

2
n, n ≥ 7.

For any even integer n ≥ 8 we define the graph Gn = (V,E) as follows. Let
n = 2p, V = A ∪ B where A = {a1, . . . , ap} and B = {b1, . . . , bp}. A (resp. B)
induces the cycle CA = (A,EA) with EA = {a1a2, a2a3, . . . , apa1} (resp. CB =
(B,EB) with EB = {b1b2, b2b3, . . . , bpb1}. Now E = EA ∪ EB ∪ EC with EC =
{a2b2, a3b3, . . . , ap−1bp−1, a1bp, apb1}. Note that Gn is cubic so m = 3

2
n. (see G10 in

Fig. 3)

Figure 3: The graphs G7, G10, G11, from the left to the right.

We show that Gn is expandable. First we consider a non-edge aiaj, p ≥ j >
i ≥ 1. Note that the case of a non-edge bibj is analogous. We have j ≥ i +
2 and since a1ap ∈ E from symmetry we can suppose that j < p. Let P =
aj, aj−1, . . . , ai+1, bi+1, bi+2, . . . , bj+1, aj+1, aj+2, bj+2, . . . , cj where cj is either ap or
bp and let Q = ai, bi, bi−1, ai−1, . . . , ci where ci is either a1 or b1. From P and Q one
can obtain an hamiltonian cycle containing aibj whatever ci and cj are.

3



Now we consider a non-edge aibj. Without loss of generality we assume j ≥ i.
Suppose first that j = i, so either i = 1 or i = p. Without loss of generality we as-
sume i = j = 1: a1, bp, bp−1, . . . , b2, a2, a3, . . . , ap, b1, a1 is an hamiltonian cycle. Now
assume that j > i: Let Pj = bj, bj−1, . . . , bi+1, ai+1, ai+2, . . . , aj+1, bj+1, bj+2, aj+2, . . . , cp
where either cp = ap or cp = bp, Pi = ai, bi, bi−1, ai−1, ai−2, . . . , c1 where either c1 = a1
or c1 = b1. If cp = ap and c1 = a1 then Pj, b1, bp, Pi, aj is an hamiltonian cycle. If
cp = ap and c1 = b1 then Pj, a1, bp, Pi, aj is an hamiltonian cycle. The two other
cases are symmetric.

For any odd integer n = 2p + 1 ≥ 7 we define the graph Gn = (V,E) as fol-
lows. We set V = A ∪ B ∪ {vn} where A = {a1, . . . , ap} and B = {b1, . . . , bp}.
A ∪ {vn} (resp. B ∪ {vn}) induces the cycle CA = (A ∪ {vn}, EA) with EA =
{a1a2, a2a3, . . . , apvn, vna1} (resp. CB = (B∪{vn}, EB) withEB = {b1b2, b2b3, . . . , bpvn, vnb1}.
Now E = EA ∪EB ∪EC with EC = {aibi|1 ≤ i ≤ p} ∪ {a1vn, b1vn, apvn, bpvn}. Note
that m = d3

2
ne. (see G7 and G11 in Fig. 3)

We show that Gn is expandable. First, we consider a non-edge aiaj, p ≥ j > i ≥ 1
(the case of a non-edge bibj is analogous). ai, ai+1, . . . , aj−1, bj−1, bj−2, bj−3, . . . , bi, bi−1,
ai−1, ai−2, bi−2, . . . , vn, cp, dp, dp−1, cp−1, . . . , cj, dj, where dj = aj and for any k, j ≤
k ≤ p, the ordered pairs ck, dk correspond to either ak, bk or bk, ak, is an hamiltonian
cycle. Second, let a non-edge aibj, p ≥ j > i ≥ 1. We use the same construction as
above taking dj = bj. �
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