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Introduction

For all graph theoretical terms and notations not defined here the reader is referred to [START_REF] Bondy | Graph Theory[END_REF]. We only consider simple finite loopless undirected graphs. For a graph G = (V, E) with |V | = n vertices, an edge is a pair of two connected vertices x, y, we denote it by xy, xy ∈ E; when two vertices x, y are not connected this pair form the non-edge xy, xy ∈ E. In G a 2-factor is a subset of edges F ⊂ E such that every vertex is incident to exactly two edges of F . Since G is finite a 2-factor consists of a collection of vertex disjoint cycles spanning the vertex set V . When the collection consists of an unique cycle the 2-factor is connected, so it is a hamiltonian cycle.

We intend to determine, for any integer n ≥ 3, a graph G = (V, E), n = |V | with a minimum number of edges such that for every non-edge xy it is always possible to include the non-edge xy into a connected 2-factor, i.e., the graph G xy = (V, E ∪{xy}) has a hamiltonian cycle H, xy ∈ H. In other words for any non-edge xy of G there exits a hamiltonian path between x and y. This problem is related to the minimal 2-factor extension studied in [START_REF] Costa | Minimal graphs for 2-factor extension[END_REF] in which the 2-factors are not necessary connected. It is also related to the problem of finding minimal graphs for non-edge extensions in the case of perfect matchings (1-factors) studied in [START_REF] Costa | Minimal graphs for matching extensions[END_REF]. The case where the 2-factor is not constrained to be hamiltonian is studied in [START_REF] Costa | Minimal graphs for 2-factor extension[END_REF]. In this context Exp 2 (n) denotes the size of a minimum expandable graph with n vertices. It follows that Exp h (n) ≥ Exp 2 (n).

We use the following notations. For G = (V, E), N (v) is the set of neighbors of a vertex v, δ(G) is the minimum degree of a vertex. A vertex with exactly k neighbors is a k-vertex. When P = v i , . . . , v j is a sequence of vertices that corresponds to a path in G, we denote by P = v j , . . . , v i its mirror sequence (both sequences correspond to the same path).

We state our result.

Theorem 1.1 The minimum size of a connected 2-factor expandable graph is:

Exp h (3) = 2, Exp h (4) = 4, Exp h (5) = 6; Exp h (n) = 3 2 n , n ≥ 6 Proof: For n ≥ 3 we have Exp h (n) ≥ Exp 2 (n).
In [START_REF] Costa | Minimal graphs for 2-factor extension[END_REF] it is proved that the three graphs given by Fig. 1 are minimum for 2-factor extension. They are also minimum expandable for connected 2-factor extension.

Figure 1: P 3 , the paw, the butterfly. Now let n ≥ 6. From [START_REF] Costa | Minimal graphs for 2-factor extension[END_REF] we know the following when G a minimum expandable graph for the 2-factor extension:

• G is connected; • if δ(G) = 1 then Exp 2 (n) ≥ 3 2 n; • for n ≥ 7, if u, v are two 2-vertices such that N (u) ∩ N (v) = ∅ then Exp 2 (n) ≥ 3 2 n;
The graph given by Fig. 2 is minimum for 2-factor extension (see [START_REF] Costa | Minimal graphs for 2-factor extension[END_REF]). One can check that it is expandable for connected 2-factor extension. So we have Exp h (6) = 9 = 3 2 n. Suppose that G is a minimum expandable graph with n ≥ 7 and δ(G

) = 2. Let v ∈ V with d(v) = 2, N (v) = {u 1 , u 2 }. If u 1 u 2 ∈ E then u 1 u 2 cannot be expanded into a hamiltonian cycle. So u 1 u 2 ∈ E. If d(u 1 ) = 2 then u 2 ∈ N (u 1 ) ∩ N (v) and Exp h (n) ≥ 3 2 n.
So from now one we may assume 

d(u 1 ), d(u 2 ) ≥ 3. Suppose that d(u 1 ) = d(u 2 ) = 3. Let N (u 1 ) = {v, u 2 , v 1 }, N (u 2 ) = {v, u 1 , v 2 }. If v 1 = v 2 then u 1 v 2 is not expandable. If v 1 = v 2 then vv 1 is not expandable. From now we can suppose that d(u 1 ) ≥ 3, d(u 2 ) ≥ 4. Moreover v is the unique 2-vertex in N (u 2 ).
A = (A, E A ) with E A = {a 1 a 2 , a 2 a 3 , . . . , a p a 1 } (resp. C B = (B, E B ) with E B = {b 1 b 2 , b 2 b 3 , . . . , b p b 1 }. Now E = E A ∪ E B ∪ E C with E C = {a 2 b 2 , a 3 b 3 , . . . , a p-1 b p-1 , a 1 b p , a p b 1 }. Note that G n is cubic so m = 3 2 n.
(see G 10 in Fig. 3) Figure 3: The graphs G 7 , G 10 , G 11 , from the left to the right.

We show that G n is expandable. First we consider a non-edge a i a j , p ≥ j > i ≥ 1. Note that the case of a non-edge b i b j is analogous. We have j ≥ i + 2 and since a 1 a p ∈ E from symmetry we can suppose that j < p. Let P = a j , a j-1 , . . . , a i+1 , b i+1 , b i+2 , . . . , b j+1 , a j+1 , a j+2 , b j+2 , . . . , c j where c j is either a p or b p and let Q = a i , b i , b i-1 , a i-1 , . . . , c i where c i is either a 1 or b 1 . From P and Q one can obtain an hamiltonian cycle containing a i b j whatever c i and c j are.

Definition 1 . 1

 11 Let G = (V, E) be a graph and xy ∈ E an non-edge. If G xy = (V, E ∪ {xy}) has a hamitonian cycle that contains xy we shall say that xy has been extended (to a connected 2-factor, to an hamiltonian cycle).Definition 1.2 A graph G = (V, E) is connected 2-factorexpandable or hamiltonian expandable (shortly expandable) if every non-edge xy ∈ E can be extended. Definition 1.3 An expandable graph G = (V, E) with |V | = n and a minimum number of edges is a minimum expandable graph. The size |E| of its edge set is denoted by Exp h (n).

Figure 2 :

 2 Figure 2: A minimum hamiltonian expandable graph with 6 vertices.

  It follows that every 2-vertex u ∈ V can be matched with a distinct vertex u 2 with d(u 2 ) ≥ 4. Then Σ v∈V d(v) ≥ 3n and thus m ≥ 3 2 n. When δ(G) ≥ 3 we have Σ v∈V d(v) ≥ 3n. Thus for any expandable graph we have |E| = m ≥ 3 2 n, n ≥ 7. For any even integer n ≥ 8 we define the graph G n = (V, E) as follows. Let n = 2p, V = A ∪ B where A = {a 1 , . . . , a p } and B = {b 1 , . . . , b p }. A (resp. B) induces the cycle C
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Now we consider a non-edge a i b j . Without loss of generality we assume j ≥ i. Suppose first that j = i, so either i = 1 or i = p. Without loss of generality we assume i = j = 1: a 1 , b p , b p-1 , . . . , b 2 , a 2 , a 3 , . . . , a p , b 1 , a 1 is an hamiltonian cycle. Now assume that j > i: Let P j = b j , b j-1 , . . . , b i+1 , a i+1 , a i+2 , . . . , a j + 1 , b j+1 , b j+2 , a j+2 , . . . , c p where either c p = a p or c p = b p ,

a j is an hamiltonian cycle. If c p = a p and c 1 = b 1 then P j , a 1 , b p , P i , a j is an hamiltonian cycle. The two other cases are symmetric.

For any odd integer n = 2p + 1 ≥ 7 we define the graph G n = (V, E) as follows. We set

(see G 7 and G 11 in Fig. 3)

We show that G n is expandable. First, we consider a non-edge a i a j , p ≥ j > i ≥ 1 (the case of a non-edge b i b j is analogous). a i , a i+1 , . . . , a

. . , c j , d j , where d j = a j and for any k, j ≤ k ≤ p, the ordered pairs c k , d k correspond to either a k , b k or b k , a k , is an hamiltonian cycle. Second, let a non-edge a i b j , p ≥ j > i ≥ 1. We use the same construction as above taking d j = b j .