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On the vertices belonging to all, some, none
minimum dominating set

Valentin Bouquet∗ François Delbot† Christophe Picouleau ‡

September 9, 2019

Abstract

We characterize the vertices belonging to all minimum dominating sets, to
some minimum dominating sets but not all, and to no minimum dominating
set. We refine this characterization for some well studied sub-classes of graphs:
chordal, claw-free, triangle-free. Also we exhibit some graphs answering to
some open questions of the literature on minimum dominating sets.

Keywords: Minimum Dominating Set, Chordal graph, claw-free graph, co-
graph.

1 Introduction

We will only be concerned with simple undirected graphs G = (V,E). The reader
is referred to [4] for definitions and notations in graph theory. An element ab ∈ E
is called an edge, if ab 6∈ E then ab is called a non-edge. For a vertex v ∈ V let
us denote by N(v) its neighborhood, N [v] = N(v) ∪ {v} its closed neighborhood.
Nk(v) is the set of vertices at distance exactly k of v. Hence N(v) = N1(v) and
N [v] = N0(v) ∪ N1(v). A vertex v is isolated if N(v) = ∅. A vertex v is universal
if N [v] = V . Two distinct vertices u, v are twins if N(v) = N(u), are false twins if
N [v] = N [u].
For a subset S ⊆ V , we let G[S] denote the subgraph of G induced by S, which has
vertex set S and edge set {uv ∈ E | u, v ∈ S}. Moreover, for a vertex v ∈ V , we
write G− v = G[V \ {v}] and for a subset V ′ ⊆ V we write G−V ′ = G[V \V ′]. For
a set {H1, . . . , Hp} of graphs, G is (H1, . . . , Hp)-free if G has no induced subgraph
isomorphic to a graph in {H1, . . . , Hp}; if p = 1 we may write H1-free instead
of (H1)-free. For two vertex disjoint induced subgraphs G[A], G[B] of G, G[A] is
complete to G[B] if ab is an edge for any a ∈ A and b ∈ B, G[A] is anti-complete to
G[B] if ab is an non-edge for any a ∈ A and b ∈ B.
A set S ⊆ V is called a stable set or an independent set if any pairwise distinct
vertices u, v ∈ S are non adjacent. The maximum cardinality of an independent set
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in G is denoted by α(G). A set S ⊆ V is called a clique if any pairwise distinct
vertices u, v ∈ S are adjacent. When G[V ] is a clique then G is a complete graph.
Kp, p ≥ 1, is the clique or the complete graph on p vertices.
For n ≥ 1, the graph Pn = u1−u2−· · ·−un denotes the cordless path on n vertices,
that is, V (Pn) = {u1, . . . , un} and E(Pn) = {uiui+1 | 1 ≤ i ≤ n − 1}. For n ≥ 3,
the graph Cn denotes the cordless cycle on n vertices, that is, V (Cn) = {u1, . . . , un}
and E(Cn) = {uiui+1 | 1 ≤ i ≤ n− 1} ∪ {unu1}. For n ≥ 4, Cn is called a hole. The
graph C3 = K3 is also called the triangle. The claw K1,3 is the 4-vertex star, that
is, the graph with vertices u, v1, v2, v3 and edges uv1, uv2, uv3. The diamond is the
4-vertex complete graph K4 minus an edge.The net is the graph with six vertices
u1, u2, u3, v1, v2, v3 and edges u1u2, u2u3, u1u3, u1v1, u2v2, u3v3. The bull is the graph
with five vertices u1, u2, u3, v1, v2 and edges u1u2, u2u3, u1u3, u1v1, u2v2. The paw
is the graph with four vertices u1, u2, u3, v1 and edges u1u2, u2u3, u1u3, u1v1. (see
Figure 1).

Figure 1: The claw, the diamond, the paw, the bull, the net.

A set S ⊆ V is called a dominating set if every vertex v ∈ V is either an element of S
or is adjacent to an element of S. The minimum cardinality of a dominating set in G
is denoted by γ(G) and called the dominating number of G. A dominating set S with
|S| = γ(G) is called a Minimum Dominating Set, a mds for short. Following [9] a
mds is also called a γ-set. If S ⊂ V is both a dominating and an independent set then
S is an independent dominating set. The minimum cardinality of an independant
dominating set in G is denoted by i(G). Clearly we have γ(G) ≤ i(G) ≤ α(G). Note
that a minimum independent dominating set is a minimum maximal independent
set.
In a same flavour than Boros et al. in [6] for the maximum stable set, let Ω(G)
denote the family of all Minimum Dominating Sets of the graph G. Let core(G) =⋂
{S : S ∈ Ω(G)} be the set of vertices belonging to all γ-sets. Similarly, let us

denote corona(G) =
⋃
{S : S ∈ Ω(G)} as the set of vertices belonging to some

γ-set of G. Let us denote by anticore(G) = V − corona(G) the set of vertices not
belonging to any mds of G.
We are interested in characterizing the vertices v ∈ core(G), the vertices v ∈
corona(G), the vertices v ∈ anticore(G).
Let S ⊂ V and u ∈ S. We say that a vertex v is a private neighbor of u, with respect
to S, if N [v] ∩ S = {u}. We define the private neighbor set of u, with respect to S,
to be pn[u, S] = {v : N [v] ∩ S = {u}}. As remarked in [9] page 18, if S is a γ-set
then for every u ∈ S, pn[u, S] 6= ∅.

The following partition of the vertex set V is defined in [9] page 136:

• V 0 = {v ∈ V : γ(G− v) = γ(G)};
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• V + = {v ∈ V : γ(G− v) > γ(G)};

• V − = {v ∈ V : γ(G− v) < γ(G)}.

The following characterizations are given in [9] page 137:

Theorem 1.1 A vertex v ∈ V + iff

1. v is not an isolate vertex and v ∈ core(G), and

2. no subset S ⊆ V −N [v] with cardinality γ(G) dominates G− v.

Theorem 1.2 A vertex v ∈ V − iff pn[v, S] = {v} for some γ-set containing v.

Remark 1.1 From Theorem 1.2 no vertex v ∈ anticore(G) can belong to V −.

The article is organized as follows. In the next section we give the characteriza-
tions for a vertex v to be a member of either core(G) or corona(G) − core(G) or
anticore(G). Then for some subclasses of graphs we show that no vertex can be in
core(G) ∩ V 0. Then we answer to some open questions given in [12] and, with the
same flavor, we give some graphs with a particular partition of their vertex set.

2 The characterizations

In this section we use Theorems 1.1 and 1.2 to characterize the membership of a
given vertex: v ∈ core(G) or v ∈ corona(G)− core(G) or v ∈ anticore(G). Also we
give algorithmic issues of our characterization.
Given G = (V,E) and v ∈ V we define the graph Gv + u = (V ′, E ′) as follows:
V ′ = V ∪ {u} and E ′ = E ∪ {uv}.

Remark 2.1 One can note that any mds of Gv+u contains either u or v. Moreover
if there exists a mds of Gv +u that contains u then there is another one that contains
v (note that the converse is not necessarily true).

Theorem 2.1 v ∈ anticore(G) iff γ(Gv + u) = γ(G) + 1.

Proof: Let v ∈ anticore(G). From Remark 2.1 any mds S of Gv + u contains
either u or v. It follows that S has one vertex more than any mds of G. Now let
v 6∈ anticore(G). Suppose that γ(Gv + u) = γ(G) + 1. It exists S a mds of G
containing v. Yet S is a dominating set of Gv + u, a contradiction. �

Lemma 2.2 v ∈ core(G) ∩ V − if and only if v is an isolated vertex.

Proof: Clearly if v is isolated then v ∈ V − and v ∈ core(G). Conversely let v ∈ V −.
If v is isolated then any dominating set has to contain v. So v ∈ core(G) ∩ V −.
Suppose that v is not isolated. From Theorem 1.2 it exists a mds S, v ∈ S, such
that pn[v, S] = {v}. For any w ∈ N(v), |N [w] ∩ S| > 1 and S ′ = S − {v} ∪ {w} is
a mds. So v 6∈ core(G). �
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Theorem 2.3 v ∈ core(G) iff either

1. v is isolated or

2. γ(G− v) > γ(G) or

3. γ(G− v) = γ(G) and every subset S, |S| = γ(G), that dominates G− v is such
that S ∩N [v] = ∅.

Proof: ⇐: if v is isolated then v ∈ core(G). If γ(G− v) > γ(G) then v ∈ V + and
from Theorem 1.1 v ∈ core(G). Suppose 3.: v ∈ V 0 and v is not isolated. Let S be
a γ-set of G. If v 6∈ S then S ∩N [v] 6= ∅ but S − {v} has cardinality γ(G) and is a
dominating set of G− v, a contradiction. So v ∈ core(G)
⇒: v ∈ core(G). If v ∈ V − from Lemma 2.2 v is isolated. If v ∈ V + then
γ(G−v) > γ(G). Now v ∈ V 0 that is γ(G−v) = γ(G). It exists S, |S| = γ(G), that
dominates G−v. If S∩N [v] 6= ∅ then S is a mds for G with v 6∈ S and v 6∈ core(G).
Thus every S, |S| = γ(G), that dominates G− v is such that S ∩N [v] = ∅. �

The figure 2 shows three types of vertices in core(G) as stated by Theorem 2.3.

VV V+ 0 -

Figure 2: v+ ∈ core(G) ∩ V +, v0 ∈ core(G) ∩ V 0, v− ∈ core(G) ∩ V −.

From Theorem 2.1 the theorem 2.3 can be stated as follow. This formulation will
be more useful for a computational point of view.

Theorem 2.4 v ∈ core(G) iff either

1. v is isolated or

2. γ(G− v) > γ(G) or

3. γ(G−v) = γ(G) and every neighbor u ∈ N(v) is such that u ∈ anticore(G−v).

From Theorems 2.1 and 2.3 we obtain the following.

Corollary 2.5 v ∈ corona(G)− core(G) iff either

1. v ∈ V − and v is not isolated or

2. v ∈ V 0 and it exists S, |S| = γ(G), that dominates G−v such that S∩N [v] 6= ∅
and γ(Gv + u) = γ(G).
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Proposition 2.6 Let C be a class of graphs such that the minimum dominating set
problem is polynomial time solvable for G and Gv+u. Given a graph G = (V,E) ∈ C
and v ∈ V the problem of deciding if either v ∈ core(G) or v ∈ anticore(G) or
v ∈ corona(G)− core(G) is in P .

Proof: Let G ∈ C. To compute k the minimum size of a dominating set can be done
in polynomial time. It follows from Theorem 2.1 that checking if v ∈ anticore(G) is
polynomial. Clearly checking if v satisfies item 1 or 2 of Theorem 2.4 is polynomial,
using Theorem 2.1 checking item 3 is polynomial. So deciding if either v ∈ core(G)
or v ∈ anticore(G) or v ∈ corona(G)− core(G) is in P . �

3 Presence of vertices in core(G) ∩ V 0 for some

classes of graphs

As stated by Theorem 2.3 there are exactly three types of vertices in core(G).
Clearly when G is connected and has at least two vertices an isolated vertex don’t
exists. In this section we show that for some classes of connected graphs with at
least two vertices we have core(G) = V +. In order to draw the borderline between
these classes and the classes where it may exists a vertex in core(G)∩V 0, we exhibit
some graphs where it exists a vertex v ∈ core(G)∩V 0. These graphs are the closest,
in some sense, to the classes we study. We also give some complexity results for
some subclasses of chordal graphs.
First we give some general properties we will use later.

Fact 3.1 Let G = (V,E) be a connected graph with at least two vertices. If v ∈ V
is such that G[N [v]] is a clique then v 6∈ core(G).

Proof: Let u ∈ N(v). If there exists S a γ-set of G then (S − v) ∪ u is another
γ-set. �

Lemma 3.1 Let v be a cut-vertex of G such that v ∈ core(G). If for any connected
component C of G− v the vertices of C ∩N(v) induces a clique then v ∈ V +.

Proof: Let v ∈ core(G). Suppose v ∈ V 0. From Theorem 2.3.3, γ(G− v) = γ(G)
and every subset S, |S| = γ(G), that dominates G − v is such that S ∩ N [v] = ∅.
Let D be a mds of G. Let C1, . . . , Ck, k ≥ 2, be the connected components of
G − v. Let Si = S ∩ Ci, Di = D ∩ Ci, 1 ≤ i ≤ k. Since v ∈ D it exists i
such that |Di| < |Si|. W.l.o.g. let i = 1. D1 dominates C1 − (C1 ∩ N [v]). If
D1 ∩ N [v] 6= ∅ then D1 ∪ S2 ∪ · · · ∪ Sk dominates G (recall C1 ∩ N [v] is a clique)
but |D1| + |S2| + · · · |Sk| < γ(G). When D1 ∩ N [v] = ∅ let v1 ∈ C1 ∩ N [v]. Now
|D1 ∪ {v1}| ≤ |S1|, so D1 ∪ {v1} ∪ S2 ∪ · · · ∪ Sk is a γ-set of G which not contains v.
From Theorem 2.3 v 6∈ V −, thus v ∈ V +. �

Here we correct a published error concerning the cut vertices. Proposition 5 in
[2] states: If a cutpoint v of G is in every minimum dominating set for G, then
γ(G − v) > γ(G), that is a cut-vertex v ∈ core(G) is such that v ∈ V +. This is a
mistake, the Figure 3 shows a graph with a cut-vertex in core(G) ∩ V 0.
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Figure 3: The black cut-vertex is in core(G) ∩ V 0.

Lemma 3.2 Let G be a connected graph with at least two vertices and v ∈ core(G).
Let C1, . . . , Ck be the connected components of G−N [v]. Let Ni be the set of neigh-
bors of v with a neighbor in Ci, 1 ≤ i ≤ k. If G[Ni] is a clique then v ∈ V +.

Proof: If there is no such component Ci, i.e. G = N [v], then from Theorem 2.3
v ∈ V +.
When a component Ci exists, from Theorem 2.3, γ(G− v) = γ(G) and every subset
S, |S| = γ(G), that dominates G − v is such that S ∩ N [v] = ∅. Let D be a mds
of G. Let Ni be the set of neighbors of v with a neighbor in Ci, 1 ≤ i ≤ k. Let
Si = S ∩ (Ci ∪Ni), Di = D ∩ (Ci ∪Ni), 1 ≤ i ≤ k.
Since v ∈ D it exists i such that |Di| < |Si|. W.l.o.g. let i = 1. D1 dominates
C1. S2 ∪ · · · ∪ Sk dominates C2 ∪ · · · ∪ Ck and N(v) − N1. Let v1 ∈ N1. Thus
D1 ∪ {v1} ∪ S2 ∪ · · · ∪ Sk dominates G since N1 ∪ {v} is a clique. So v ∈ V +. �

3.1 Chordal graphs

We recall that a graph is chordal if and only if every cycle on length at most four
contains a chord. We show that in a chordal graph without isolated vertices if a
vertex is in core(G) then it is in V +. Moreover we show that determining the status
of a vertex can be done in linear time for trees and interval graphs, two subclasses
of chordal graphs. We recall that the Minimum Dominating Set problem is NP -
complete for chordal graphs [5].

Property 3.1 Let G = (V,E) be a connected chordal graph with at least two ver-
tices. v ∈ core(G) if and only if γ(G− v) > γ(G).

Proof: From Theorem 2.3 if γ(G − v) > γ(G) then v ∈ core(G). Now let v ∈
core(G). Suppose that v ∈ V 0. From Theorem 2.3 N2(v) 6= ∅.
Suppose it exists Ni as defined in Lemma 3.2 that is not a clique: it exists s, t ∈ Ni

such that st is a non-edge. So there is a path from s to t in Ci. Let P be a such
shortest path. Then G[P ∪ {v}] is a hole, contradiction. Thus each Ni is a clique.
It follows from Lemma 3.2 v ∈ V +. �

From Property 3.1, Theorem 2.1 and corollary 2.5 we obtain the following.

Theorem 3.3 Let G = (V,E) be a chordal with at least two vertices.

• v ∈ core(G) if and only if v ∈ V +;
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• v ∈ anticore(G) iff γ(Gv + u) = γ(G) + 1;

• v ∈ corona(G)− core(G) iff v ∈ V − or v ∈ V 0 and γ(Gv + u) = γ(G).

For the special case where G is a tree we know the following. Computing a minimum
dominating set is linear for the class of trees [8] and Gv +u is a tree. So we deduces
the following.

Remark 3.1 Let G be a tree and v be a vertex of G. Deciding if either v ∈ core(G)
or v ∈ anticore(G) or v ∈ corona(G)− core(G) can be done in linear time.

Let us consider the case where G is an interval graph.

Proposition 3.4 Let G be an interval graph and v be a vertex of G. Deciding if
either v ∈ core(G) or v ∈ anticore(G) or v ∈ corona(G)− core(G) can be computed
in time O(|V |+ |E|).

Proof: Let G = (V,E) be an interval graph and v ∈ V . The class of interval graph
is a subclass of directed path graphs [7]. It is easy to verify that Gv +u is a directed
path graph. From [5] computing γ(G′) can be done in time O(|V |+ |E|) when G′ is
a directed path graphs. Following Proposition 2.6 determining the status of v can
be done in time O(|V |+ |E|). �

3.2 Cographs

The class of cographs is also the class of P4-free graphs, see [7]. If G is cograph then
it admits the following decomposition:

• a vertex is a cograph;

• if G1 and G2 are two cographs then G1 +G2 is a cograph;

• if G1 and G2 are two cographs then G1 ×G2 is a cograph.

So if G is a connected cograph with at least two vertices then G = G1 × G2 where
G1, G2 are complete.

Proposition 3.5 Let G be a connected cograph with at least two vertices. Then
0 ≤ |core(G)| ≤ 1. If |core(G)| = 1 then core(G) = V +.

Proof: Let G = G1 × G2. Since G is connected we have γ(G) ≤ 2 ({v1, v2}, v1 ∈
V1, v2 ∈ V2 dominates G). If both G1 and G2 are not a clique we have γ(G) = 2 and
any pair {v1, v2} is a γ-set. So core(G) = ∅. If G1 and G2 are two cliques then G is
clique, so γ(G) = 1 and core(G) = ∅. If G1 is a clique and G2 is not a clique then
any vertex v1 of G1 is a mds, thus γ(G) = 1. If G1 contains more than one vertex
core(G) 6= ∅. When G1 = K1 then {v1} is the unique γ-set, so core(G) = {v1}.
Since G2 is not a clique v1 ∈ V +. �

This result is tight since Figure 4 shows a graph with a P5 and a vertex in core(G)∩
V 0. Hence our result is tight for the class of cographs. Also we remark that this
graph is bipartite.
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Figure 4: The black vertex is in core(G) ∩ V 0.

3.3 Claw-free graphs

We are interested in connected claw-free graphs with at least two vertices. Given
H we study the class of (H,K1,3) − free graphs. We show that vertices v with
v ∈ core(G) ∩ V + or v ∈ core(G) ∩ V 0, may occurs when H ∈ {net, P7}. In the
case where H ∈ {bull, P6}, or H is a subgraph of the bull or P6, we show that
v ∈ core(G)∩V 0 is not possible but there exist some graphs with v ∈ core(G)∩V +.

We give here a property of claw-free graphs proved by Allan and Laskar [1] that we
will use later in several proofs: When a graph G is K1,3-free then γ(G) = i(G). So
in claw-free graphs there exists a γ-set which is an independant set.

Also recall that the class of line graphs is a subclass of claw-free graphs. Moreover
if G is diamond and odd hole free then G is the line graph of a bipartite graph (see
[7]). The Figure 5 shows a graph G which is the line graph of a bipartite graph. Also
G is perfect and (K1,3, K4, net, diamond)-free and G has a vertex v ∈ core(G)∩ V 0.

Figure 5: The black vertex is in core(G) ∩ V 0.

We now give our results for the classes of (claw, P6)-free and (claw, bull)-free graphs.

Property 3.2 Let G = (V,E) be a connected (claw, P6)-free graph with at least two
vertices. v ∈ core(G) if and only if γ(G− v) > γ(G).

Proof: From Theorem 2.3 if γ(G − v) > γ(G) then v ∈ core(G). Now let v ∈
core(G). Suppose Theorem 2.3.3: γ(G− v) = γ(G) and every subset S, |S| = γ(G),
that dominates G− v is such that S ∩N [v] = ∅.

8



From Fact 3.1 N(v) is not a clique. Since G is claw-free we have α(N(v)) = 2. For
any independant γ-set S it exists a, b two private neighbors of v such that ab is a
non-edge.

If N(v) is not connected it consists of two anti-complete cliques Ka and Kb. If N(v)
is connected then Pk a maximal induced path is either Pk = P3 or Pk = P4. In
the case Pk = P3 then N(v) consists of three cliques Ka, Kb, Ka′ such that Kb is
complete to Ka and Ka′ , and Ka, Ka′ are anti-complete. In the case Pk = P4 then
N(v) consists of four cliques Ka, Kb, Kb′ , Ka′ with Kb complete to Ka and Kb′ , Kb′

complete to Ka′ and Kb, the other cliques are pairwise anti-complete.
Let u,w ∈ N2(v) with a common neighbors s ∈ Kp, p ∈ {a, a′, b, b′}. If uw 6∈ E
then G[{u,w, s, v}] is a claw. Thus all the vertices u ∈ N2(v) with at least a
common neighbor s, s ∈ N(v), induce a clique. With the same argument taking
u,w ∈ Np+1(v), s ∈ Np(v) and v′ ∈ Np−1(v) ∩ N(s) we have that for any p ≥ 1 all
the vertices u ∈ Np+1(v) with at least a common neighbor s, s ∈ Np(v), induce a
clique.

We define a twin clique partition of G, TCP (G) for short, as a partition (K0 =
{v}, K1, . . . , Kq) of V such that each Ki induces a clique, for every pair of u,w ∈ Ki

the vertices u and w are two false twins, i.e., N [u] = N [w], and Ki is inclusion-
wise maximal, 1 ≤ i ≤ q. Note that TCP (G) is unique and for any pair Ki, Kj of
TCP (G) either Ki and Kj are complete or anti-complete.

From TCP (G) we define its reduced graph H = (K,F ) as follows. Its vertex set is
K = {K0 = {v}, K1, . . . , Kq} and two vertices of K are adjacent if and only if their
corresponding cliques in TCP (G) are complete.
Note that since G is (claw, P6)-free H is (claw,P6)-free too. Moreover no pair u,w
of vertices of H is such that N [u] = N [w].

We give some relations between G and H. Note that for any γ-set S of G we have
|Ki ∩ S| ≤ 1, 0 ≤ i ≤ q. Also γ(G) = γ(H). Moreover we have.

• |Ki ∩ S| = 1 for any γ-set of G if and only if Ki ∈ core(H);

• |Ki ∩ S| = 0 for any γ-set of G if and only if Ki ∈ anticore(H).

Since G and H are equivalent relatively to the minimum dominating sets in the
remaining of the proof we will write G instead of H.

From Theorem 2.3 we have that any u ∈ N(v) has a neighbor in N2(v). Let us
denote by Nk(v, w) the set of vertices that are neighbor of w and at distance k of v.

Let c ∈ N2(v, a)∩N2(v, b). a, b are two private neighbors of v relatively to S so c 6∈ S.
Hence it exists d ∈ S that dominates c, but da, db are non-edges and G[{a, b, c, d}]
is a claw. Thus N2(v, a) ∩N2(v, b) = ∅.

Let S ′ be an independant γ-set of G− v. In S ′ a, b are dominated, respectively, by
α ∈ N2(v, a), β ∈ N2(v, b), α 6= β, and αβ is a non-edge. Since a, b are two private
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neighbors of v relatively to S we have that α, β 6∈ S so it exists δ ∈ S that dominates
α in S. If δβ is a non-edge then δ − α − a − v − b − β is a P6. So δβ is an edge.
Hence G[{v, a, α, δ, β, b}] = C6.

Let the induced C6 of G be C6 = {v1, v2, v3, w1, w2, w3}. If V = C6 then core(G) = ∅.
So it exists w ∈ V − C6 and an edge wu, u ∈ C6 since G is connected. W.l.o.g let
u = v1. If wv2, ww3 are two non-edges then G[{w, v1, v2, w1}] is a claw. So, w.l.o.g.,
we can suppose that wv2 is an edge. If w has exactly two neighbors, v1, v2, in C6

then w− v2− v3−w1−w2−w3 is a P6. If w has exactly three neighbors in C6 they
must be successive else there is a claw. If w has exactly four neighbors in C6 either
they are successive or they consist of two pairs of adjacent vertices separated by one
vertex (at left and at right), else there is a claw. If w has at least five neighbors in
C6 then there is a claw. Hence the vertices at distance one from C6 are partioned
into three sets:

W3 = {w : w has exactly three successive neighbors in C6};

W4 = {w : w has exactly four successive neighbors in C6};

W2 = {w : w has two pairs of two successive neighbors in C6}.

Let W = W3 ∪W4 ∪W2.
Let u be a vertex at distance two from C6. u is adjacent to w ∈ W . Now
since each w ∈ W has two non-adjacent neighbors in C6, G has a claw. Hence
V = C6 ∪W,W 6= ∅.

γ1 = {v1, w1}, γ2 = {v2, w2}, γ3 = {v3, w3} are three distinct γ-sets of C6.

When W2 = ∅, γ1 and γ2 are two distinct γ-sets of G and core(G) = ∅.

Let w ∈ W2. W.l.o.g. let v1, v2, w1, w2 be the neighbors of w. Suppose that it exists
w′ ∈ W2 with the same neighbors as w. Since G is a Twin Clique Partition ww′

must be a non-edge. But G[{v2, v3, w, w′}] is a claw.

It follows that |W2| ≤ 3. Suppose that W2 = {w}. Let v1, v2, w1, w2 be the neighbors
of w. Since each vertex u ∈ W3 ∪W4 has a neighbor in γ1 = {v1, w1} and another
neighbor in γ2 = {v2, w2}, γ1 and γ2 are two disjoint γ-sets of G and core(G) = ∅.

Now let W2 = {w12, w13}. W.l.o.g. let v1, v2, w1, w2 be the neighbors of w12 and
v1, v3, w1, w3 be the neighbors of w13. Let u ∈ W3. First suppose that the neighbors
of u are v1, v2, v3. Then G[{v1, w3, w12, u}] is a claw. By symmetry there is one
remaining case when the neighbors of u are w3, v1, v2. Then G[{v2, u, w12, v3}] is
a claw. Hence W3 = ∅. Let u ∈ W4. First suppose that the neighbors of u are
v1, v2, v3, w1. Then G[{w1, u, w13, w2}] is a claw. By symmetry the remaining case
is when the neighbors of u are v2, v3, w1, w2 but then G[{w2, u, w12, w3}] is a claw.
Thus W4 = ∅ and V = C6 ∪W2. Now γ1 = {v1, w1} and W2 = {w12, w13} are two
disjoint γ-sets of G. Hence core(G) = ∅.
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Let W2 = {w12, w13, w23}. Let v1, v2, w1, w2 be the neighbors of w12, let v1, v3, w1, w3

be the neighbors of w13 and let v2, v3, w2, w3 be the neighbors of w23. As above
W3 ∪W4 = ∅ (each vertex u ∈ W3 ∪W4 induces a claw). Hence V = C6 ∪W2. Then
a γ-set of G has size three. Now {v1, w2, v3} and {w1, v2, w3} are two disjoint γ-sets
of G and core(G) = ∅.

Hence the Twin Clique Partition of G contains no vertex in core(TCP (G))∩ V 0 so
G as no vertex in core(G) ∩ V 0. �

The Figure 6 shows a (claw, P7)-free graph G with a vertex v ∈ core(G)∩V 0. Since
G contains P6 as an induced subgraph our result is tight.

Figure 6: A (claw, P7)-free graph G. The black vertex is in core(G) ∩ V 0.

Property 3.3 Let G = (V,E) be a connected (claw, bull)-free graph with at least
two vertices. v ∈ core(G) if and only if γ(G− v) > γ(G).

Proof: The beginning of the proof if the same as for Property 3.2’s proof. In G
(corresponding to the reduced graph of TCP (G)) α − a − v − b − β is an induced
path P and it exists δ, δ 6∈ P which is a neighbor of α and which is not a neighbor
of v, a, b. Hence from Lemma 3.1 there is an induced cycle Ck, k ≥ 6, that contains
v.
Let the set of vertices of Ck be Ck = {v1, v2, . . . , vk}. If V = Ck then core(G) = ∅.
So it exists w ∈ V − Ck and an edge wu, u ∈ Ck. W.l.o.g let u = v1. If wv2, wvk
are two non-edges then G[{w, v1, v2, vk}] is a claw. If w has five neighbors in Ck the
G has a claw. If w has exactly two (successive) neighbors in Ck, says v1, v2, then
G[{w, v1, v2, v3, vk}] is a bull. If w has exactly four neighbors in Ck, says v1, v2, v3, v4
(from above they are successive), then G[{w, v1, v3, v4, v5}] is a bull. Hence w has
exactly three successive neighbors in Ck, says v1, v2, v3.
Let u, u 6∈ Ck be a neighbor of w. If u has no neighbor in Ck then G[{w, u, v1, v3}]
is a claw. Thus u has three consecutive neighbors in Ck. Since G is the reduced
graph of TCP (G) we have N [w] 6= N [v2] so, w.l.o.g., u exists and we can suppose
that u 6∈ N(v2). Since k ≥ 6 we have |N(w) ∩N(u)| ≤ 1. If N(w) ∩N(u) = ∅ then
G[{w, u, v1, v3}] is a claw. So we can suppose that N(w) ∩ N(u) = {v1} but then
G[{w, u, v1, v3, vk−1}] is a bull.
Hence if v ∈ core(G) then v 6∈ V 0. �
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One can remark that the graph in Figure 6 is claw-free but contains a bull. It has
a vertex in core(G) ∩ V 0. Hence our result is tight.

Putting the properties together we have the following.

Corollary 3.6 If H is an induced subgraph of P6 or of the bull then for (H,K1,3)-
free connected graphs with at least two vertices then v ∈ core(G) implies that v ∈ V +.
Moreover there exist graphs containing a bull or a P6 with a vertex in core(G)∩V 0.

3.4 Bipartite graphs

The bipartite graphs are the graphs that are odd cycle free. The graph classes
we studied above don’t intersect the class of bipartite because their graphs can
contain triangles. Trivially a connected bipartite claw-free graphs G with at least
two vertices is either a path or an even cycle. When G is a path then core(G) = V +.
If G is a cycle, G is bipartite 2-regular, then core(G) = ∅.
Contrary to the 2-regular bipartite graphs, cubic (3-regular) bipartite graphs may
have vertices in core(G). Figure 7 shows a cubic bipartite graph with a vertex in
core(G) ∩ V 0.

Figure 7: A bipartite cubic graph with γ(G) = 5. The black vertices are in core(G)∩
V 0.

4 Particular partitions of the vertex-set

Relatively to the potential partitions of V into core(G), corona(G)−core(G), anticore(G)
and V 0, V +, we give connected graphs (without isolated vertices) whose vertex-set
correspond to a specific partition. Two of them answer to two open questions by V.
Samodivkin in [12].
G = (V,E) a connected graph with at least two vertices for which V = V − is given
in [9] (p. 139, Fig. 5.2).
Graphs such that V = V 0 are characterized in [9] (P.147, Theorem 5.23): these
graphs must be such that core(G) = ∅, the complete bipartite graph K3,3 is one of
them. Authors showed that graphs with core(G) 6= ∅ can exist but no such graph
is exhibited. Finding such a graph correspond to the first question in the following
article. In [12] V. Samodivkin raise the two following open questions.
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1. Does there exists G = (V,E) a connected graph such that γ(G − v) = γ(G)
for all v ∈ V and there is u ∈ V, u ∈ core(G) ?

2. Does there exists G = (V,E) a connected graph such that there exists w ∈
V,w ∈ V +, all v ∈ V, v 6= w, is such that γ(G − v) = γ(G) and there is
u ∈ V, u 6= w, u ∈ core(G) ?

The graph given in Figure 8 give a positive answer to the first question.

Figure 8: All the vertices are in V 0, the central vertex is in core(G).

The graph given in Figure 9 give a positive answer to the second question.

Figure 9: The central vertex on left is in V +, all the other vertices are in V 0, the
central vertex on right is V 0 ∩ core(G).

The graph given in Figure 10 shows G the graph of minimum order such that
V +, V 0, V − 6= ∅ and anticore(G) = ∅. The proof of its minimality is obtained by a
computer.
The graph given in Figure 11 is such that V = (core(G) ∩ V 0) ∪ anticore(G).

5 Conclusion

We gave a characterization for the vertices belonging to all, none, or some minimum
dominating sets in a graph. When the graph has no isolated vertices, the vertices
belonging to all minimum dominating set are of two types. The ones that increase
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Figure 10: The black vertex is in V +, its four neighbors are in V 0, the four other
vertices are in V −.

Figure 11: A graph with V = (core(G) ∩ V 0) ∪ anticore(G). The black vertices are
in core(G) ∩ V 0.
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de dominating number when suppressed from the graph, the ones for which the
dominating number stays unchanged. For some subclasses of graphs we showed
that only vertices of the first type may occur. Also we gave some graphs for which
the partition of the vertex set omits some particular type of vertices, relatively to
our characterization.
Further directions of research may concern a good characterization of these particular
classes of graphs. These studies include the following question: For theses specific
classes of graphs the status of a given vertex can be decided in polynomial time?
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