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Approval Voting
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Abstract. We consider synchronous iterative voting, where voters are given
the opportunity to strategically choose their ballots depending on the out-
come deduced from the previous collective choices.

We propose two settings for synchronous iterative voting, one of classical
flavor with a discrete space of states, and a more general continuous-space
setting extending the first one. We give a general robustness result for cycles
not relying on a tie-breaking rule, showing that they persist under small
enough perturbations of the behavior of voters. Then we give examples
in Approval Voting of electorates applying simple, sincere and consistent
heuristics (namely Laslier’s Leader Rule or a modification of it) leading to
cycles with bad outcomes, either not electing an existing Condorcet winner,
or possibly electing a candidate ranked last by a majority of voters. Using
the robustness result, it follows that those “bad cycles” persist even if only a
(large enough) fraction of the electorate updates its choice of ballot at each
iteration.

We complete these results with examples in other voting methods, includ-
ing ranking methods satisfying the Condorcet criterion; an in silico exper-
imental study of the rarity of preference profiles exhibiting bad cycles; and
an example exhibiting chaotic behavior.

1 Introduction
Iterative Voting. In any voting system, the choice of a ballot by any voter is guided
by her preferences between the candidates and the expected effect of each ballot she
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can cast. To estimate the effect of any ballot, one needs to know the ballots cast by
the other voters, or at least to have some information on them. Assuming perfect
information is neither realistic nor theoretically useful: in large electorates, changing
one’s ballot rarely changes the outcome of the election (hence, as is well-known, the
notion of Nash equilibrium is ineffectively broad in the context of elections [Las09]).
One thus often considers situations where information is imperfect, so that the ballot
to be chosen by any given voter might change the outcome, with a tiny but non-zero
probability. Another point of view is to consider the possibility for voters of aligned
interests to form coalitions and decide together which ballots to cast. A third point of
view, taking from both of the first two, is to consider that some (or all) information
about voters’ intents is common knowledge, and that voters choose their ballot under
the assumption that other voters that have the same preferences as theirs will make the
same reasoning as they will – thus overcoming the insufficient weight of one ballot to
change the outcome.

In any case, these considerations introduce a dynamical component to voting: after
all voters adjusted their intentions, the information under which this adjustment was
made is outdated; the new intents result in new information that could be shared, and
itself result in new strategic adjustments of voters’ intents, etc. Given a model of voter’s
response to new information, one obtains a new set of equilibria, which we call dynamical
equilibria: situations when the intents of voters stay unchanged after the outcome they
induce is broadcast. In this article, the single word equilibrium will only be used to
denote dynamical equilibria, never Nash equilibria. Natural questions are thus whether
such dynamical equilibrium exist; whether such equilibrium is unique; what properties
such equilibriums have, in particular which candidates can be elected at equilibrium;
and which other sets of intents converge to an equilibrium after successive adjustments.
The field of iterative voting is the study of these questions, under various modeling
assumptions.

Synchronized and asynchronous iterative voting. By far the most studied version of
iterative voting is asynchronous, i.e. only some voters (most commonly a single one)
adjust their intents given the available information, and information is updated before
some other voter(s) make their adjustments, etc. While this model has both a theoretical
interest and practical applications to some collective decision processes, it is ill-suited to
model large-scale political election, where the number of times when the information is
updated (poll publications) is much lesser than the number of voters.

In contrast, we consider in this article synchronous iterative voting, where all voters
are given the information at time 𝑡, and simultaneously adjust their intents to build the
new situation at time 𝑡+ 1. It is important to observe that what makes iterative voting
synchronous is not that the voters’ intents change exactly at the same time, but that all
voters have the opportunity to adjust their preferences before information is updated.

Synchronous iterative voting can be thought of as a model for political elections, where
information is broadcasted through polls; we will thus name our dynamical model Polling
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Dynamics; similar points of view have been notably taken in [CPP04], and [RE12] where
the emphasis is on the effect of the amount of information given by the polls (ranks, or
scores, etc).

However this is not our sole motivation: considering synchronized iterative voting is
also interesting from a theoretical perspective, when trying to define a “best” ballot for
each voter. Indeed, to be efficient in her choice a voter should not only vote strategically,
but also anticipate that other voters will also do so, who will themselves try to antic-
ipate all voters’ strategies, etc. A model for this situation is to replace instantaneous
anticipations by iterations: each voter is given a fixed heuristic, which dictates for each
possible expected outcome which ballot to cast, and we inductively apply these heuristics
and update the expected outcome. At a fixed point of the Polling Dynamics, which we
call a dynamical equilibrium, anticipating each other’s strategy result in the same situa-
tion, which is therefore stable. Conversely, the existence of a cycle means that in some
circumstances there is no meaningful way for voters to inductively anticipate other’s
strategies. Note that even when limiting the number of steps of counter-strategies, the
game-theoretic analysis of voting rules can be quite deep, see [GHRS19].

We shall be especially interested in Approval Voting – the voting system in which
a ballot can contain the names of any subset of candidates, and the candidate whose
name is present in the most ballots is elected. Approval Voting has the very interesting
feature that several sincere ballots coexist for each order of preference, so that there
exist heuristics that are both sincere, simple, and non-trivial; let us discuss this in more
detail.

On sincerity, strategic voting and straightforwardness Durand notes in [Dur15] that
in general the meaning of “sincerity” is open to interpretation, and that this word has
often been used to argue against strategic voting. He makes a compelling point that
strategic voting is to be expected, and even advised to voters, and that what causes a
democratic problem is the necessity of resorting to strategies to get the best outcome
rather than the fact that voters embrace this necessity (“Manipuler c’est bien, la manip-
ulabilité c’est mal”: “Manipulation is good, manipulability is bad”). Indeed strategies
that either need a lot of information on others’ plans or that are too contrived cannot be
applied uniformly, creating asymmetries between voters. Even in the absence of manip-
ulation or strategic voting, sincere ballots can be cast but afterward regretted in view of
the outcome of the election, thus lowering trust and confidence in the democratic sys-
tem. A most important property is thus straightforwardness [Gib73], i.e. the existence
of strategies that yield an optimal outcome whatever choices are made by the other
voters. Since straightforwardness cannot be hoped in general [Gib73, Sat75], one can
try to determine whether certain systems often offer weak forms of straightforwardness
(see again [Dur15]).

In Approval Voting, one can say that a ballot is sincere whenever all candidates present
on the ballot are preferred to all candidates not present on it [BF07]. As soon as there
are more than two candidates each voter has several sincere ballots, corresponding to the

3



various points in her order of preference where she can draw the line between acceptance
and rejection. In particular, strategic voting (i.e. choosing one’s ballot depending on the
ballots expected to be cast by the other voters) can occur even when restricting to sincere
ballots. In other words, sincerity in the above sense does not imply straightforwardness.
One of our goals is to give examples showing how very far from straightforward Approval
Voting can be even when restricting to sincere ballots.

Is Approval Voting a Condorcet system “in practice”? While Approval Voting is
known not to be a Condorcet system, it has been argued that it might be close to
Condorcet “in practice”. We can e.g. read in [BF10]: “In particular, Condorcet candi-
dates [...] almost always win under AV”, and some elections where this assertion can be
checked are mentioned as evidence.

Several theoretical results could also be seen as providing a basis for the above claim.
First, even though many other voting systems also satisfy these properties, let us mention
that Brams and Sanver [BS03] showed that when a Condorcet winner exists, her election
is a strong Nash equilibrium; and in [SS04] it is shown that only Condorcet Winners are
elected at strong Nash equilibriums. Strong Nash equilibrium are said by Brams and
Sanver to be “globally stable”, but one point not considered in either works above is
whether they should be expected to be reached in practice.

A stronger argument originates in Laslier [Las09], where it is proved that under a
large-electorate model with uncertainty in the recording of votes and perfect common
information, the best course of action for voters results in a particular heuristic, the
“Leader Rule” (LR). Additionally, he proved that if there is a Condorcet winner and all
voters apply the Leader Rule, then there is at least one equilibrium, and any equilibrium
elects the Condorcet winner.1

Description of the main results. To introduce the Polling Dynamics, we propose both
a classical-flavored discrete space setting, and an enlarged continuous space setting that
allows to continuously perturb a situation (i.e. a given electorate with fixed heuristics),
for example in order to assume that at each step of the dynamics, a small fraction of
voters fail to adjust their ballots. This makes it possible to discuss how dynamical
phenomenons change under such perturbations.

Our first main result (Theorem A in Section 3) is a quite general robustness result,
showing under a mild assumption that cycles or equilibriums in the discrete space setting
persist under perturbation inside the continuous space setting. All the examples we will
give benefit this robustness. Our main contribution here is in the framework for Polling
Dynamics, the proof of Theorem A being rather straightforward once the definitions are
set up.

Among the possible perturbations, one can model the situation where instead of having
all voters change their ballots when informed of the last poll, a (small enough) fraction

1A similar argument has been raised by Warren D. Smith and is used by advocates of Approval Voting
and Range Voting, see https://www.rangevoting.org/AppCW.html. The argument of Smith is less
rigorous than Laslier’s, since the equilibrium assumption is kept implicit.
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keeps their ballot as they were. This particular case brings us closer to asynchronous
voting, but only to some extent since we need to stay close to the discrete, synchronous
model.

The next main results are examples showing that in Approval Voting, the Polling
Dynamics can exhibit a “bad cycle” where a disliked candidate can be elected, even
in the presence of a Condorcet winner (Theorems B and C in Section 4). The main
point shall not be the mere existence of cycles, a rather unsurprizing phenomenon,2
but rather that such cycles can result in the election of a suboptimal candidate. As
noted by Laslier, previous examples of cycles (notably in [BF07]) needed some voters
to change their heuristic at some iteration of the process; in our examples the assumed
strategic behaviors is consistent, i.e. constant in time; they are also sincere, simple,
and strategically sound (the first example uses the Leader Rule, the second a slight
modification where voters refuse to vote for several of their least-preferred candidates in
any circumstance). Two obvious limitations to the relevance of these existence results
are that such “bad cycles” could be rare, and that it is unrealistic to assume all voters
to update their choice of ballots at each poll publication. The former limitation will be
addressed by numerical experiments (which partly confirm it, and partly moderate it, see
below); the latter is addressed by our robustness result. Indeed, Theorem A shows that
if instead of assuming that all voters update their choice of ballot at each iteration, we
only assume that a large enough proportion of them do, then the same cycle of winners
still occurs.

Regarding whether Approval Voting should often elects the Condorcet winner, our
examples cast a doubt. Laslier’s results mentioned above mean that in every situation
where a Condorcet winner exists but is not elected, voters (individually) have a strate-
gical interest in changing their ballots. Our examples expose that this does not mean
that following this heuristic shall lead to the election of a Condorcet winner: it may also
lead to a periodic pattern where the Condorcet winner is absent. More generally, even
simple heuristics make the availability of information a possible impediment to reaching
an equilibrium and/or to elect an existing Condorcet winner.

This new issue with the Approval Voting system complement in particular the exam-
ples provided in [SDL06].

We also provide a few examples in other voting systems in Section 5. Together with
the Approval Voting examples, they show how extreme an impact polling can have on the
election outcome: rigging any one poll can prevent the election of the Condorcet winner
even if all subsequent polls are perfectly conducted and reported; and in fact, even if
all polls are perfect but in the first one voters respond according to a pre-established
expectation of the outcome of the election, this expectation can determine the outcome
of the election even after arbitrary many polls: polling need not induce synchronization
nor loss of memory. Even with perfect unrigged polls, the sheer number of polls (e.g. its

2An example of cycle under the Leader Rule is given as exercise 8.4.4 in [Mei18], but there are no
Condorcet winner.
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parity) can decide the outcome of the election.

It could be expected that such bad cycles are in practice rare. In Section 4.3 we
explore numerically this question, for Approval Voting, under various cultures modeling
the construction of random voters’ preferences. The main take-away is that bad cycles
are rare when voters apply the Leader Rule, but can be more common, appearing in
more than 15% of preference profiles, in its modification where voters give themselves
a limit to the candidates they may approve of. Most striking is that the culture where
bad cycles are rarest for the Leader Rule is the one where they are most common for its
modification.

The continuous-state setting enables one to model a broad variety of voter’s collective
behavior. In Section 6, we consider an example where voters are reluctant to approve of
a candidate who is ranked low in their preference order, but may do so if a very close-call
makes this move susceptible to improve the outcome. This arbitration can surprisingly
make the Continuous-State Polling Dynamics a chaotic dynamical system, making the
prediction of the next winners from the observation of a sequence of previous expected
winners practically impossible.

Brief overview of the literature. Let us end this section by describing some more pre-
vious works. With no pretense to exhaustivity, the aim is to describe some directions
previously explored in iterative voting; a more detailed review can be found in [Mei17].
The present work distinguishes itself from previous ones by considering synchronous it-
erative voting, previously seldomly studied: most commonly iterative voting is used to
mean what we named here asynchronous iterative voting. Another divide which mostly
parallels the previous one is between works considering at each step a set of possible
moves by voters (e.g. best-responses, quite commonly considered in asynchronous vot-
ing) and, as we do here, deterministic heuristics. The reader can find an overview on
strategic voting in [Mei18].

In the case of Plurality Voting, discussed in slightly more details below, very general
convergence results have been obtained in [MLR14, Mei15, MPRJ17]. Many other voting
rules — not Approval — have been considered in [LR16, KSLR17]. Their theoretical
results are negative (no guaranteed convergence) but empirical tests seem to indicate
that cycles are rare. Restricted strategies, where voters may be constrained to some not
necessarily best or better responses, have been studied in [OMP+15] and [GLR+13].

Non-myopic strategies have been considered for example in [BHY14, AGP17, OLP+15],
showing notably that voters learning from past information produce relatively good out-
comes. Specific behaviors of voters, assumed to be subject to either truth bias or lazy
bias, are studied in [ROL+15].

Considering Plurality Voting, the situation is complicated by the rigidity of the single-
name ballot, which forces voters to choose a trade-off between preferences and probability
to improve the outcome of the election. The works [MLR14] and [Mei15] have studied in
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depth models taking into account the scores of the candidates and a level of uncertainty
to define the possible voters’ strategies. They obtained several results proving under
some assumptions convergence to equilibrium (the result closest to our present setting is
Theorem 5 in [Mei15], where at each iteration an arbitrary subset of voters adjust their
votes according to the current poll results, thus including the case studied here where
all voters adjust their votes at each iteration). In the case when strategies are restricted,
[OMP+15] gives sufficient conditions for convergence in many voting systems.

The question of the quality of equilibria have been considered for Plurality, Veto and
Borda in [BCMP13], where the voters can adjust their votes one at a time, and starting
from the state where each voter casts her sincere ballot (which is unique in these voting
systems). Concerning Plurality, they find that Nash equilibria that can be attained in
this way are all very good; but in their model, the individual updates are made greedily
and any candidate that would start with two or more votes less than the starting winner
will never receive any new vote. One could expect real voters to vote not for immediate
improvement of the winner, but in order to give a better position to a contender that
might receive more support from others. This is the kind of modeling assumptions that
our framework is made to support.

Acknowledgments. I am indebted to Adrien Fauré @AdrienGazouille for a long de-
bate on twitter (in French) that lead me to seek and design the examples for Approval
Voting presented here, and to François Durand for introducing me to the Social choice
theory, for many discussions on Voting Systems, and for many suggestions that helped
me improve this article. It also benefited from relevant comments provided by Adrien
Fauré, Jean-François Laslier, Reshef Meir and anonymous referees who I warmly thank.

2 Polling dynamics with discrete or continuous space
This section mostly consists of notations and definitions; its main novelty is to propose
a continuous space framework for iterative voting, which allows to model much more
varied situations than the usual discrete space versions. It models a situation where
voters are grouped by type, e.g. according to their preference order, but where not all
voters of a given type will react in the same way to an information update. For example,
we can assume that a fraction of voters of each type is not aware of an information
update, and will thus keep their previous intended ballot for the next iteration. In
another direction, if the win is a close call, some voter’s type may strategically adjust
their ballots accordingly; but how close the call should be for them to bother changing
their intent may vary from individual to individual, and our continuous space framework
will make it possible to model this.

Examples of uses of the framework developed here are given below, first for Approval
voting and in Section 5 for several other voting systems.
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2.1 Common notations
We start with the notation common to both the discrete space and continuous space
frameworks; when possible, we use the notation from [BCE+16].

The set of voter types is assumed to be finite, of cardinal 𝑛, and denoted by 𝑁 .
It will be convenient to denote voter types by positive integers (𝑁 = {1, . . . , 𝑛}) in
the theoretical part, but by upper-case letters from the end of the alphabet (𝑁 =
{𝑍, 𝑌,𝑋, . . . }) in examples. Some of these letters will be used for maps below, but the
context will prevent any confusion. In many examples below, voter types will coincide
with preferences; however distinguishing gives more flexibility in the modelling, e.g. we
can handle the case of different types of voters having the same preferences but using
different heuristics.

Let 𝐴 be a finite set of candidates (or alternatives). Its cardinal is denoted by 𝑚
and assumed to be at least 2 (most usually at least 3). Candidates will be denoted by
lower-case letters from the beginning of the alphabet (𝐴 = {𝑎, 𝑏, 𝑐, . . . }). The set of
weak orderings on 𝐴, i.e. rankings of candidates allowing ties, is denoted by ℛ(𝐴). The
set of linear ordering on 𝐴, i.e. rankings of candidates without ties, is denoted by ℒ(𝐴).

Preferences of each voter type will be modeled by an element of ℛ(𝐴); when dis-
allowing ties, we will restrict to its subset ℒ(𝐴). A preference profile is a pair (𝑃,𝑤)
where:

• 𝑃 = (%1, . . . ,%𝑛) ∈ ℛ(𝐴)𝑛 is a family of preferences, one for each voter type; the
corresponding strict preferences are denoted by ≻𝑖,

• 𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈ R𝑛
+ is a family of weights 𝑤𝑖 > 0, which represents the number

of voters of each type. A usual situation is to take 𝑤𝑖 = 1 for all 𝑖 (or a positive
integer, when grouping several voters in each type), but we allow more general
weights for the continuous space framework.

A preference profile is represented by an array, each column of which represents a voter
type, the column head carrying the weight (we shall often indicate the voter type on
top for clarity) and the column listing the candidates in decreasing order of preference.
With 3 candidates 𝑎, 𝑏, 𝑐 an example of preference profile is:

1 2 3
100 101 102
𝑎 𝑏 𝑐

𝑏 𝑎 𝑏

𝑐 𝑐 𝑎

meaning that 𝑛 = 3 and e.g. that 𝑎 ≻1 𝑏 but 𝑏 ≻2 𝑎, that there are 102 voters of type 3,
etc. For concision, an element of ℒ(𝐴) is denoted by listing the candidates in decreasing
order of preference, e.g. %:= 𝑎𝑐𝑏 means 𝑎 ≻ 𝑐 ≻ 𝑏. Elements of ℛ(𝐴) are denoted
similarly with tied elements between parentheses.
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Let ℬ be a finite set of ballots that can be cast by voters. For example ℬ can be
ℒ(𝐴), or for Approval Voting the set 𝒫(𝐴) of subsets of 𝐴. An Approval Voting ballot
𝐵 ∈ 𝒫(𝐴) is said to be sincere for voters of type 𝑖 whenever

∀𝑎, 𝑏 ∈ 𝐴 : (𝑏 ∈ 𝐵 and 𝑎 ≻𝑖 𝑏) =⇒ 𝑎 ∈ 𝐵

i.e. when every candidate strictly preferred to any approved candidate is also approved.
Let 𝒪 be a set representing the possible outcomes of the election. We can let 𝒪 = 𝐴

if we are only interested in the winner, but it is convenient to take a larger set 𝒪 to
include all information that can be made available and used by voters to decide which
ballot to cast. For example, for Approval Voting we can take 𝒪 = [0, 1]𝐴, an element
𝑟 = (𝑟𝑎, 𝑟𝑏, ...) of 𝒪 giving the proportion of voters approving of each candidate. We
let 𝑊 : 𝒪 → 𝐴 be the function mapping a result to the corresponding winner (we shall
always assume a tie-breaking rule, e.g. breaking ties in favor of the earlier candidate in
the alphabetical order).

2.2 Polling dynamics with discrete space
We start with the usual case where in any given circumstance all voters of the same type
cast the same ballot, which we call here the discrete space framework. A ballot profile is
thus an element of ℬ𝑛 and represents the ballots cast by each voter type.

We consider a social choice function, also called voting rule 𝑓 : ℬ𝑛 → 𝐴 and assume
the choice of 𝒪 and 𝑊 makes it possible to decompose it as 𝑓 = 𝑊 ∘𝑔 where 𝑔 : ℬ𝑛 → 𝒪
is called the information function. Observe that by assuming a tie-breaking rule for 𝑊 ,
we only consider resolute social choice functions. For example, with the above choice of
outcomes, the information function is given by

𝑔(𝐵1, . . . , 𝐵𝑛) =
(︂ 1∑︀

𝑖∈𝑁 𝑤𝑖

∑︁
𝑖∈𝑁 | 𝛼∈𝐵𝑖

𝑤𝑖

)︂
𝛼∈𝐴

and the social choice function maps (𝐵1, . . . , 𝐵𝑛) to the candidates with the highest
approval rating, ties broke by alphabetical order.

Each voter type 𝑖 is assumed to have a heuristic 𝜎𝑖 : 𝒪 → ℬ, representing the way
voters of this type choose their next ballot given the information of the outcomes (which
is itself determined from the previous ballot profile). Formally, the preferences of voter
types do not appear in the Polling Dynamics to be defined in the next paragraph. Most
usually, they do appear indirectly, through heuristics: more often than not, 𝜎𝑖(𝑟) take
the form 𝜎(%𝑖, 𝑟) where 𝜎 is a map ℛ(𝐴)×𝒪 → ℬ (or ℒ(𝐴)×𝒪 → ℬ if ties in preferences
are not allowed). An example of such a map 𝜎 is the Leader Rule of Laslier, which we
mentioned earlier and recall below.

We obtain a Polling Dynamics on the set of ballot profiles

𝜙 : ℬ𝑛 → ℬ𝑛

(𝐵1, . . . , 𝐵𝑛) ↦→
(︀
𝜎1(𝑔(𝐵1, . . . , 𝐵𝑛)), . . . , 𝜎𝑛(𝑔(𝐵1, . . . , 𝐵𝑛))

)︀
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obtained by determining the outcome according to the ballot profile in argument and
then applying each voter’s heuristic to obtain a new ballot profile.

Alternatively, we can take as space the set of outcomes and consider the shifted Polling
Dynamics

𝜓 : 𝒪 → 𝒪
𝑟 ↦→ 𝑔

(︀
𝜎1(𝑟), . . . , 𝜎𝑛(𝑟)

)︀
mapping an outcome to a new one, after applying each voter’s heuristic then determining
the resulting outcome.

These two maps are strongly related: 𝜓∘𝑔 = 𝑔∘𝜙 (in dynamical systems theory we say
they are semi-conjugated); 𝜙 seems to carry more information, but their dynamical study
are actually equivalent because we assumed in the model that heuristics only depend on
the outcome, not on the full details of the ballots.

By a dynamical equilibrium we mean a fixed point of either 𝜓 of 𝜑, i.e. either an
outcome 𝑟 such that 𝜓(𝑟) = 𝑟, or a ballot profile (𝐵1, . . . , 𝐵𝑛) such that 𝜙(𝐵1, . . . , 𝐵𝑛) =
(𝐵1, . . . , 𝐵𝑛). There is a one-to-one identification between these two points of view: when
𝑟 is fixed by 𝜓, then (𝜎1(𝑟), . . . , 𝜎𝑛(𝑟)) is fixed by 𝜙 and sent back to 𝑟 by 𝑔; and when
(𝐵1, . . . , 𝐵𝑛) is fixed by 𝜙, 𝑔(𝐵1, . . . , 𝐵𝑛) is fixed by 𝜓 and sent back to (𝐵1, . . . , 𝐵𝑛) by
the heuristics.

The Leader Rule and its modification. The Leader Rule is an example of heuristic
for Approval Voting depending on tie-free preferences %∈ ℒ(𝐴); assuming the expected
winner 𝜔(𝑟) and the expected runner-up 𝜌(𝑟) can both be deduced from the outcome 𝑟,
it is defined by

LR(%, 𝑟) =
{︀
𝛼 ∈ 𝐴

⃒⃒
𝛼 ≻ 𝜔(𝑟) or 𝛼 = 𝜔(𝑟) ≻ 𝜌(𝑟)

}︀
;

in words, all candidates preferred to the expected winner are approved, and the expected
winner is approved if and only if she is preferred to the expected runner-up. When we
say that voters (assumed to have tie-free preferences) apply the Leader Rule, we mean
that their heuristics take the form 𝜎𝑖(𝑟) = LR(%𝑖, 𝑟).

When ties are allowed, i.e. % ∈ ℛ(𝐴), there are several possible ways to extend
the Leader Rule. One could use the very same formula as above, but it would have the
consequence that when the outcome is the ranking 𝑎𝑏𝑐𝑑 and the preferences are (𝑎𝑏)(𝑐𝑑),
the resulting ballot is blank. But in this situation, casting the ballot {𝑎, 𝑏} may prevent
a worst candidate to be elected, and is always preferable to a blank ballot. We will thus
consider the following Modified Leader Rule for preferences with ties by

MLR(%, 𝑟) =
{︀
𝛼 ∈ 𝐴

⃒⃒
𝛼 ≻ 𝜔(𝑟) or 𝛼 ≃ 𝜔(𝑟) ≻ 𝜌(𝑟) or (𝛼 ≃ 𝜔(𝑟) and @𝛽 ≻ 𝛼)

}︀
in particular, compared to the above, when the expected winner is tied for top in the
preferences, then she and all those tied with her are approved. Again, when we say that
voters follow the Modified Leader Rule we mean that 𝜎𝑖(𝑟) = MLR(%𝑖, 𝑟).
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2.3 Polling dynamics with continuous space
We now turn to Polling Dynamics with continuous space (CS), the goal of which is to
allow more flexibility in our assumption on voters’ heuristics. In particular, we want to
be able to consider a continuum of behaviors in each voter type, for example accounting
for variable levels of bias, be it for example truth-bias (favoring sincere ballots) or lazy-
bias (aversion to change one’s ballot in view of new information). Example 4.8 illustrates
this framework.

The discrete space of ballot profiles ℬ𝑛 thus has to be replaced by a more complicated
object, encoding the proportion of each voter type casting each ballot. To this effect we
use the simplex Δ(𝑋) over a finite set 𝑋, defined as

Δ(𝑋) =
{︁

(𝑝𝑥)𝑥∈𝑋 ∈ [0, 1]𝑋
⃒⃒⃒ ∑︁

𝑥∈𝑋

𝑝𝑥 = 1
}︁
.

The full continuous space is then Δ(ℬ)𝑛; an element of this space is a doubly indexed
family (𝑝𝑖

𝐵)𝑖∈𝑁,𝐵∈ℬ where 𝑝𝑖
𝐵 is the proportion of ballots 𝐵 cast among voters of type 𝑖,

and is called a CS ballot profile.
We now define a CS information function as a map 𝐺 : Δ(ℬ)𝑛 → 𝒪, with the associ-

ated CS social choice function 𝐹 = 𝑊 ∘ 𝐺 : Δ(ℬ)𝑛 → 𝐴. For example, with the above
choice of outcomes, for Approval Voting the CS information function is given by

𝐺
(︀
(𝑝𝑖

𝐵)𝑖,𝐵

)︀
=

(︂ 1∑︀
𝑖∈𝑁 𝑤𝑖

∑︁
𝑖∈𝑁

𝐵∈ℬ | 𝛼∈𝐵

𝑝𝑖
𝐵𝑤𝑖

)︂
𝛼∈𝐴

where 𝑝𝑖
𝐵𝑤𝑖 represents the total number of voters of type 𝑖 casting the ballot 𝐵.

The full continuous space often has an unnecessarily large dimension, since under most
heuristics voters will only cast ballots among a small subset ℬ𝑖 of ℬ (one subset for each
voter type; for example, for Approval Voting we could restrict to ballots that are sincere
with respect to the type’s preferences). We thus define a more convenient continuous
space by

𝒫 =
∏︁
𝑖∈𝑁

Δ(ℬ𝑖) ⊂ Δ(ℬ)𝑛

the elements of which are admissible CS ballot profiles, or states. We still denote by 𝐺
and 𝐹 the restrictions of the CS information function and social choice function to this
space. Observe that the full CS appears as a special case by taking ℬ𝑖 = ℬ for all 𝑖.

A CS Polling Dynamics is simply a map Φ : 𝒫 → 𝒫. In general, it is not so much
the dynamics of Φ that will be of interest, but the sequences of outcomes, which can be
recovered as 𝐺(Φ𝑘(𝑝0)) where 𝑘 is the number of iterations and 𝑝0 = (𝑝𝑖

𝐵)𝑖,𝐵 ∈ 𝒫 is the
initial ballots intended to be cast by the voters.

This very broad definition of a CS Polling Dynamics allows for much modeling flexi-
bility, but the main interest is when such a map is deduced from some sort of heuristics
of voters. We will not need this consideration in the robustness result which is very
general, but let us give some definitions to show how this can be done.
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We will assume that the choice of voters is based only on the predicted outcome and
the ballots previously cast by voters of their type (this is enough to permit a fraction
of voters not to adjust their choice, e.g. because they are not aware of the last poll). A
CS heuristic for voters of type 𝑖 is thus a map Σ𝑖 : 𝒪 × Δ(ℬ𝑖) → Δ(ℬ𝑖), and given a
CS heuristic for each voter type the corresponding CS Polling Dynamics is given for all
state 𝑝 = (𝑝𝑖

𝐵)𝑖,𝐵 ∈ 𝒫, setting 𝑝𝑖 = (𝑝𝑖
𝐵)𝐵, by

Φ(𝑝) =
(︁
Σ1

(︀
𝐺(𝑝), 𝑝1)︀

,Σ2
(︀
𝐺(𝑝), 𝑝2)︀

, . . . ,Σ𝑛
(︀
𝐺(𝑝), 𝑝𝑛)︀)︁

.

3 Robustness of tie-free cycles
In this section we want to prove that cycles of a discrete space Polling Dynamics that
do not rely on the tie-breaking rule are robust, i.e. they persist under small enough
perturbation. “Small enough” is a void concept in the discrete space setting, and we
use CS Polling Dynamics to model the perturbations. The first step is to see that
discrete space Polling Dynamics can always be realized as particular cases of CS Polling
Dynamics.

3.1 Embedding the discrete space Polling Dynamics into the continuous
space.

Observe that ℬ𝑛 embeds naturally into the full CS, by identifying (𝐵1, . . . , 𝐵𝑛) with the
element 𝜋(𝐵1, . . . , 𝐵𝑛) = (𝑝𝑖

𝐵)𝑖,𝐵 ∈ Δ(ℬ)𝑛 defined by

𝑝𝑖
𝐵 =

{︃
1 when 𝐵 = 𝐵𝑖

0 otherwise

Such an elements of the full CS, taking only the values 0 and 1, is called an extreme
state. We shall say that the CS information function 𝐺 extends the information function
𝑔 whenever 𝐺 ∘ 𝜋 = 𝑔, i.e. for all (𝐵1, . . . , 𝐵𝑛) ∈ ℬ𝑛, 𝐺(𝜋(𝐵1, . . . , 𝐵𝑛)) = 𝑔(𝐵1, . . . , 𝐵𝑛).
Without this assumption we would not be encoding the same voting method in both
settings.

Consider fixed the (discrete space) heuristics 𝜎𝑖 and the corresponding Polling Dy-
namics 𝜙, and define the associated CS Polling Dynamics by

Φ0(𝑝) = 𝜋(𝜎1(𝐺(𝑝)), . . . , 𝜎𝑛(𝐺(𝑝)),

i.e. starting from a CS ballot profile 𝑝 ∈ Δ(ℬ)𝑛 we compute its outcome 𝐺(𝑝), then
apply the heuristics to get new ballot choices for each voter type, then embed this into
the full CS with the map 𝜋 to obtain a new CS ballot profile. Note that Φ0 is well-defined
on the full CS, but all its values are extreme states.

The hypotheses we introduced in this section are precisely what needs to be assumed
to ensure that the continuous space framework extends the discrete space situation: Φ0
produces the same sequences of outcome than 𝜙 when starting at an extreme state.
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Lemma 3.1. Assume that 𝐺 extends 𝑔 and that the heuristics only pick admissible
ballots, i.e. 𝜎𝑖(𝑟) ∈ ℬ𝑖 for all voter type 𝑖 ∈ 𝑁 and all outcome 𝑟 ∈ 𝒪. Then the
associated CS Polling Dynamics takes its values in 𝒫, and for all (𝐵1, . . . , 𝐵𝑛) the
sequences of outcomes

𝑔(𝜙𝑘(𝐵1, . . . , 𝐵𝑛)) and 𝐺(Φ𝑘
0(𝜋(𝐵1, . . . , 𝐵𝑛)))

are the same.

Proof. Since heuristics only pick admissible ballots, for all 𝑝 ∈ Δ(ℬ)𝑛 we have(︀
𝜎1(𝐺(𝑝)), . . . , 𝜎𝑛(𝐺(𝑝)

)︀
∈

∏︁
𝑖∈𝑁

ℬ𝑖

so that Φ0(𝑝) ∈ 𝒫.
Since 𝐺 extends 𝑔, for all (𝐵1, . . . , 𝐵𝑛) we have

Φ0(𝜋(𝐵1, . . . , 𝐵𝑛)) = 𝜋
(︀
𝜎1(𝐺(𝜋(𝐵1, . . . , 𝐵𝑛))), . . . , 𝜎𝑛(𝐺(𝜋(𝐵1, . . . , 𝐵𝑛))

)︀
= 𝜋

(︀
𝜎1(𝑔(𝐵1, . . . , 𝐵𝑛)), . . . , 𝜎𝑛(𝑔(𝐵1, . . . , 𝐵𝑛)

)︀
= 𝜋

(︀
𝜙(𝐵1, . . . , 𝐵𝑛)

)︀
By induction, we deduce that Φ𝑘

0 ∘𝜋 = 𝜋 ∘𝜙𝑘 for all positive integer 𝑘. Using again that
𝐺 extends 𝑔, we get 𝐺 ∘ Φ𝑘

0 ∘ 𝜋 = 𝐺 ∘ 𝜋 ∘ 𝜙𝑘 = 𝑔 ∘ 𝜙𝑘, as desired.

3.2 Perturbations and robustness.
The second step is to define what it means for two CS Polling Dynamics to be close one
to the other. We consider the metric induced on the full CS and on 𝒫 by the supremum
norm ‖·‖, i.e. given two CS ballot profiles 𝑝 = (𝑝𝑖

𝐵)𝑖,𝐵 and 𝑝 = (𝑝 𝑖
𝐵)𝑖,𝐵 we set

‖𝑝− 𝑝‖ = sup
𝑖∈𝑁,𝐵∈ℬ

⃒⃒
𝑝𝑖

𝐵 − 𝑝 𝑖
𝐵

⃒⃒
.

This induces the usual topology on the full CS and, by restriction, on 𝒫. We denote by
�̄�(𝑝, 𝜀) the closed ball of radius 𝜀 ≥ 0 and center 𝑝 ∈ 𝒫 with respect to this metric.

We then consider the uniform metric, defined for every pair Φ1,Φ2 of CS Polling
Dynamics by

𝐷(Φ1,Φ2) := sup
𝑝∈𝒫

⃦⃦
Φ1(𝑝) − Φ2(𝑝)

⃦⃦
.

Definition 3.2. We say that a ballot profile (𝐵1, . . . , 𝐵𝑛) is tie-free (implicitly, with
respect to heuristics (𝜎𝑖)𝑖, an information function 𝑔 and an extension 𝐺) whenever
there exist a neighborhood 𝑈 of 𝜋(𝐵1, . . . , 𝐵𝑛) in 𝒫 such that for all 𝑝 ∈ 𝑈 :

𝑊 ∘𝐺(𝑝) = 𝑊 ∘ 𝑔(𝐵1, . . . , 𝐵𝑛) and 𝜎𝑖(𝐺(𝑝)) = 𝜎𝑖(𝑔(𝐵1, . . . , 𝐵𝑛)) ∀𝑖 ∈ 𝑁.

A ballot profile (𝐵0
1 , . . . , 𝐵

0
𝑛) belongs to a tie-free cycle for the Polling Dynamics 𝜙

whenever 𝜙𝑘(𝐵0
1 , . . . , 𝐵

0
𝑛) = (𝐵0

1 , . . . , 𝐵
0
𝑛) for some positive integer 𝑘 (called a period

of the cycle) and the successive ballot profiles (𝐵𝑗
1, . . . , 𝐵

𝑗
𝑛) = 𝜙𝑗(𝐵0

1 , . . . , 𝐵
0
𝑛) are all

tie-free.
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Let us explain the rationale behind this definition. First, the condition 𝑊 ∘ 𝐺(𝑝) =
𝑊 ∘ 𝑔(𝐵1, . . . , 𝐵𝑛) means that the winner does not change if the considered CS ballot
profile is close enough to 𝜋(𝐵1, . . . , 𝐵𝑛). Second, all considered heuristics 𝜎 : 𝒪 →
ℬ𝑛 and their composition with the CS information function 𝜎 ∘ 𝐺 : 𝒫 → ℬ𝑛 will be
piecewise continuous, and thus piecewise constant (since they take value in a finite set).
A state 𝑝 at which 𝜎 ∘𝐺 is not continuous means that either a small change in the state
can change the outcomes radically, or a small change in the outcome can change the
resulting ballot profile for this heuristic. This correspond to breaking a tie, either in the
information function or in the heuristic. For example in Approval Voting, when applying
the Leader Rule with the above continuous choice of outcomes 𝒪 = [0, 1]𝐴: when the
first two candidates are tied, the tie-breaking rule embedded in 𝑊 is taken into account
to determine the expected winner; and when several candidates are tied for runner-up,
a tie-breaking rule must implicitly be written in the heuristic itself.

Theorem A. Assume that 𝐺 extends 𝑔 and that the heuristics 𝜎1, . . . , 𝜎𝑛 only pick
admissible ballots. If the Polling Dynamics 𝜙 has a tie-free cycle of period 𝑘, an element
of which is denoted by (𝐵0

1 , . . . , 𝐵
0
𝑛), then there exist 𝜀 > 0 with the following property:

for all CS Polling Dynamics Φ such that 𝐷(Φ,Φ0) ≤ 𝜀, for all 𝑝0 ∈ 𝒫 such that ‖𝑝0 −
𝜋(𝐵0

1 , . . . , 𝐵
0
𝑛)‖ ≤ 𝜀, for all positive integer 𝑗,

𝑊 ∘𝐺
(︀
Φ𝑗(𝑝0)

)︀
= 𝑊 ∘ 𝑔

(︀
𝜙𝑗(𝐵0

1 , . . . , 𝐵
0
𝑛)

)︀
.

If moreover Φ is continuous, then there exist 𝑝0 ∈ 𝒫 such that ‖𝑝0 −𝜋(𝐵0
1 , . . . , 𝐵

0
𝑛)‖ ≤ 𝜀

and Φ𝑘(𝑝0) = 𝑝0.

In words, if the discrete space dynamics has a tie-free cycle, then perturbing the dy-
namics and starting point in the CS setting does not change the (periodic) sequence of
winners; and if the perturbed CS Polling Dynamics is continuous, then this sequence
of winners is furthermore realized by a cycle in 𝒫, which is a perturbation of the orig-
inal cycle. We shall see that for some natural examples, the cycle moreover attracts a
neighborhood of 𝑝0 (see Examples 3.4 and 4.8, which are easily generalized).

Note that Theorem A makes no rationality assumption: it applies not only to best-
response heuristics but allow arbitrary information-based heuristics, for example the
pragmatist response policy of [RE12].

Proof. For each positive integer 𝑗, set 𝐵𝑗 := (𝐵𝑗
1, . . . , 𝐵

𝑗
𝑛) := 𝜙𝑗(𝐵0

1 , . . . , 𝐵
0
𝑛). Since 𝐵𝑗

is tie-free, 𝜋(𝐵𝑗) admits a neighborhood 𝑈 𝑗 (and we can choose the sequence (𝑈 𝑗)𝑗 to
be 𝑘-periodic) such that for all 𝑝 ∈ 𝑈 𝑗 ,

𝑊 ∘𝐺(𝑝) = 𝑊 ∘ 𝑔(𝐵𝑗) and 𝜎𝑖(𝐺(𝑝)) = 𝜎𝑖(𝑔(𝐵𝑗)) ∀𝑖 ∈ 𝑁.

By definition of a neighborhood, for each 𝑗 there exist 𝜀𝑗 > 0 such that �̄�(𝜋(𝐵𝑗), 𝜀𝑗) ⊂
𝑈𝑗 ; let 𝜀 = min(𝜀0, 𝜀1, . . . , 𝜀𝑘−1).

The second tie-free condition 𝜎𝑖(𝐺(𝑝)) = 𝜎𝑖(𝑔(𝐵𝑗)) for all 𝑖 ∈ 𝑁 and the definition
of Φ0 ensures that for all 𝑝 ∈ 𝑈 𝑗 , Φ0(𝑝) = 𝜋(𝐵𝑗+1). Let Φ be a CS Polling Dynamics
such that 𝐷(Φ,Φ0) ≤ 𝜀 and let 𝑝0 ∈ 𝒫 such that ‖𝑝0 − 𝜋(𝐵0

1 , . . . , 𝐵
0
𝑛)‖ ≤ 𝜀. Then
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Φ0(𝑝0) = 𝜋(𝐵1) and Φ(𝑝0) ∈ �̄�(𝜋(𝐵1), 𝜀) ⊂ 𝑈1. The same reasoning and an induction
ensures that for all 𝑗, the state 𝑝𝑗 := Φ𝑗(𝑝0) lies in �̄�(𝜋(𝐵𝑗), 𝜀) ⊂ 𝑈 𝑗 . The first tie-free
condition 𝑊 ∘𝐺(𝑝𝑗) = 𝑊 ∘ 𝑔(𝐵𝑗) then gives the desired conclusion.

Assume further that Φ is continuous. Observe that 𝒫 is a polyhedron of R𝑑 for some
𝑑, and that balls �̄�(𝑠, 𝜀) are thus convex sets, in particular homeomorphic to closed balls.
For all 𝑝 ∈ �̄�(𝜋(𝐵0), 𝜀), we have Φ𝑘−1(𝑝) ∈ 𝑈𝑘−1 and thus Φ𝑘(𝑝) ∈ �̄�(𝜋(𝐵0), 𝜀): Φ𝑘 is
a continuous map sending the topological ball �̄�(𝜋(𝐵0), 𝜀) into itself. Brouwer’s fixed
point theorem ensures that there exist 𝑝0 ∈ �̄�(𝜋(𝐵0), 𝜀) such that Φ𝑘(𝑝0) = 𝑝0.

Remark 3.3. Theorem A applies to dynamical equilibria, by taking 𝑘 = 1.

Example 3.4. Consider Plurality voting with three candidates 𝐴 = {𝑎, 𝑏, 𝑐}, three voter
types 𝑁 = {𝑋,𝑌, 𝑍} and preference profile

𝑋 𝑌 𝑍

4 2 3
𝑎 𝑏 𝑐

𝑏𝑐 𝑎𝑐 𝑏

𝑎

since we use Plurality, ℬ = 𝐴 = {𝑎, 𝑏, 𝑐}; assume voters only consider the expected
winner to choose how to vote, so that also 𝒪 = 𝐴 and 𝑊 is the identity map. The
voting rule 𝑓 and the information function 𝑔 coincide; both take the triple of ballots
(𝑣𝑋 , 𝑣𝑌 , 𝑣𝑍) ∈ {𝑎, 𝑏, 𝑐}3 and return the candidate with the most votes.

For the discrete polling dynamics, we consider the following heuristics: 𝜎𝑋(𝛼) = 𝑎 and
𝜎𝑌 (𝛼) = 𝑏 for all 𝛼 ∈ {𝑎, 𝑏, 𝑐} (voters of type 𝑋 and 𝑌 always vote for their favorite);
𝜎𝑍(𝑎) = 𝑏 and 𝜎𝑍(𝛼) = 𝑐 for 𝛼 ∈ {𝑏, 𝑐} (voters of type 𝑍 vote for their favorite unless
their least favorite threatens to win, in which case they settle for their second choice).
The shifted polling dynamics is then given by

𝜓(𝑎) = 𝑏, 𝜓(𝑏) = 𝑎, 𝜓(𝑐) = 𝑎

with a 2-cycle (𝑎, 𝑏). Let us now consider a natural perturbation of this dynamics.
The full continuous space is 6-dimensional: we need two numbers for each voting types,
representing the proportions voting for two of the candidates (the third proportion being
deduced from the first two). The CS information function 𝐺 compounds the votes in
favor of each candidate, and returns the candidate with the most votes (tied broke by
alphabetical order, say).

Assume ℬ𝑋 = {𝑎}, ℬ𝑌 = {𝑏} and ℬ𝑍 = {𝑏, 𝑐} (i.e. Voters of type 𝑋 and 𝑌 still
always vote for their favorite candidate, voters of type 𝑍 can vote for either of their
two preferred candidates). Then the continuous space 𝒫 can be identified with [0, 1], a
number 𝑧 ∈ [0, 1] representing the proportion of voters of type 𝑍 voting for 𝑐, and the
restriction of 𝐺 to 𝒫 is then given by 𝐺(𝑧) = 𝑏 when 𝑧 < 1

3 and 𝐺(𝑧) = 𝑎 when 𝑧 ≥ 1
3

(indeed 𝑎 always receives 4 votes, while 𝑐 receives 3𝑧 ≤ 3 and 𝑏 receives 5 − 3𝑧). We
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consider a parameter 𝑡 ∈ [0, 1] representing the reluctance of voters to change their votes
and define a corresponding CS heuristic by

Σ𝑡
𝑍(𝛼, 𝑧) =

{︃
1 − 𝑡(1 − 𝑧) when 𝛼 ̸= 𝑎

𝑡𝑧 when 𝛼 = 𝑎

(a proportion 𝑡 of voters of type 𝑍 who should switch votes under the discrete heuristic
𝜎𝑍 do not do so under Σ𝑡

𝑍). We denote by 𝜙 the discrete Polling Dynamics and by
Φ𝑡 the CS Polling dynamics driven by Σ𝑡

𝑍 . The CS Polling Dynamics Φ0 associated to
𝜙 is obtained as follows: given 𝑧 ∈ [0, 1], we compute the expected winner 𝐺(𝑧) and
determine the behavior of voters with the discrete heuristics: when 𝑧 < 1

3 , all voters of
type 𝑍 shall vote for 𝑐 in the next round so that Φ0(𝑧) = 1 while when 𝑧 ≥ 1

3 , they
all vote for 𝑏 so that Φ0(𝑧) = 0. Every starting point 𝑧 is immediately mapped to an
extreme state, as always, and in this particular case they all are attracted to the cycle
(𝑎, 𝑏). For 𝑡 ∈ [0, 1], we get Φ𝑡(𝑧) = 1 − 𝑡 + 𝑡𝑧 when 𝑧 < 1

3 and Φ𝑡(𝑧) = 𝑡𝑧 when 𝑧 ≥ 1
3

(in particular the 𝑡 = 0 matches Φ0); the graph of Φ𝑡 consist in two lines of slope 𝑡, as
pictured in Figure 1. The map 𝑡 ↦→ Φ𝑡 is continuous in the uniform topology, so that
Theorem A ensures that for 𝑡 small enough and 𝑧0 close enough to 0 or 1, the iteration
of Φ𝑡 starting at 𝑧0 alternates between the intervals [0, 1

3) and [1
3 , 1], producing the same

cycle of outcomes than the discrete Polling Dynamics.
Here we can compute exactly how large a perturbation we can afford. For all 𝑡 ∈ [0, 1

2),
there is a 2-cycle consisting of the points 𝑡

1+𝑡 <
1
3 and 1

1+𝑡 >
2
3 . Since the slope of the

graph of Φ𝑡 is less than one, this 2-cycle attracts (exponentially fast) all nearby orbits.
At 𝑡 = 1

2 , one can check that orbits converge to an almost-cycle (1
3 ,

2
3); this is not a true

cycle since 1
3 is sent to 1

6 because of the tie-breaking rule, but points 𝑧 < 1
3 close to 1

3
are sent near 2

3 . One can check further that for 𝑡 > 1
2 , no orbit realizes the sequence

𝑎𝑏𝑎𝑏𝑎 . . . of winners (but 𝑎𝑎𝑎 . . . and 𝑏𝑏𝑏 . . . are not realized either, the winner still
alternate between 𝑎 and 𝑏, but not as regularly as for 𝑡 < 1

2).

Remark 3.5. As mentioned by one of the anonymous referees, it seems Theorem A
should apply to asynchronous iterative voting. It would need to change the definitions
and notation to adjust to this case; let us briefly describe how one could proceed.

The usual discrete model for asynchronous iterative voting yields an oriented graph,
with an arrow from one ballot profile to another when an admissible move takes the
former to the latter. This can be modeled as a set-valued function on the set of ballot
profiles. The continuous space dynamics could thus be any set-valued function on the
CS space we defined here. The discrete model would embed in that CS space (and give
a particular example of CS dynamics) as follows: given a state, first we apply the CS
information function 𝐺, and then we look at all admissible moves given this result. We
can either assume all voters of a given type apply the chosen move, or only a (non-zero)
“quantum” of them (rounding if necessary in such a way that every paths ultimately
reflects a paths occurring in the original discrete model). In both cases we get a set-
valued map on the CS space. Perturbations can be measured by the uniform Hausdorff
distance, i.e. when Φ and Φ′ are set-valued maps, 𝐷(Φ,Φ′) would be the least 𝜀 such
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Figure 1: Graph of Φ𝑡 and an orbit. Dotted: construction lines. Dashed: diagonal and delimita-
tion between the two possible outcomes.

that for all state 𝑝, every element of Φ(𝑝) is at distance at most 𝜀 from some element of
Φ′(𝑝), and every element of Φ′(𝑝) is at distance at most 𝜀 from some element of Φ(𝑝).

Then a variant of Theorem A can be expected, with basically the same proof: for
each cycle in the discrete model that stays away from the frontiers between candidates’
winning regions, if we consider a small enough perturbation we shall find a nearby CS
cycle with the same sequence of winners.

4 Bad cycles in Approval Voting
Let us recall some definitions relative to what can be considered “good” or “bad” col-
lective choices among the candidates.

Given a preference profile, a candidate 𝛼 is said to dominate a candidate 𝛽 (sometimes
written 𝛼 > 𝛽, but beware that this is not a transitive relation) whenever there are
strictly more voters that strictly prefer 𝛼 to 𝛽 than voters that strictly prefer 𝛽 to 𝛼
(i.e. in the majority graph, assuming indifferent voters abstain, there is an arrow from
𝛼 to 𝛽). A candidate 𝛼 is then said to be a Condorcet winner whenever she dominates
every other candidate; a Condorcet winner may or may not exist, but if she exists she is
unique. When preferences have no ties, this is the usual definition of a (strong) Condorcet
winner; when there are ties, a stronger definition could be possible: to dominate, one
could ask for a majority of all voters, including abstainers. Similarly a candidate 𝛽 is
said to be a Condorcet loser whenever she is dominated by every other candidate; again,
a Condorcet loser may or may not exist and is unique if she exist.
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Last, we will use a stronger notion than Condorcet loser: a candidate is said to be an
absolute majority loser whenever she is a Condorcet loser and there is a strict majority
of the electorate that ranks her last (possibly tied with others) in their preferences. An
absolute majority loser rarely exists.

4.1 First example: non-convergence of the Leader Rule
In this Section all heuristics will be given by the Leader Rule, which only relies on the
identity of the expected winner and runner-up, not on the expected scores of candi-
dates (its definition is recalled in Section 2.2). We can thus consider a simple set of
outcomes, 𝒪 = {𝜔𝜌 : 𝜔 ̸= 𝜌 ∈ 𝐴} the set of order pairs of distinct candidates, and the
winner map is defined by 𝑊 (𝜔𝜌) = 𝜔; 𝜌 represents the runner-up. Preferences of voter
types are without tie (i.e. in ℒ(𝐴)) as needed for the Leader Rule. The information
function 𝑔 is obtained by ranking candidates by decreasing order of approval numbers
(𝑟𝛼 =

∑︀
𝑖|𝛼∈𝐵𝑖

𝑤𝑖), breaking ties by alphabetical order, and then selecting the two first
candidates, keeping their order. The CS information function 𝐺 is defined similarly,
with approval numbers

𝑟𝛼 =
∑︁
𝑖∈𝑁

𝐵|𝛼∈𝐵

𝑝𝑖
𝐵𝑤𝑖,

making it an extension of 𝑔. The admissible ballots of type 𝑖 are the sincere ballots with
respect to the preference order %𝑖; the LR ensures that heuristics only pick admissible
ballots. Our goal is to prove the following result.

Theorem B. Using Approval Voting, there exists a preference profile for 4 candidates
such that:

• there is a Condorcet winner,

• each voter has preferences without ties,

• assuming voters follow the Leader Rule, the Polling Dynamics has a cycle along
which the Condorcet winner is never elected. Moreover, a majority of the initial
ballot profiles lead to this cycle, among those who are both sincere and expressive
(i.e. approving a non-empty, strict subset of candidates).

Proof. We set 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} and consider the following preference profile with 7 types
of voters:

𝑇 𝑈 𝑉 𝑊 𝑋 𝑌 𝑍

100 1000 1001 1002 1004 1008 1016
𝑎 𝑏 𝑐 𝑑 𝑏 𝑐 𝑑

𝑏 𝑎 𝑎 𝑎 𝑐 𝑑 𝑏

𝑐 𝑐 𝑑 𝑏 𝑎 𝑎 𝑎

𝑑 𝑑 𝑏 𝑐 𝑑 𝑏 𝑐

and heuristics given by the Leader Rule.
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The voters of type 𝑈, 𝑉,𝑊 like 𝑎 but each prefers one of 𝑏, 𝑐, 𝑑 better, while the voters
of type𝑋,𝑌, 𝑍 do not like 𝑎 too much but distaste one of 𝑏, 𝑐, 𝑑 even more, creating a cycle
in the majority graph 𝑏 ≻ 𝑐 ≻ 𝑑 ≻ 𝑏 with 𝑎 close to tie with each of 𝑏, 𝑐, 𝑑. Meanwhile,
voters of type 𝑇 prefers 𝑎 to any other candidate, and their moderate number suffice
to make 𝑎 a Condorcet winner while maintaining the cycle 𝑏, 𝑐, 𝑑 in the majority graph.
The precise numbers of types 𝑈 to 𝑍 are chosen, for the sake of fanciness, to exclude
any perfect tie (different sums of distinct powers of 2 never agree).

Figure 2 represents the shifted Polling Dynamics 𝜓 in the form of a graph. We only
give the details of the computations along the cycle, others are similar.

Figure 2: The shifted Polling Dynamics of the first example. Outcomes where the Condorcet
winner is elected are shown in green, light green for the dynamical equilibrium. The
periodic outcomes not electing the Condorcet winner are shown in orange.

Consider the outcome 𝑏𝑎. Under the Leader Rule, it leads to the following ballot
profile and results:

𝐵𝑇 = {𝑎} 𝐵𝑈 = {𝑏} 𝐵𝑋 = {𝑏} 𝑟𝑎 = 3111 𝑟𝑏 = 3020
𝐵𝑉 = {𝑐, 𝑎, 𝑑} 𝐵𝑌 = {𝑐, 𝑑, 𝑎} 𝑟𝑐 = 2009
𝐵𝑊 = {𝑑, 𝑎} 𝐵𝑍 = {𝑑, 𝑏} 𝑟𝑑 = 4027

so that 𝜓(𝑏𝑎) = 𝑑𝑎 – i.e. 𝑎 stays second, while the previously unthreatening 𝑑 comes in
first position. The strategic adjustments triggered by the outcome 𝑑𝑎 are as follows:

𝐵𝑇 = {𝑎, 𝑏, 𝑐} 𝐵𝑈 = {𝑏, 𝑎, 𝑐} 𝐵𝑋 = {𝑏, 𝑐, 𝑎} 𝑟𝑎 = 3105 𝑟𝑏 = 2104
𝐵𝑉 = {𝑐, 𝑎} 𝐵𝑌 = {𝑐, 𝑑} 𝑟𝑐 = 4113
𝐵𝑊 = {𝑑} 𝐵𝑍 = {𝑑} 𝑟𝑑 = 3026

so that 𝜓2(𝑏𝑎) = 𝜓(𝑑𝑎) = 𝑐𝑎. The corresponding strategic adjustments are then:

𝐵𝑇 = {𝑎𝑏} 𝐵𝑈 = {𝑏, 𝑎} 𝐵𝑋 = {𝑏, 𝑐} 𝑟𝑎 : 3118 𝑟𝑏 : 4122
𝐵𝑉 = {𝑐} 𝐵𝑌 = {𝑐} 𝑟𝑐 : 3013
𝐵𝑊 = {𝑑, 𝑎, 𝑏} 𝐵𝑍 = {𝑑, 𝑏, 𝑎} 𝑟𝑑 : 2018

so that 𝜓3(𝑏𝑎) = 𝑏𝑎.
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The graph shows that more than two third of the outcomes lead to the bad cycle.
A computer assisted enumeration of all possible sincere, expressive ballot profiles shows
that 1353 out of 2187, i.e. more than 60 %, lead to the bad cycle.

Remark 4.1. It is worthwhile to observe (although a bit tedious to check) that in this
example, all outcomes can be obtained from a certain sincere ballot profile. For example,
𝑑𝑐 is obtained if all voters cast the ballot with only their preferred candidates. That
all outcomes are covered is hardly surprising: there are only 12 of them, but 37 = 2187
combinations of sincere ballots (excluding abstentions).

Remark 4.2. In the cases of 𝑚 > 4 candidates, we can take the above example and
add 𝑛− 4 dummy candidates that appear at the end of all voters preferences. The only
property that may not be preserved in this operation is the size of the basin of attraction
of the 3-cycle: for example the outcomes where one of the dummy candidates wins will
all be sent by 𝜙 to an outcome where 𝑎 wins, since voters would vote for all of 𝑎, 𝑏, 𝑐, 𝑑.
However this is easily fixed by adding a voter type, for example in the case of a fifth
candidate 𝑒 one could take 50 voters of type 𝑆 with preference order 𝑏𝑒𝑐𝑑𝑎. Indeed, this
voters will break the tie between 𝑎, 𝑏, 𝑐, 𝑑 whenever 𝑒 is the expected winner, in favor of
𝑏, thus leading to the basin of attraction of the 3-cycle.

Remark 4.3. As pointed out by one of the anonymous referees, Theorem B does not
hold for 3 candidates. Assume there is a Condorcet Winner 𝑎 and two other candidates
𝑏, 𝑐. Since preferences have no ties, there are 6 possible preferences, and we can reduce
to six voter types; let 𝑇𝛼𝛽 denotes the voters ranking 𝛼 first and 𝛽 second, and let it
also denotes the number of such voters. We assume there is no equality in any partition
into two groups of three voter types, which is a generic condition, to avoid dealing with
ties. Since 𝑎 is a Condorcet winner,

𝑇𝑎𝑏 + 𝑇𝑎𝑐 + 𝑇𝑐𝑎 >
1
2 > 𝑇𝑏𝑐 + 𝑇𝑏𝑎 + 𝑇𝑐𝑏

𝑇𝑎𝑏 + 𝑇𝑎𝑐 + 𝑇𝑏𝑎 >
1
2 > 𝑇𝑏𝑐 + 𝑇𝑐𝑎 + 𝑇𝑐𝑏

One of 𝑏 and 𝑐 would win a duel against the other, and without loss of generality we
assume 𝑏 does, i.e.

𝑇𝑏𝑎 + 𝑇𝑏𝑐 + 𝑇𝑎𝑏 >
1
2 > 𝑇𝑐𝑎 + 𝑇𝑐𝑏 + 𝑇𝑎𝑐.

We assume that all voters follow the Leader Rule and prove that the Polling Dynamic
converges to one of the outcomes 𝑎𝑏 or 𝑎𝑐.

First, whatever the expected outcome is, 𝑎 receives either 𝑇𝑎𝑏 + 𝑇𝑎𝑐 + 𝑇𝑐𝑎 or 𝑇𝑎𝑏 +
𝑇𝑎𝑐 + 𝑇𝑏𝑎 votes, depending on whether 𝑏 is above 𝑐 or not, in any case more than half.

When 𝑎 is expected winner, 𝑏 and 𝑐 receives 𝑇𝑏𝑐 +𝑇𝑏𝑎 +𝑇𝑐𝑏 <
1
2 and 𝑇𝑏𝑐 +𝑇𝑐𝑎 +𝑇𝑐𝑏 <

1
2

votes respectively, so that 𝑎 stays ahead and either 𝑎𝑏 or 𝑎𝑐 is an equilibrium, attracting
the other one of these two outcomes.

Whenever 𝑎 is second, none of the voters for 𝑎 vote for the expected winner, and it
follows that in the next round, the contender will be behind 𝑎. The third candidate
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will receive the votes of voters preferring her to the expected winner; in the case of 𝑐,
it means either 𝑇𝑐𝑎 + 𝑇𝑐𝑏 + 𝑇𝑎𝑐 or 𝑇𝑐𝑎 + 𝑇𝑐𝑏 + 𝑇𝑏𝑐 votes, according to whether 𝑏 or 𝑎 is
expected to win, and both are less than 1

2 . It remains to consider the outcome 𝑐𝑎𝑏, where
𝑏 receives the votes 𝑇𝑏𝑎 + 𝑇𝑏𝑐 + 𝑇𝑎𝑏. In this case, we can have a sequence of outcomes
𝑐𝑎, 𝑏𝑎 but then 𝑎 wins in the next outcome. Whenever 𝑎 gets at least second, she will
therefore become first and stay first ever after.

Now, in every case where 𝑎 is third, she will receive more than half the votes and 𝑐 will
receive less than half, so that 𝑎 will get at least the second position in the next round,
after which she will take the lead. This ends the proof of convergence to equilibrium.

Remark 4.4. If we do not ask for a Condorcet winner to exist, a cycle can be produced
with 𝑚 = 3 candidates, e.g. with the preference profile

𝑋 𝑌 𝑍

10 11 12
𝑎 𝑏 𝑐

𝑏 𝑐 𝑎

𝑐 𝑎 𝑏

where starting with voters approving only their top candidate, we obtain a cycle of
outcomes 𝑐𝑏, 𝑏𝑐, 𝑎𝑏.

From Theorem A we deduce that the cycle persists when we perturb the Polling
Dynamics in the CS setting (to be meaningful, here we change back the set of outcomes
to 𝒪 = [0, 1]𝐴).

Corollary 4.5. Consider a preference profile as given by Theorem B. Let Φ0 be the
induced CS Polling Dynamics on the continuous space 𝒫 defined by making admissible
exactly the sincere ballots. Then there exist 𝜀 > 0 and an open subset 𝑈 of 𝒫 such
that for all CS Polling Dynamics Φ with 𝐷(Φ,Φ0) ≤ 𝜀 and all 𝑝0 ∈ 𝑈 , the sequence of
winners

𝑊 ∘𝐺(Φ𝑗(𝑝0)) 𝑗 = 0, 1, 2, . . .

is periodic and does not contain the Condorcet winner.

4.2 Second example: the possible election of an absolute majority loser
Our second example, at the small cost of introducing a modification of the LR accounting
for ties, improves on the previous one on two accounts: it necessitates only 3 candidates,
and it exhibits a cycle where an absolute majority loser could get elected. We conserve
most the setting of the previous Section: 𝒪, 𝑊 , 𝑔 and 𝐺 are as above. The only change
is that we allow for ties in preferences and more varied heuristics.

Theorem C. Using Approval Voting, there exists a preference profile on 3 candidates
with ties in preferences allowed and sincere heuristics such that:
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• there are a Condorcet winner and an absolute majority loser,

• the Polling Dynamics has a 2-cycle, one of whose ballot profiles elects the absolute
majority loser,

• there is an equilibrium not electing the Condorcet winner,

• moreover only one of four sincere, expressive ballot profiles avoid the above bad
cycle and equilibrium.

Proof. We consider the following preference profile:

𝑍 𝑌 𝑋 𝑊

3 1 3 5
𝑎 𝑎 𝑏 𝑐

𝑏 𝑏𝑐 𝑎 𝑎𝑏

𝑐 𝑐

with each voter type 𝑖 ∈ 𝑁 using the Modified Leader Rule. In particular voters of type
𝑊 will not choose between 𝑎 and 𝑏, thus always casting the ballot {𝑐}, no matter which
outcome is expected. Similarly, voters of type 𝑌 always cast the ballot {𝑎} (this last
type is only introduced here for tie-breaking).

Note that 𝑎 is a Condorcet winner, beating 𝑏 with a score of 4 to 3 (voters of type 𝑊
abstaining) and 𝑐 with a score of 7 to 5. Moreover 𝑐 is a Condorcet loser, loosing to 𝑏 by
6 to 5; actually 𝑐 is a worst candidate of 7 out of the 12 voters, making it an absolute
majority loser.

Assume as starting expected outcome the result obtained if each voter votes for every
candidates she does not rank last:

𝐵𝑍 = {𝑎, 𝑏} 𝐵𝑌 = {𝑎} 𝐵𝑋 = {𝑏, 𝑎} 𝐵𝑊 = {𝑐}
𝑟𝑎 = 7 𝑟𝑏 = 6 𝑟𝑐 = 5

leading to 𝑎 being expected winner and 𝑏 expected runner-up (corresponding to the
Condorcet order). This leads voters of type 𝑍 and 𝑋 to adjust their votes: their favorite
candidate is either threatened by their second-favorite (for 𝑍) or have a shot at winning
the election from a current runner-up position (for 𝑋). Consistently with their heuristics
they choose to vote only for their favorite candidate:

𝐵𝑍 = {𝑎} 𝐵𝑌 = {𝑎} 𝐵𝑋 = {𝑏} 𝐵𝑊 = {𝑐}
𝑟𝑎 = 4 𝑟𝑏 = 3 𝑟𝑐 = 5.

The second poll thus results in a win of 𝑐 with 𝑎 as runner-up. This result induces
voters of type 𝑍 and 𝑋 to resume approving both 𝑎 and 𝑏, in order not to let 𝑐 be
elected (again, this is a consistent application of the modified Leader Rule). This results
in the same ballots being cast as in the first poll, so we get a 2-cycle, in which the worst
candidate is elected in one of the outcomes.
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Figure 3: The shifted Polling Dynamics of the second example. Light green outcomes are ac-
cessible after an arbitrary large number of iterations and elect the Condorcet winner;
orange (periodic) and red (fixed point) outcomes are accessible after an arbitrarily large
number of iterations but do not elect the Condorcet winner. The orange outcome is
arguably the most problematic, as it elects the absolute majority loser 𝑐.

Figure 3 represents the shifted Polling Dynamics 𝜓 in graph form.
We see that of 6 outcomes, 4 lead to the cycle that can elect either the Condorcet

winner 𝑎 or the absolute majority loser 𝑐 depending on whether the number of polls
conducted before the election is odd or even, while the other 2 are equilibria, one electing
the Condorcet winner 𝑎 and the other the Condorcet runner-up 𝑏. There are 4 sincere,
expressive ballot profiles (two possible choices for each of 𝑍 and 𝑋), one for each of the
equilibria and each of the 2-cycle outcomes.

Remark 4.6. If we accept to depart further from the LR, we could avoid ties in prefer-
ences and preserve the features of the examples by splitting 𝑊 into two types of voters
of equal size, with respective preferences 𝑐𝑎𝑏 and 𝑐𝑏𝑎 and heuristic to always vote {𝑐}
(with the interpretation that these voters prefer 𝑐 to the other two by far, but still have
a slight preference between 𝑎 and 𝑏). This shows that Theorem C also holds with the
stronger definition of Condorcet winner (see beginning of Section 4).

Remark 4.7. An argument that could be raised against this example is that it needs
that a large proportion of voters having 𝑐 as favorite candidate would never vote for
any other candidate. While this is indeed a crucial feature of the voters preferences in
this example, there are two counter-arguments. First, this situation seems not all that
unlikely: far-right candidates with a strong anti-establishment discourse can have many
supporters who would consider all other candidates (or at least those with a chance of
being elected) as part of the very same “establishment” and thus would only approve of
𝑐. Second, this can be a textbook case of manipulation by a coalition: if the minority of
all voters who prefer 𝑐 (with preferences 𝑐𝑏 or 𝑐𝑎 say) gather in a coalition and decide to
vote only for 𝑐, they get a good chance to have 𝑐 elected against the will of a two-third
majority! Actually, these counter-arguments feed on each other: an anti-establishment
discourse can serve the purpose of forming a coalition-in-practice of voters who will not
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express their preferences between 𝑎 and 𝑏 in order to favor 𝑐.

Again, Theorem A ensures that this bad cycle is robust. Let us make this more
concrete by considering an explicit perturbation.

Example 4.8. We now give a CS setting extending the discrete-space example in the
proof of Theorem C. Let the sets of admissible ballots be

ℬ𝑍 =
{︀
{𝑎}, {𝑎, 𝑏}

}︀
, ℬ𝑌 =

{︀
{𝑎}

}︀
, ℬ𝑋 =

{︀
{𝑏}, {𝑎, 𝑏}

}︀
and ℬ𝑊 =

{︀
{𝑐}

}︀
and consider outcomes giving the proportion of votes received by each candidates: 𝒪 =
[0, 1]𝐴.

Observe that since the simplex over a singleton is a singleton, and the simplex over a
two-element set is an interval, 𝒫 can be identified with the square [0, 1]2, with coordinates
(𝑥, 𝑧) where 𝑥 (respectively 𝑧) represents the proportion of voters of type 𝑋 (respectively
𝑍) casting the ballot {𝑎, 𝑏}. The leftmost part of Figure 4 represents 𝒫. The three lines
corresponding to ties (of equation (𝑧 = 𝑥+ 1

3) for 𝑎 and 𝑏; (𝑥 = 1
3) for 𝑎 and 𝑐; (𝑧 = 2

3)
for 𝑏 and 𝑐); they are concurrent at the point where all three candidates are tied, and
delimit six areas, one for each possible outcome (all of which are possible under the
chosen preference profile and restriction of ballots, as we can see in the figure). We
denote by 𝐴𝑎𝑏𝑐 the region where the outcome is 𝑎𝑏𝑐 (boundary segments are attributed
according to the tie-breaking rule), and similarly for the other five regions.

Given 𝛿 ∈ [0, 1], we let 𝒯𝛿 be the set of (𝑥, 𝑧) ∈ 𝒫 such that (𝑟𝑎, 𝑟𝑏, 𝑟𝑐) := 𝑉 (𝑥, 𝑧)
avoids ties by a margin at least 𝛿, i.e. |𝑟𝛼 − 𝑟𝛽| ≥ 𝛿 for all 𝛼 ̸= 𝛽 ∈ 𝐴. We consider any
perturbation (Φ𝜀)𝜀∈[0,1] of the embedded discrete space Polling Dynamics such that:

Φ𝜀(𝑥, 𝑧) = (1 − 𝜀)Φ0(𝑥, 𝑧) + 𝜀(𝑥, 𝑧) ∀(𝑥, 𝑧) ∈ 𝒯𝛿

which models the situation where after each poll where no two candidates are 𝛿-close to
be tied, a proportion 𝜀 of voters keep their ballots unchanged and the remaining (1 − 𝜀)
apply the heuristics of their types defined in the discrete setting (here the LR for types
𝑋 and 𝑍, types 𝑌 and 𝑊 always voting only for their top candidate).

We will show that taking 𝛿 = .04 and 𝜀 = .15 is small enough for the conclusion of
Theorem A to apply. Figure 5 shows the first five iterations of such a perturbation for
𝛿 = .04 and 𝜀 = .15, and we can observe a bad 2-cycle with points in 𝐴𝑎𝑏𝑐 and 𝐴𝑐𝑎𝑏.

The region 𝐴1 ⊂ 𝐴𝑎𝑏𝑐 delimited by the lines of equations (𝑧 < 𝑥+ 1
6) and (𝑧 > 5

6) results
in the outcome 𝑎𝑏𝑐 with margins of 1

24th of the electorate, i.e. slightly over 4%. Similarly,
the region 𝐴2 ⊂ 𝐴𝑐𝑎𝑏 delimited by the lines of equations (𝑧 < 𝑥+ 1

6) and (𝑥 < 1
6) result

in the outcome 𝑐𝑎𝑏 with the same margins. We have Φ.15(𝑥, 𝑧) = (.15𝑥, .15𝑧) whenever
(𝑥, 𝑧) ∈ 𝐴1 and Φ.15(𝑥, 𝑧) = (.85 + .15𝑥, .85 + .15𝑧) whenever (𝑥, 𝑧) ∈ 𝐴2. One easily
checks that Φ.15(𝐴1) ⊂ 𝐴2 and Φ.15(𝐴2) ⊂ 𝐴1. It follows that Φ2

.15(𝐴1) ⊂ 𝐴1, and since
Φ2

.15 is a contraction on 𝐴1 (of ratio .152, much small than 1), the Contraction Mapping
Theorem ensures it has a fixed point (𝑥1, 𝑧1) ∈ 𝐴1. Then the orbit of (𝑥1, 𝑧1) is a 2-cycle
with one state inducing the outcome 𝑎𝑏𝑐 and the other inducing 𝑐𝑎𝑏. Moreover any
element of the open set 𝐴1 ∪𝐴2 is attracted to this cycle exponentially fast.
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Figure 4: A continuous-space example. Left: the state space 𝒫. The corners are the extreme
states, corresponding to the four outcomes that are attainable from a ballot profile
under the discrete-space Polling Dynamics. Right: on the same state space, any CS
Polling Dynamics where 85% of voters adjust their ballot according to the modified
Leader Rule when candidates are separated by 4% margins will send the light-grey
regions 𝐴1 and 𝐴2 into each other (images shown in dark grey), thus ensuring a 2-cycle
with one state near the upper-rigth corner, one near the lower-left corner.
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Figure 5: An example of a CS Polling Dynamics obtained by perturbation of the Polling Dynam-
ics used in the proof of Theorem C, showing robustness of the bad 2-cycle. Top-left:
initial points of the plane; then from left to right then top to bottom, the first five
iterations of a continuous CPD where, whenever margins are above 4 %, 85 % of voters
apply the Leader Rule and 15 % keep their ballot unchanged. Points are drawn with
the color corresponding to initial position (darker above for better readability). After
the first iteration, already most points are attracted to the periodic points near the
four corners. The top-left and bottom-right corners are attracting fixed points, and
there is an attractive orbit of period 2 near the other corners.

4.3 Numerical study
The examples of the previous section are interesting from a theoretical point of view,
showing that the existence of equilibria and the quality of candidates they elect do not
by themselves suffice to ensure a good outcome. But from a practical point of view,
it could be that the bad cycles we exhibited are so rare that they do not matter too
much. In this section, we present experimental estimates of the frequency of bad cycle
in preference profiles where a Condorcet winner exists. We continue to follow the setup
of Sections 4.1 and 4.2, using either the Leader Rule or the modified Leader Rule. This
leaves us to model the preference profile, and for this we compare several “cultures”.

Our results complement for example the findings of [LLV00] and [Las10]. Compared to
the latter, for each preference profile we determine the existence of a bad cycle anywhere
in the space of outcomes, and of arbitrary length.
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Main experimental setup We fix the number of candidates to 𝑚 = 6, and the number
of voter types to 𝑛 = 20, 𝑁 = {1, . . . , 20}, a compromise between complexity of the
preference profile and computational power limitations. The influence of these numbers
is tested at the end of the section.

Each voter type is assigned a number of voters uniformly drawn in [0, 1] and is assigned
a preference modeled by a linear order on 𝐴 = 𝐴∪{limit}; when we use the Leader Rule,
limit is simply ignored, but when we use its modified version, the candidates ranked
beyond limit are considered tied for the last rank and thus never put on this voters’
ballots. For example, the order 𝑎 ≻ 𝑏 ≻ limit ≻ 𝑐 ≻ 𝑑 ≻ 𝑒 ≻ 𝑓 corresponds to the
preference 𝑎𝑏𝑐𝑑𝑒𝑓 when the LR is used, and to 𝑎𝑏(𝑐𝑑𝑒𝑓) when its modified version is
used.

We consider the following ways of constructing preferences:

• Impartial Culture: each voter type draws uniformly an element ℒ(𝐴),

• 𝑑-dimensional culture: each candidate and each voter types is given a uniform
random position in [0, 1]𝑑 where each coordinate represents a “political axis”; the
preferences of a voter type is obtained by sorting the candidates by increasing
distance to the voter type, using the ℓ1 metric

𝑑((𝑥1, . . . , 𝑥𝑑), (𝑦1, . . . , 𝑦𝑑)) =
𝑑∑︁

𝑖=1
|𝑥𝑖 − 𝑦𝑖|

that sums the levels of disagreement along the various axes; limit is then inserted
by drawing a random “distance” to the voter type, with the same law than the
distance between two uniform points in [0, 1]𝑑

We ran experiments for each combination of a heuristic among the Leader Rule and
its modification and each political culture among the Impartial Culture and the 𝑑-
dimensional cultures with 𝑑 ∈ {1, 2, 3, 400}. In each case, we generated 100 000 in-
dependent preference profiles and recorded whether a Condorcet winner exists, and if
yes whether the Polling Dynamics has a “bad cycle” (or bad equilibrium), i.e. where
some of the ballot profiles do not elect the Condorcet winner. Each run took a couple of
hours on a single core of a modern CPU. The results are provided in Table 1. The first
take-away is that in practice

The Leader Rule is very effective in electing the Condorcet winner.

Only the Impartial Culture witnesses slightly larger odds of not electing her while struc-
tured cultures very rarely produce bad cycles, the linear (𝑑 = 1) culture having produced
none in 100 000 attempts (this is no accident, see Section 4.4).

On the contrary, when voters apply the Modified Leader Rule and thus, with the kind
of preferences used here, refuse to approve of candidates below their personal threshold
no matter what, bad cycles are more common. They never dominate, but they culminate
precisely in the case of a linear culture, with 15% of preference profiles leading to a bad
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Heuristic
Culture

Impartial 𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 400

Leader Rule (70%)
1.3%

(100%)
0.0%

(90%)
0.2%

(87%)
0.2%

(85%)
0.3%

Modified Leader Rule (75%)
6.3%

(92%)
15%

(89%)
7.8%

(88%)
6.0%

(87%)
3.0%

Table 1: Experimental results with 6 candidates and 20 voter types. In small, the proportion
of preference profiles where a Condorcet winner exists; in normal size, the proportion
of preference profiles with a bad cycle or equilibrium, among preference profiles having
a Condorcet winner (both rounded). The 95% confidence Wilson score interval gives
a deviation of less than 0.23 percentage point for all values; the deviation is even less
than 0.04 percentage point for the value 0.3% and below.

cycle in the Polling Dynamics. The situation that is most favorable to the Leader Rule,
is also the worst one for its modification!

Imagine that voters of a given type are aware of a Condorcet winner quite low on their
preferences, and that they know that when everyone uses the Leader Rule, the election
of the Condorcet winner is very likely. By not applying the Leader Rule and instead
refuse to approve candidates below a threshold, they can get significant odds to obtain
the election of a candidate they prefer to the Condorcet winner:

When some voters expect a candidate they do not like to be a Condorcet
winner, their best interest can be not to apply the Leader Rule, at least
not below a certain threshold.

At first sight, this may seem difficult to reconcile with the optimality of the Leader
Rule proven by Laslier [Las09]. The point is that Laslier considers that each voter
assumes imperfect recording of ballots and think as if she would be the only one to
change her ballot, trying to optimize the expected outcome. Our numerical results show
that whenever voters expect other voters of the same type to also change their votes
strategically, the Leader Rule might not be their best heuristic.

This experiment also gave the opportunity to find especially problematic Polling Dy-
namics, see Figures 6 and 7 where green outcomes correspond to the Condorcet winner
being elected, orange outcomes are part of a cycle but do not elect the Condorcet winner,
and red outcomes are equilibria not electing the Condorcet winner.

Effect of the numbers of candidates and voter types We report in Table 2 more
modest numerical experiment to assert the influence of the number of candidates and the
number of voters. We see that the number of voter types has relatively small influence,
at least in the range tested, with the exception of the 1-dimensional culture with the
modified LR, where a larger voter type makes bad cycles and equilibria more likely. The
main take away, valid in all considered conditions except the 1-dimensional culture with
the LR, is that:
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Figure 6: A bad cycle and two equilibria not electing the Condorcet winner under the modified
Leader Rule, produced with the Impartial Culture. Only 3 outcomes out of 30 end up
electing the Condorcet winner, and there are outcomes where the Condorcet winner
is elected, but that lie in the basin of attraction of the bad cycle (this never happens
with the Leader Rule).

Figure 7: An example in the one-dimensional culture with the modified Leader Rule: the bad
cycle attracts all outcomes but two, including most outcomes electing the Condorcet
winner.

A larger number of candidates seems to make bad cycles and equilibria
more common among situations where a Condorcet Winner exists.

Computational power prevented us to explore larger number of candidates with samples
large enough to draw conclusions.

4.4 Convergence of the Leader Rule in one-dimensional cultures
In view of the above experiments, it seems that the one-dimensional culture combines
well with the Leader Rule. Black’s Median Voter Theorem [Bla86] implies the existence
of a Condorcet winner, and from [Las09] it follows that there exist equilibria and that
all equilibria elect 𝜔. Here we prove that in this particular culture, we moreover have
convergence of the Polling Dynamics.

Definition 4.9. We say that a preference profile can be modeled by a one-dimensional
culture when there exist a positional mapping

𝑥 : 𝐴 ∪𝑁 → R
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Cul.
& Strat.

|𝒞| & |𝒯 |
3, 10 4, 10 6, 10 6, 20 6, 30 8, 20

Impartial, LR (92%) 0 (84%)
0.3%

(71%)
1.0%

(70%)
1.3%

(69%)
1.3%

(60%)
2.0%

1-dim., LR (100%)
0

(100%)
0

(100%)
0

(100%) 0 (100%)
0

(100%)
0

2-dim., LR (97%) 0 (94%)
0.05%

(90%)
0.3%

(90%)
0.2%

(91%)
0.05%

(87%)
0.5%

3-dim., LR (96%) 0 (92%)
0.1%

(85%)
0.4%

(87%)
0.2%

(89%)
0.1%

(84%)
0.4%

400-dim., LR (95%) 0 (90%)
0.1%

(81%)
0.3%

(85%)
0.3%

(89%)
0.3%

(81%)
0.6%

Impartial, modified LR (94%)
2, 1%

(88%)
3.5%

(77%)
5, 9%

(75%)
6.3%

(75%)
6.4%

(66%)
8.0%

1-dim., modified LR (98%)
2.6%

(96%)
5.4%

(90%)
10%

(92%)
15%

(92%)
19%

(88%)
20%

2-dim., modified LR (97%)
1.5%

(95%)
3.4%

(89%)
6.2%

(89%)
7.8%

(91%)
7.8%

(84%)
11%

3-dim., modified LR (97%)
1.4%

(93%)
2.7%

(86%)
5.3%

(88%)
6%

(90%)
5.9%

(84%)
8.2%

400-dim., modified LR (96%)
0.9%

(92%)
2.1%

(84%)
3.4%

(87%)
3.0%

(89%)
2.6%

(82%)
4.1%

Table 2: Complementary experimental results to check robustness. Samples have 6 250 pseudo-
random preference profiles (except for 6 candidates and 20 voter types, where we re-
ported the previous results with larger samples), yielding typically 4 times larger confi-
dence intervals than samples of size 100, 000 and leaving the expected deviations under
the percentage point. In small, the proportion of preference profiles where a Condorcet
winner exists; in normal size, the proportion of preference profiles with a bad cycle or
equilibrium, among profiles having a Condorcet winner (both rounded).

with the following property: the preferences % of any voter type 𝑖 ∈ 𝑁 is given by

∀𝛼 ̸= 𝛽 ∈ 𝐴, 𝛼 %𝑖 𝛽 if and only if |𝑥(𝛼) − 𝑥(𝑖)| < |𝑥(𝛽) − 𝑥(𝑖)|.

For simplicity, we assume further that |𝑥(𝛼) − 𝑥(𝑖)| ≠ |𝑥(𝛽) − 𝑥(𝑖)| for all 𝛼 ̸= 𝛽 and all
𝑖, so that all preferences are linear orders (without ties); and we assume that there is
no partition of the voter types in two groups that have equal total number of voters, so
that no duel between two candidates would end up in a tie (these are generic conditions:
they are stable under small perturbation of the data and any data can be approximated
arbitrarily close by data satisfying those conditions).

The goal of this section is to prove the following result.

Theorem 4.10. Under Approval Voting, if the preference profile can be modeled by a
one-dimensional culture and voters apply the Leader Rule, then the Polling Dynamics
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converges to an equilibrium (which elects the Condorcet winner, as prescribed by Laslier’s
Theorem).

The end of the section is dedicated to the proof of Theorem 4.10. We use outcomes
reduced to the winner and runner-up, we assume that the preference profile can be
modeled by a one-dimensional culture and we fix a positional mapping 𝑥. Denoting by
𝑤 =

∑︀
𝑖∈𝑁 𝑤𝑖 the total number of voters, a median is a value 𝑚 ∈ R such that∑︁

𝑖 : 𝑥(𝑖)≤𝑚

𝑤𝑖 ≥ 𝑤

2 and
∑︁

𝑖 : 𝑥(𝑖)≥𝑚

𝑤𝑖 ≥ 𝑤

2

i.e., at least half the voters lie on the left of 𝑚, and at least half have lie on the right
of 𝑚. The assumption that there is no partition of voter types in two groups of equal
size ensures that there is a unique median 𝑚, coinciding with the position of some voter
type: 𝑚 = 𝑥(𝑖𝑚), where the voter type 𝑖𝑚 is called the median type. By assumption,
there is a single candidate 𝜇 whose position is closest to 𝑥(𝑖𝑚).

We start with the following particular instance of Black’s Median Voter Theorem,
which we prove for the sake of completeness.

Lemma 4.11. The candidate 𝜇 is a Condorcet winner.

Proof. Let 𝛼 be any other candidate. Voters preferring 𝜇 to 𝛼 are those positioned on
the half line 𝐿 of endpoint 1

2(𝑥(𝛼)+𝑥(𝜇)) and containing 𝑥(𝜇). Since 𝑥(𝜇) is closer from
𝑥(𝑋𝑚) than 𝑥(𝛼), 𝐿 contains 𝑥(𝑖𝑚) and thus contains at least half the voters. Since
there are no possible ties, 𝜇 dominates 𝛼.

Lemma 4.12. Let 𝛼𝛽 be an outcome such that 𝛼 ̸= 𝜇 and let 𝛼′𝛽′ = 𝜓(𝛼𝛽) be the next
outcome in the (shifted) Polling Dynamics. Then either |𝑥(𝛼′) − 𝑥(𝜇)| < |𝑥(𝛼) − 𝑥(𝜇)|,
or 𝛼′ = 𝛼 and |𝑥(𝛽′) − 𝑥(𝜇)| < |𝑥(𝛽) − 𝑥(𝜇)|.

Proof. The positions 𝑥(𝛼) and 𝑥(𝛽) divide the real line in three component: the open
bounded interval 𝐼 between them, the open half-line 𝐻𝛼 with extremity 𝑥(𝛼) avoiding
𝐼, and the open half-line 𝐻𝛽 with extremity 𝑥(𝛽) avoiding 𝐼.

If 𝑥(𝜇) ∈ 𝐻𝛼, 𝛼 will receive the votes of all voters positioned in a half line starting
at (𝑥(𝛼) + 𝑥(𝛽))/2 and containing 𝑥(𝜇), while other candidates receive votes only from
voters positioned in 𝐻𝛼 or in 𝐼 ∪ 𝐻𝛽. It follows that 𝛼′ = 𝛼 and 𝛽′ is the candidate
positioned next to 𝛼, in the direction of 𝑥(𝜇) (possibly 𝛽′ = 𝜇). In this case, we thus
have 𝛼′ = 𝛼 and |𝑥(𝛽′) − 𝑥(𝜇)| < |𝑥(𝛽) − 𝑥(𝜇)|.

In all other cases, 𝛼′ is the candidate positioned next to 𝛼, in the direction of 𝜇
(possibly 𝛼′ = 𝜇), therefore |𝑥(𝛼′) − 𝑥(𝜇)| < |𝑥(𝛼) − 𝑥(𝜇)|.

Let > denote the “geo-lexicographic” order on outcomes, defined by 𝛼𝛽 > 𝛼′𝛽′ when-
ever

|𝑥(𝛼′) − 𝑥(𝜇)| < |𝑥(𝛼) − 𝑥(𝜇)|, or 𝛼′ = 𝛼 and |𝑥(𝛽′) − 𝑥(𝜇)| < |𝑥(𝛽) − 𝑥(𝜇)|.

The previous lemma shows that along an orbit of 𝜓, the outcome can only decrease in
this order until 𝜇 becomes winner. Since there cannot be an infinite decreasing sequence
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of outcomes, eventually 𝜇 becomes winner. Now, as is well-known, this is a stable
situation: for all 𝛽, 𝜓(𝜇𝛽) = 𝜇𝛽0 where 𝛽0 is the candidate getting the better score in a
duel against 𝜇. Therefore, every outcome converges under 𝜓 to the outcome 𝜇𝛽0 (and
every ballot profile of 𝐵𝑛 converges under 𝜙 to the ballot profile induced by the outcome
𝜇𝛽0 and the Leader Rule). The proof of Theorem 4.10 is complete.

5 Other Voting rules
In order to show how our framework applies to general voting rule, let us consider three
further examples: one for Plurality voting, where contrary to Example 3.4 heuristics use
quantitative information in the outcome rather than only the ranking; one for Instant
Run-Off voting (IRV); one for the condorcified version of IRV (or, for that matter, of
any ranked voting).

There is a paucity of examples in the literature concerning synchronous iterative vot-
ing; we can still mention Example 1 in [CPP04] (whose heuristics imply that voters know
the number of voters of the same type), and Example 7 in [BF07] (which needs a change
of heuristic along the cycle).

5.1 A plurality cycle
We consider Plurality voting, with outcomes giving the total number of votes of each
candidate, with 𝑛 = 4 voter types and 𝑚 = 3 candidates, 𝐴 = {𝑎, 𝑏, 𝑐}. We thus set
𝒪 = [0, 𝑤]𝐴 where 𝑤 =

∑︀
𝑖∈𝑁 𝑤𝑖 is the total number of voters, an element of which is

written as a triple 𝑟 = (𝑟𝑎, 𝑟𝑏, 𝑟𝑐). Ballots bear a single name, i.e. ℬ = 𝐴, and the
information function 𝑔 sends a family (𝐵𝑖)𝑖∈𝑁 ∈ 𝐴𝑁 of ballots to the outcome

𝑔((𝐵𝑖)𝑖∈𝑁 ) =
(︁ ∑︁

𝑖∈𝑁,𝐵𝑖=𝛼

𝑤𝑖

)︁
𝛼∈𝐴.

The winner map sends (𝑟𝑎, 𝑟𝑏, 𝑟𝑐) to the candidate with the most votes, with ties broken
in favor of the earlier candidate in the alphabetical order.

We consider the preference profile

𝑋 𝑌 𝑍

10 13 14
𝑎 𝑏 𝑐

𝑏 𝑎 𝑎𝑏

𝑐 𝑐

and assume the following heuristics:

• voters of type 𝑍 always vote for 𝑐,
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• voters of type 𝑋 vote as follows. If their least-preferred candidate 𝑐 is in a close
contest for winning with their second-preferred candidate 𝑏, more precisely if

|𝑟𝑐 − 𝑟𝑏| ≤ .03(𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐) and min(𝑟𝑏, 𝑟𝑐) > 𝑟𝑎 + .03(𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐)

then they vote for 𝑏; in all other cases they vote sincerely, for 𝑎,

• voters of type 𝑌 vote as voters of type 𝑋, with 𝑎 and 𝑏 switched.

These heuristics allow voters of type 𝑋 and 𝑌 to vote strategically whenever their
preferred choice is far from winning, but their second-preferred choice needs support to
avoid the win of their least-preferred candidate. The factor .03 is chosen because it is
the typical uncertainty in polls on about a thousand voters. With the above preference
profile, .03(𝑟𝑎 + 𝑟𝑏 + 𝑟𝑐) = 1.11.

If voters first report their preferred candidates, we obtain the outcome

𝑟0 = (10, 13, 14)

and we are in the situation where 𝑐 wins in close contest with 𝑏. The above heuristics lead
voters of type 𝑋 to vote for 𝑏, while others remain sincere, leading to the new outcome
𝑟1 = 𝜓(𝑟0) = (0, 23, 14) where 𝑏 wins by a large margin. The above heuristics lead every
voter to vote sincerely, so that 𝜓(𝑟1) = 𝑟0, and we have a two-cycle (an outcome of which
elects the absolute majority loser). By Theorem A, this bad cycle persists in a small
enough CS perturbation.

5.2 An IRV cycle
We now consider IRV and give an example with 𝑛 = 3 and 𝑚 = 4. Ballots and outcomes
are linear rankings of candidates: ℬ = 𝒪 = ℒ(𝐴). The information function 𝑔 is defined
as follows. Given an argument (𝐵𝑖)𝑖∈𝑁 ∈ ℬ𝑁 , we first rank candidates according to the
total weight of ballots where they are ranked top (again, ties broke in alphabetical order).
The last ranked candidate is eliminated, and we rank the remaining candidates according
to the total weight of ballots where they are ranked top among candidates that have not
been eliminated. The last ranked candidate is again eliminated. The resulting outcome
is denoted with the last standing candidate first, then the other by reversed order of
elimination. The winner map sends a ranking 𝑟 ∈ 𝒪 = ℒ(𝐴) to its top candidate.

We consider the preference profile

𝑋 𝑌 𝑍

10 11 12
𝑏 𝑐 𝑑

𝑎 𝑎 𝑎

𝑐 𝑏 𝑏

𝑑 𝑑 𝑐
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so that the Condorcet order coincides with the alphabetical order, in particular 𝑎 is the
Condorcet winner. Let us define simple heuristics that make use of an expected outcome
to try to improve it. Denote by 𝛼𝛽𝛾𝛿 the preferences of the considered type 𝑖 of voters
(e.g. for 𝑖 = 𝑋, 𝛼 = 𝑏, 𝛽 = 𝑎, 𝛾 = 𝑐 and 𝛿 = 𝑑). Given an outcome 𝑟, if the expected
winner is neither 𝛼 nor 𝛽 and 𝛽 was eliminated before 𝛼 then 𝜎𝑖(𝑟) = 𝛽𝛼𝛾𝛿; for every
other outcome 𝑟, 𝜎𝑖(𝑟) = 𝛼𝛽𝛾𝛿. In other words, voters strategically invert their two first
preferred candidates when the top one had a better run but still could not prevent a
worse candidate to be elected, giving their second choice a chance to do better.

If voters start voting sincerely, we obtain the outcome 𝑐𝑑𝑏𝑎 with the Condorcet winner
eliminated with no votes at all in the first round, and ballots of type 𝑋 voters ultimately
transferred to candidate 𝑐 against 𝑑. The above heuristics have voters of type 𝑋 and
𝑍 invert their two most preferred candidates and vote 𝑎𝑏𝑐𝑑, 𝑎𝑑𝑏𝑐 respectively. The
outcome is then 𝑎𝑐𝑏𝑑. Then all voters resume voting sincerely, and we have a 2-cycle one
of whose ballot profiles elects the third candidate in the Condorcet order. Observe that
every outcome where the Condorcet winner is elected leads voters to cast their sincere
ballot, thus leading to this bad cycle.

According to Theorem A, this cycle is again robust under perturbation in a CS setting.

5.3 A cycle in condorcified ranked voting
Consider a ranked voting rule, i.e. one with ℬ = ℒ(𝐴). It has been proved by Durand,
Mathieu and Noirie [DMN14, DMN16] and independently by Green-Armytage, Tideman
and Cosman [GATC16] that under mild conditions condorcification of a voting system
(i.e. electing the Condorcet winner if she exist and applying the given rule otherwise)
cannot increase manipulability and often reduces it. We can therefore ask whether a
condorcified voting rule is less susceptible to the presence of bad cycles when a Condorcet
winner is present. Unsurprisingly, the answer is negative when voters who do not like
the Condorcet winner strategically choose to rank her lower in their ballot

Let us consider a condorcified voting rule, i.e. for all (𝐵𝑖)𝑖∈𝑁 ∈ ℬ𝑁 for which their
is a Condorcet winner 𝛾, 𝑊 ∘ 𝑔((𝐵𝑖)𝑖∈𝑁 ) = 𝛾. Assume moreover that 𝒪 contains the
information whether or not the winner was a Condorcet winner (with respect to the
ballot profile, since the preference profile is not available information). Consider the
preference profile

𝑍 𝑌 𝑋 𝑊

150 102 101 100
𝑎 𝑏 𝑐 𝑏

𝑏 𝑐 𝑎 𝑎

𝑐 𝑎 𝑏 𝑐

for which 𝑎 is the sincere Condorcet winner. Assume the following heuristics for voter of
any type 𝑖, whose preferences are denoted as above by 𝛼𝛽𝛾: if 𝛽 is elected as Condorcet
winner, then they cast the ballot 𝛼𝛾𝛽, in an attempt to give 𝛼 a shot. Otherwise, they
vote sincerely.
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If at first all voters vote sincerely, in the first outcome 𝑟0 the winner is 𝑎, declared a
Condorcet winner. This leads voters of type 𝑋 to next cast the ballot 𝑐𝑏𝑎 and voters
of type 𝑊 to cast the ballot 𝑏𝑐𝑎. This makes 𝑏 the Condorcet winner of the new ballot
profile. The above heuristics then lead all voters to vote sincerely, except voters of type
𝑍 who cast the ballot 𝑎𝑐𝑏; this makes again 𝑎 the Condorcet winner, and we have a 2-
cycle, one of whose ballot profiles elects a candidate that is not the Condorcet winner of
the preference profile. Moreover this cycle attracts all outcomes where 𝑎 is a Condorcet
winner of the ballot profile.

Again, Theorem A ensures that this cycle is robust under perturbation in a CS setting.

6 Chaos
We finish with an example illustrating the flexibility of the CS setting for the Polling
Dynamics. The starting point is to observe that the embedding Φ0 of a discrete space
Polling Dynamics in a CS setting cannot be continuous (unless it is a constant map).
Indeed, it takes a finite number of values, and the state space 𝒫 is connected. There
must exist some CS ballot profiles near which arbitrarily close CS ballot profiles are sent
to very different images by Φ0. In practice, assuming the outcomes carry continuous
information (e.g. shares of votes for each candidate), a heuristic like the Leader Rule
would probably not be applied blindly by all voters when the expected winner and
runner-off are in a close-call contest, or when the runner-up is in a close-call contest
with the next candidate. Different voters will have different confidence in the available
information and a small change in the expected outcome should result in a small change
in the ballots cast, i.e. the CS Polling Dynamics should be continuous.

We now give a relatively simple example with 𝑚 = 3, based on a reluctance to add
one’s second-preferred candidate unless it seems likely to improve the outcome, and we
observe that a complicated dynamics emerges. The take-away is that

Even simple CS Polling Dynamics can exhibit a chaotic behavior, where
the sequence of winners is impossible to predict reliably from the obser-
vation of arbitrarily many of its first terms.

By looking at the influence of a small number of core parameters of the model, we shall
see that chaos is neither universal nor restricted to exceptional parameters.

A simple continuous CS Polling Dynamics We consider the four-types preference
profile used in the proof of Theorem C:

𝑍 𝑌 𝑋 𝑊

3 1 3 5
𝑎 𝑎 𝑏 𝑐

𝑏 𝑏𝑐 𝑎 𝑎𝑏

𝑐 𝑐
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for which 𝑎 is a Condorcet winner and 𝑐 an absolute majority loser. As above, the
corresponding sets of admissible ballots makes 𝒫 a square with coordinates (𝑥, 𝑧) where
𝑥, 𝑧 are the proportions of voters of type 𝑋 , 𝑍 respectively voting {𝑎, 𝑏}. This choice
of ballot can be seen either as a form of cooperation between the two types of voters, or
as the result of risk aversion (which are complementary views, not opposed ones).

An outcome is a triple 𝑟 = (𝑟𝑎, 𝑟𝑏, 𝑟𝑐) ∈ [0, 1]3 giving the shares of votes obtained by
each candidate, and we choose the following CS heuristics (here the resulting distribution
of ballots does not depend upon the value 𝑥 or 𝑧 in Δ(ℬ𝑖) that is by definition part of
their argument):

𝜎𝑍((𝑟𝑎, 𝑟𝑏, 𝑟𝑐), 𝑧) = 𝐶𝑍 ∘ 𝑆(𝑟𝑎, 𝑟𝑏, 𝑟𝑐) 𝜎𝑋(𝑥, (𝑟𝑎, 𝑟𝑏, 𝑟𝑐), 𝑥) = 𝐶𝑋 ∘ 𝑆(𝑟𝑏, 𝑟𝑎, 𝑟𝑐)

where 𝐶𝑍 , 𝐶𝑋 , 𝑆 will be defined below, to be interpreted as follows:

• 𝑆 is a “safety function”, quantifying how unlikely it seems that cooperating would
be useful to counter a threat by 𝑐 (notice how 𝑟𝑎, 𝑟𝑏 are exchanged in 𝜎𝑋 , to take
into account the preferences of this type). 𝑆 will be in particular very small when
both 𝑐 is expected winner or close to be expected winner, and collaborating has a
good chance to prevent her to win,

• 𝐶 is a “collaboration function”, translating a level of safety into a proportion of
collaborations (high safety resulting in low collaboration).

We take here a very simple safety function:

𝑆(𝑟1, 𝑟2, 𝑟3) =
{︃

|𝑟2 − 𝑟3| when 𝑟2 > 𝑟1
1
2 |𝑟2 − 𝑟3| + 1

2 |𝑟1 − 𝑟3| otherwise.

i.e. when the second-preferred candidate is ranked higher than the preferred one, the
safety is the margin in her race with the least-preferred one; otherwise, safety is an
average of the margins in races of the two preferred candidates against the last one. For
example, if 𝑟1 ≫ 𝑟3 ≃ 𝑟2 then the safety is not too small (the least preferred candidate has
little chance of winning) but not maximal, meaning some voters will prefer to collaborate
in order to ensure 𝑐 finishes at the last rank. When 𝑟1 ≃ 𝑟2, the safety is close to both
|𝑟1 − 𝑟3| and |𝑟2 − 𝑟3|; when 𝑐 is far above or far below, one’s vote seems unlikely to
change the outcome and the incentive to collaborate is small.

Finally, we choose a simple collaboration function extrapolating linearly between the
value 1 (all voters collaborate) when the safety vanishes, and the value 0 (no voter
collaborates) when the safety is large enough:

𝐶𝑖(𝑡) = (1 − 𝑐𝑖𝑡)+ := max(0, 1 − 𝑐𝑖𝑡)

where as indicated (·)+ is the positive part, and where the coefficient 𝑐𝑖 (𝑖 = 𝑍,𝑋)
quantifies the risk tolerance: the higher, the less likely 𝑋 and 𝑍 voters will collaborate
(low values of 𝑐𝑖 thus correspond to high aversion to risk). For now, we take 𝑐𝑍 = 𝑐𝑋 = 5,
a rather moderate value: 1 − 5𝑡 reaches 0 only at 𝑡 = 0.2, i.e. when the safety margins
reaches a staggeringly high 20% of voters.
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Since a state (𝑥, 𝑧) results in the outcome (𝑟𝑎, 𝑟𝑏, 𝑟𝑐) = (3𝑥+4, 3𝑧+𝑥, 5), these choices
yield the CS Polling Dynamics Φ defined by:

Φ(𝑥, 𝑧) =
(︀(︀

1 − 5|3𝑥− 1|
)︀

+,
(︀
1 − 2.5|3𝑥− 1| − 2.5|3𝑧 + 𝑥− 5|

)︀
+

)︀
when 2𝑥+ 4 ≥ 3𝑧 and

Φ(𝑥, 𝑧) =
(︀(︀

1 − 2.5|3𝑧 + 𝑥− 5| − 2.5|3𝑥− 1|
)︀

+,
(︀
1 − 5|3𝑧 + 𝑥− 5|

)︀
+

)︀
when 2𝑥 + 4 ≤ 3𝑧. While Φ may look like an innocent map, drawing an orbit of this
map reveals an interesting pattern (Figure 8). It turns out all orbits yield pretty much
the same image, typical of a chaotic attractor.

In dynamical systems, chaos is not a formally defined word, but refers to a number
of properties all seeking to translate the idea that orbits behave in an unpredictable
fashion. The most prominent one is entropy, which comes in a number of versions, of
which we shall only give one flavor (more information is available in numerous books, e.g.
[KH95]). It is to be understood that “chaotic” situations are those of positive entropy,
zero entropy being the sign for a relatively “tame” system.

While we will not prove chaos here, we will show compelling numerical evidence that
some entropy is positive, meaning that an orbit have the same level of complexity as a
random sequence of (skewed) coin tosses. Note that the fact that the map Φ is chaotic is
not the most important point: what matters is that the sequence of winners along many
orbits are chaotic, which here results from the attractor intersecting regions electing
different candidates.

Numerical quantification of the chaos Given any state 𝑠 ∈ 𝒫, its winners word is
the word 𝜔(𝑠) whose 𝑘-th letter is 𝑊 (𝐺(Φ𝑘(𝑠))), the winner after 𝑘 iterations. In the
example above the word of the successive winners starting from the center of the space
𝒫 is (32 first letters shown, capital 𝑐 for better readability):

𝜔(.5, .5) = 𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶 · · ·

(the choice of (.5, .5) is arbitrary, but experimentally one checks that it has no bearing
on the results exposed here). There is some visible structure in this word, for example
there are never two successive 𝑐 no four 𝑎 in a row; apart from the first three letters,
the word seems constructed only with the blocs 𝛽 = 𝑐𝑎 and 𝛾 = 𝑐𝑎𝑎𝑎. However, the
succession of these blocks looks somewhat random:

𝜔(.5, .5) = 𝑎𝑎𝑎𝛾𝛽𝛾𝛾𝛽𝛾𝛾𝛾𝛾𝛽𝛾𝛾𝛽𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛾 . . .

To quantify the randomness of 𝜔(.5, .5), we use the following definition.

Definition 6.1. Let 𝜔 = 𝛼1𝛼2 · · · be an infinite word on the alphabet 𝐴, i.e. a sequence
of elements of 𝐴 (written without parentheses or comma). For all 𝑘 < 𝑗 ∈ N we set
𝜔𝑘:𝑗 = 𝛼𝑘𝛼𝑘+1𝛼𝑘+2 · · ·𝛼𝑗 ; each 𝜔𝑘:𝑗 is called a subword of 𝜔 (of length 𝑗 − 𝑘 + 1).
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Figure 8: One orbit of the CS Polling Dynamics Φ. Left: full picture. Right: a zoom to the
upper-right part showing a linear/fractal struture.

For all 𝑘, ℓ ∈ N with ℓ ≤ 𝑘 and all finite word 𝜃 of length ℓ, we denote by 𝑆𝜃
𝑘(𝜔) the

number of times the subword 𝜃 appears in 𝜔1:𝑘, we set

𝑃 𝜃
𝑘 (𝜔) := 𝑆𝜃

𝑘(𝜔)
𝑘 − ℓ+ 1

the proportion of length ℓ subwords of 𝜔1:𝑘 equal to 𝜃, and by 𝑃 ℓ
𝑘(𝜔) the “probability

vector” (𝑃 𝜃
𝑘 (𝜔))𝜃∈𝐴ℓ . Finally the Kolmogorov-Sinai entropy of the word 𝜔 is defined as

ℎKS(𝜔) = lim
ℓ→∞

1
ℓ

lim sup
𝑘→∞

𝐻(𝑃 ℓ
𝑘(𝜔))

where

𝐻(𝑝1, 𝑝2, . . . , 𝑝𝑘) =
𝑘∑︁

𝑖=1
−𝑝𝑖 log 𝑝𝑖 with the convention 0 log 0 = 0.

Remark 6.2. The limit in the definition exists by Fekete’s lemma, the needed subad-
ditivity being of the perks of the function 𝐻. The entropy ℎKS(𝜔) is never larger than
log𝑚, with equality when all possible subwords of length ℓ appear in 𝜔 with the same
asymptotic frequency.

The value of ℎKS(𝜔) is to be interpreted as the “uncertainty” of a random guess.
The reference case is that of an object uniformly drawn among 𝑁 , having uncertainty
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log𝑁 ; Observe that this makes uncertainty linear in the number of objects to be guessed
in the sense that guessing ℓ independent objects each uniformly drawn among 𝑁 has
uncertainty log(𝑁 ℓ) = ℓ log𝑁 . More generally, one defines the uncertainty of a choice
made according to a probability vector (𝑝1, . . . , 𝑝𝑁 ) as 𝐻(𝑝1, . . . , 𝑝𝑁 ), and this definition
enjoys many natural properties (see e.g. [Wal82] Theorem 4.1). The uncertainty of
guessing a length-ℓ subword of 𝜔, when ℓ is large and we look far on the right of the
word, is asymptotically of the order of ℓ · ℎKS(𝜔).

The sequence ℓ ↦→ 𝐻(𝑃 ℓ
220(𝜔)) is plotted in Figure 9. We observe an extremely good

alignment from ℓ = 4 onward, with slope ≃ 0.229, a strong indication that ℎKS(𝜔(.5, .5))
is close to this value. Every starting state 𝑠 yields very similar results, a strong numerical
indication that the map Φ is chaotic, with chaotic sequences of winners. To check whether
all states have orbits accumulating on the attractor pictured in Figure 5, we have drawn
the first iterates of Φ in Figure 10. All orbits seem to accumulate to the attractor, which
appears in fact connected (a fact that can be confirmed by topological arguments), made
of a very thin curve between two arrow-shaped parts, which are exchanged by Φ.

Figure 9: Plot of the entropy-estimating sequence ℓ ↦→ 𝐻(𝑃 ℓ
220(𝜔)). The slope of the marked line

is ≃ 0.2291

While this is only a specific example, it was constructed from basic principles and
it is possible that chaos be a quite common feature of CS Polling Dynamics. In order
to start testing this hypothesis, we look at what happens when we let 𝑐𝑋 and 𝑐𝑍 vary,
see Figure 11. We observe that entropy is mostly concentrated in an L shaped region,
where both voter types have not too high a risk aversion, and either type has not too
high risk tolerance. However when 𝑍 has high risk-aversion, moderate-high values of 𝑐𝑋

still result in positive entropy. This asymmetry must comes from the asymmetry of the
preference profile introduced by voters of type 𝑌 .

Looking at sequences of winners with various parameters show that in the upper-right
square where entropy vanishes (high risk tolerance for both voter types), several different
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Figure 10: From left to right then top to bottom, 200 × 200 points of the state space regularly
spaced and their 7 first iterates by Φ (colors preserved along each orbit).

dynamics can happen: 𝑐 can be constantly elected or we can observe a periodic pattern
involving 𝑎 and 𝑐 as winners. When 𝑋 has high risk aversion, we only observed constant
election of 𝑎. When 𝑍 has high risk aversion, for increasing values of 𝑐𝑋 , we observe
successively: constant election of 𝑎, periodic patterns involving 𝑎 and 𝑏, chaotic patterns
involving 𝑎 and 𝑏, constant election of 𝑏.

Let us end with the influence of the preference profile. We look at the basic example
(𝑐𝑋 = 𝑐𝑍 = 5.) with randomly chosen weights for all four voter types. The following
examples complements the main one to form a representative sample of what a quick
experimental exploration revealed for this model.

Example 6.3. With 𝑤𝑋 = 0.05, 𝑤𝑌 = 0.02, 𝑤𝑍 = 0.8 and 𝑤𝑊 = 0.8, 𝑎 is constantly
elected. Observe that it always gets at least .82 votes while 𝑐 receives only .8, so the only
possible contender would be 𝑏, but she would need almost all of 𝑍 voters to cooperate
and most 𝑋 voters not to cooperate, a behavior prevented in our model. This is a
non-chaotic, actually very stable example.

Example 6.4. Take now 𝑤𝑋 = 0.6, 𝑤𝑌 = 0.08, 𝑤𝑍 = 0.56 and 𝑤𝑊 = 0.82. Then
applying the same method as above, we get a higher entropy estimation:

ℎKS(𝜔(.5, .5)) ≃ 0.36

but the word itself looks a bit different, with long sequences of consecutive 𝑎:

𝜔(.5, .5) = 𝑎𝑎𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎 · · ·

This could be example of an “intermittent” behavior, with slow regions where Φ is
relatively tame but from which all orbits eventually escape to enter strongly chaotic
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Figure 11: Entropy estimated for various values of 𝑐𝑋 (abscissa) and 𝑐𝑍 (ordinate), from 1. to
30., mostly regularly spaced with a random perturbation. Each dot is one value of
the pair (𝑐𝑋 , 𝑐𝑍), color indicating the estimated entropy (linear regression made on
subwords of length 4 to 11 in 𝜔(.5, .5)): white is entropy 0 while pure red is entropy
ln(2) or above.
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regions, constantly alternating between two behaviors: predictable and chaotic. See one
orbit in Figure 12 (left); other orbits produce very similar pictures.

Example 6.5. Changing only slightly the previous example with 𝑤𝑋 = 0.6, 𝑤𝑌 = 0.08,
𝑤𝑍 = 0.56 and 𝑤𝑊 = 0.81, a radical change in long-term behavior appears: entropy
seems to vanish, with 𝐻(𝑃 ℓ

220) plateauing abruptly from ℓ = 10 onward. When looking
at subwords of 𝜔(.5, .5) of length 10 and more, one observes that there are exactly 22
of them, no matter the length. Closer observation then reveals that 𝜔(.5, .5) is the
concatenation of copies of the length 22 word 𝑎𝑎𝑎𝑐𝑎𝑐𝑎𝑎𝑎𝑐𝑎𝑐𝑎𝑐𝑎𝑐𝑎𝑎𝑎𝑎𝑎𝑎. Other starting
states yield similar results, indicating that Φ has here an attracting periodic orbit, of
period 22 (see Figure 12, right). At the time scale of an election, it would appear chaotic,
but in the longer run it is not.

This examples incites us to plot very long orbits on top of our entropy estimation,
to rule out an attracting periodic orbit of length significantly larger than the maximal
length of subwords used in the entropy estimation. Rigorously proving positive entropy
would need more sophisticated mathematical tools (one would search for a “horseshoe”).

Figure 12: Comparison of the orbits of 𝑠 = (.5, .5) for two close populations: Example 6.4 on the
left, Example 6.5 on the right, with colors of period 22. Both runs have 5000 points
(larger points are used on the right for readability).
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Figure 13: Plot of the entropy-estimating sequence ℓ ↦→ 𝐻(𝑃 ℓ
220(𝜔)) for Example 6.5

7 Conclusion
We have explained why synchronized iterated voting is relevant both to model political
elections preceded by polls, and to iterative anticipation of other voters’ strategies. We
proposed a framework for synchronized iterated voting, producing a “Polling Dynamics”,
in two flavors: one with a discrete space of states, the other with a continuous space
allowing more flexible modeling. We showed that the former can be seen as a particular
case of the latter.

Our first main result is that cycles of outcomes are robust under perturbation, so that
finding a cycle in the discrete-space setting ensures any small enough variation of the
model in the continuous-space setting still exhibit the same cycle.

Then we produced two examples in Approval voting, where voters apply simple, con-
sistent, sincere heuristics but cycles with sub-optimal or outright bad outcomes appear.
The first example somewhat mitigate an important result of Laslier: while the equi-
libria of the Polling Dynamics following from his Leader Rule, as he proved, elect the
Condorcet winner when she exist, they may fail to attract most of the possible outcomes.

We performed in silico experiments to assert the prevalence of these electoral conun-
drums. They are very rare for the Leader Rule, and even impossible when the culture
is unidimensional. However a slight relaxation of the Leader Rule makes precisely the
unidimensional culture the worst one among those tested, with up to more than 15% of
electorate producing a bad cycle.

We thus showed that under Approval Voting, not only convergence to equilibrium may
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not happen, but cycles can lead individually sound heuristics to result collectively in the
worst possible outcome. We then gave example of bad cycles for other voting systems,
in particular Condorcet systems, showing that these issues are not at all specific to
Approval Voting.

Last, we considered a simplistic example of continuous-space Polling Dynamics ensur-
ing continuity, i.e. small changes in the expected outcome leads to small changes in the
ballots cast. It turned out this model has a chaotic behavior, and we conjectured that
chaos is not uncommon at all for continuous-space Polling Dynamics. We supported this
conjecture by looking at the influence of some parameters of the model, showing that
chaos can be observed in a non-negligible range. The way in which a particular model
of voters behavior and a particular preference profile result in either constant, periodic
or chaotic patterns is only illustrated here, and would deserve a full study that is way
beyond the scope of the present work.
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