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Bad cycles and chaos in iterative
Approval Voting

Benoît R. Kloeckner ∗†‡

November 19, 2020

We consider synchronized iterative voting in the Approval Voting system.
We give examples with a Condorcet winner where voters apply simple, sin-
cere, consistent strategies but where cycles appear that can prevent the elec-
tion of the Condorcet winner, or that can even lead to the election of a
“consensual loser”, rejected in all circumstances by a majority of voters.

We conduct numerical experiments to determine how rare such cycles are.
It turns out that when voters apply Laslier’s Leader Rule they are quite
uncommon, and we prove that they cannot happen when voters’ preferences
are modeled by a one-dimensional culture. However a slight variation of the
Leader Rule accounting for possible draws in voter’s preferences witnesses
much more bad cycle, especially in a one-dimensional culture.

Then we introduce a continuous-space model in which we show that these
cycles are stable under perturbation. Last, we consider models of voters
behavior featuring a competition between strategic behavior and reluctance
to vote for candidates that are ranked low in their preferences. We show
that in some cases, this leads to chaotic behavior, with fractal attractors and
positive entropy.

1 Introduction
1.1 Iterative Voting
In any voting system, the choice of ballot by any voter is guided by her preferences
between the candidates and the expected effect of each ballot she can cast. To estimate
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the effect of any ballot, one needs to know the ballots cast by other voters, or at least to
have some information on them. Assuming perfect information is neither realistic nor
theoretically useful: in most cases, changing one’s ballot will not change the outcome
of the election (hence, as is well-known, the notion of Nash equilibrium is ineffectively
broad in the context of elections [Las09]). One thus often considers situations where
information is imperfect, so that the ballot to be chosen by any given voter might
change the outcome, with a tiny but non-zero probability. Another point of view is
to consider the possibility for voters of aligned interests to form coalitions and decide
together which ballots to cast. A third point of view, taking from both of the first two,
is to consider that some (or all) information about voters’ intents is common knowledge,
and that voters choose their ballot under the assumption that other voters that have the
same preferences as theirs will make the same reasoning as they will – thus overcoming
the insufficient weight of one ballot to change the outcome.

In any case, these considerations introduce a dynamical component to voting: after all
voters adjusted their intentions, the information under which this adjustment was made
is outdated; the new intents result in new information that could be shared, and itself
result in new strategic adjustments of voters’ intents, etc. Natural questions are thus
whether there is some dynamical equilibrium, i.e. intents of all voters that are preserved
when all shared publicly; whether such equilibrium is unique; what properties equilibri-
ums have, in particular what candidate can be elected at equilibrium; and whether any
other set of intent converges to an equilibrium after successive adjustments. The field of
iterative voting is the study of these question, under various modeling assumptions. One
shall distinguish between synchronized and asynchronous iterative voting. In synchro-
nized iterative voting, all voters are given the information at time 𝑡, and simultaneously
adjust their intents to build the new situation at time 𝑡 + 1.1 In asynchronous iterative
voting, some voters adjust their intents given the available information, and information
is updated before some other voters make their adjustments, etc.

Setting and motivation. This article is about synchronized iterative voting, in the
context of Approval Voting – the voting system in which a ballot can contain the names
of any subset of candidates, and the candidate whose name is present in the most ballots
is elected.

We shall exhibit examples showing the possibility of cycles with strong negative prop-
erties (in particular, non election of an existing Condorcet winner, or possible election
of a candidate strongly rejected by a majority of the electorate). These new issues with
the Approval Voting system complement in particular the examples provided in [SDL06].
We also introduce a continuous-space model in which finer voter behavior can be en-
coded; the most stricking outcome is that simple behaviors restricted to sincere ballots
can in some situation result in chaotic dynamics.

Note that Approval Voting is especially interesting in this context because several

1Note that what is important is not that the voters’ intents change exactly at the same time, but that
all voters have the opportunity to adjust their preferences before information is updated.
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sincere ballot coexist for each order of preference, so that there exist strategies that are
both sincere, simple, and non-trivial (we discuss this in more detail below); but it is
likely that bad cycles and chaotic dynamics exist in other voting systems.

Considering synchronized iterative voting is interesting from a theoretical perspective,
when trying to define a “best” ballot for each voter: to be efficient in her choice, a voter
should not only vote strategically, but also anticipate that other voters will also do so,
who will themselves try to anticipate all voters’ strategies, etc. A model for this situa-
tion is to replace instantaneous anticipations by iterations: each voter is given a fixed
strategy, which dictates for each possible expected outcome which ballot to cast, and we
inductively apply these strategies and update the expected outcome. Reaching a dynam-
ical equilibrium thus means that inductively anticipating each other’s strategy result in
a stable state. Conversely, the existence of a cycle means that in some circumstances
there is no meaningful way for voters to inductively anticipate other’s strategies. Note
that even when limiting the number of steps of counter-strategies, the game-theoretic
analysis of voting rules can be quite deep, see [GHRS19].

Synchronized iterative voting is also a model for political elections, which are usually
preceded by polls informing the voters of others’ intents; we will thus name our dynamical
model Polling Dynamics (but note that of course this model is imperfect, and that
understanding the effect of actual polls on strategic voters is not the sole intent of our
work). This point of view has been notably taken in [CPP04], and [RE12] where the
emphasis is on the effect of the amount of information given by the polls (ranks, or
scores, etc.)

Note also that while asynchronous voting is broader, it makes room for very many
parameters and is thus more flexible; in consequence, producing examples in synchronous
iterative voting is made in principle more difficult by its constraints.

We shall consider myopic strategies, where the behavior of voters only depend on the
last poll (however, we will allow at some point voter’s choices to also depend upon the
previous ballot they cast, in order to model change aversion). It would be interesting
to explore strategies taking into account all past polls, but this is beyond the scope of
the present article; let us simply conjecture that if voters compute an expected outcome
based on a (possibly weighted) average of previous polls, convergence should be much
more likely.

1.2 On sincerity, strategic voting and straightforwardness
In Approval Voting, one can say that a ballot is sincere whenever any candidate preferred
to another whose name present on the ballot, must also be on the ballot – or in other
words, if all candidates present on the ballot are preferred to all candidates not present
on it [BF07]. Note that by design of this voting system, there are no reasons not to vote
sincerely in this sense (at least when there is a known tie-breaking rule, otherwise see
[End13]).

Durand notes in [Dur15] that in general the meaning of “sincerity” is open to inter-
pretation, and that this word has often been used to argue against strategic voting.
He makes a compelling point that strategic voting is to be expected, and even advised
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to voters, and that what causes a democratic problem is the necessity of resorting to
strategies to get the best outcome rather than the fact that voters embrace this necessity
(“Manipuler c’est bien, la manipulabilité c’est mal”: “Manipulation is good, manipula-
bility is bad”). Indeed strategies that either need a lot of information on other’s plans or
that are too contrived cannot be applied uniformly, creating asymmetries among voters.
Even in the absence of manipulation or strategic voting, ballots deemed sincere can be
cast but afterward regretted in view of the outcome of the election, thus lowering trust
and confidence in the democratic system. A most important property of voters’ behavior
is thus straightforwardness [Gib73].

Gibbard defines a game form to be straightforward if for every player 𝑣 and every order
of preference on the outcomes, 𝑣 has a strategy 𝑏 that is dominant for these preferences,
i.e. for all strategies of other player, no other strategy of 𝑣 would yield a better outcome
than 𝑏. We know that as soon as there are at least 3 candidates, no non-dictatorial
voting system can be straightforward for all voters individually [Gib73, Sat75]. Since
single voters often have little weight to an election, we can extend this definition: let
us say that a situation is straightforward for a given voter or set of voters when they
have a choice of ballots which, whatever the ballots cast by other voters are, yields an
outcome at least as good (from all of their points of view simultaneously) than any
other possible choice. Here “situation” refers to a given method of vote for a given set of
candidates, a given set of voters, a given coalition with their possibilities of coordination,
and possibly to additional restriction on the allowed strategy. For example, one can
impose that ballots cast be sincere; in most voting systems, this leaves each voter with
only one allowed strategy and thus trivially implies straightforwardness. Let us give
another example: in an election using Plurality or Approval Voting, if a candidate 𝛼 is
the top-preferred of a majority of voters able to cooperate fully, then the situation is
straightforward for this set of voters: they can all vote for 𝛼 and get her elected. In a
straightforward situation, a voter or coalition of voters can safely choose how to vote by
considering only their preferences, in a way that they will not regret whatever the others
choose to vote; in particular they can disregard any poll and any other information to
make their choice. Since straightforwardness cannot be hoped in general, one can try
to determine whether certain systems often offer weak forms of straightforwardness (see
again [Dur15]).

In approval Voting, as soon as there are more than two candidates each voter has
several sincere ballots, corresponding to the various point in her order of preference
where she can draw the line between acceptance and rejection. In particular, strategic
voting (i.e. choosing one’s ballot depending on the ballots expected to be cast by the
other voters) can occur even when restricting to sincere votes. In other words, sincerity
in the above sense does not imply straightforwardness. Our examples will in particular
show how very far from straightforward Approval Voting can be in some circumstances.

1.3 Is Approval Voting a Condorcet system “in practice”?
While Approval Voting is known not to be a Condorcet system, several arguments have
been raised that could seem to indicate it might be close to Condorcet “in practice”.
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Brams and Sanver [BS03] showed that when a Condorcet winner exists, her election is
a strong Nash equilibrium, i.e no coalition of voters can organize a strategical vote so as
to improve the outcome for each and every one of the members of the coalition; this was
improved in [SS04] where it is shown (for Approval Voting as well as other voting rules
such as Plurality or Instant Runoff Voting) that only Condorcet Winners are elected at
strong Nash equlibriums. Strong Nash equilibrium are said by Brams and Sanver to be
“globally stable”, but one point not considered in either works above is whether they
are “attractive” equilibrium (in a sense to be made precise below), which has a strong
bearing to the question whether they should be expected to be reached in practice.

Laslier [Las09] proved that under a large-electorate model with uncertainty in the
recording of votes and perfect common information, the best course of action for voters
results in a particular strategy, the “Leader Rule”. Additionally, he proved that if there
is a Condorcet winner and all voters apply the Leader Rule, then there is at least one
equilibrium, and any equilibrium elects the Condorcet winner.2 Let us give more detail
on these results, explained in the framework we shall use here.

To be applied, the Leader Rule (LR) needs voters to have a conception about which
candidate is likely to win the election (the expected winner), and which candidate is likely
to turn second (the expected runner-up). The LR then consists, given the preferences of
the voter, in voting for all candidates preferred to the expected winner, to no candidate
the expected winner is preferred to, and to vote for the expected winner if and only if
she is preferred to the expected runner-up; in particular, this strategic voting selects
one particular case of the various sincere ways to vote. Laslier shows that under a
certain small uncertainty on the recording of votes, this strategy maximizes the odds of
improving the outcome of the election.

Assume that a perfectly accurate poll has been conducted (in particular voters answer
the poll with the ballot they actually intend to cast); given the collection of initial ballot
the voters intend to cast, assuming that after the poll is made public each voter applies
the LR to adjust her ballot, we get a new set of intended ballots to be cast. This
creates a dynamical system which we call the polling dynamics (PD). An equilibrium
(or “dynamical equilibrium”, distinct from a Nash equilibrium) is then a fixed point of
this dynamics, i.e. a state where if all voters would adjust their ballots according the
announced results, the adjusted ballots would produce the same result. Laslier second
important result can be phrased as follows: whenever there is a Condorcet winner, under
PD there exist at least one dynamical equilibrium and any dynamical equilibrium elects
the Condorcet winner. Again, the question of the “attractivity” of the equilibrium is
not addressed.

1.4 Description of the main results
The goal of this article is to construct examples showing that in Approval Voting, the
PD can exhibit a “bad cycle” even in the presence of a Condorcet winner (the main

2A similar argument has been raised by Warren D. Smith and is used by advocates of Approval Voting
and Range Voting, see https://www.rangevoting.org/AppCW.html. The argument of Smith is much
less rigorous than Laslier’s, since the equilibrium assumption is kept implicit.
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point shall not be the mere existence of cycles, a rather unsurprizing phenomenon, but
rather that such cycles can result in the election of a suboptimal candidate). As noted by
Laslier, previous examples of cycles (notably in [BF07]) needed some voters to change
their strategy at some iteration of the process; in our example the assumed strategic
behaviors is consistent, i.e. constant in time; they are also sincere, and simple.

In Section 3.1, we assume all voters apply the Leader Rule, thus additionally implying a
rather strong form of rationality under Laslier’s uncertainty model. We show an example
in which PD exhibits a cycle where the Condorcet winner cannot be elected. Moreover
the basin of attraction of the cycle, i.e. the set of initial states leading to the cycle
under PD, is quite larger than the basin of attraction of the Condorcet-winner-electing
equilibrium: in practice, it seems quite likely to get caught in a such cycle instead of
converging to the stable equilibrium.

In a second example (Section 3.2), we assume a slight modification of the Leader Rule:
some voters have several candidates they decide never to approve; the strategy is kept
simple, sincere, and consistent. In this example, there is a Condorcet winner and a
consensual loser, ranked last by a majority of the electorate (actually almost two-third
of it). We get two equilibriums, one electing the Condorcet winner the other electing
another candidate, and a cycle of order 2 which attracts two-third of the possible states
in the PD and where one of the state elects the consensual loser.

These examples, while specific, are quite stable: the polls creating transition from one
expected order of candidates to another are not too close calls, so that their parameters
can easily be changed in a range without changing the PD.

These examples show that Approval Voting exhibits strong issues with respect to
polling effects on election outcome (but we do not claim that this flaw does not appear
in many other voting systems). They mitigate the impression possibly given by previous
works that Approval Voting is a Condorcet-in-practice method:

• a slight modification of the Leader Rule can create equilibriums not electing a
Condorcet winner, even when one exists,

• Condorcet-electing equilibriums can fail to attract most possible states, i.e. most
initial expections on the outcome of the election could lead to cycle not ensuring
the election of the Condorcet winner, even when applying the Leader Rule,

• polling can have an extreme impact on the election outcome: rigging any one poll
can prevent the election of the Condorcet winner even if all subsequent polls are
perfectly conducted and reported; and in fact, even if all polls are perfect but
in the first one voters respond according to a pre-established expectation of the
outcome of the election, this expectation can determine the outcome of the election
even after arbitrary many polls: polling induces neither synchronization nor loss
of memory,

• even with perfect unrigged polls, the sheer number of polls (e.g. its parity) can
decide the outcome of the election,

6



• the PD can get a majority of first poll results to lead after iteration to a cycle,
some states of which elect a candidate fully disapproved by a large majority of
voters,

• combining the last two items, the parity of the number of polls conducted can lead
to elect a candidate always disapproved by a large majority of voters.

It could be expected that such bad cycles are in practice rare. In section 4 we explore
numerically this question under various cultures modeling the construction of random
voters’ preferences. The main take-away is that bad cycles are rare when voters apply
the LR, but can be more common, appearing in more than 15% of electorates, in its
modification where voters give themselves a limit to the candidates they may approve
of. Even more striking is that the culture where bad cycles are rarest for the LR is the
one where they are most common for its modification.

We also consider more general behavior of voters by introducing in Section 6 Con-
tinuous Polling Dynamics (CPD), a continuous-space variation of the PD into which
the latter can be embedded. We first show that the above discrete bad cycle are stable
under perturbation of the discrete model; the considered perturbations model situations
where:

• at each iteration only a given fraction of voters adjust their ballots strategically
(e.g. the other not being aware of the poll, or being reluctant to change their
minds), and

• a fixed strategy is assumed for each voter type only when the candidates scores
are sufficiently far apart, without making any assumption on the voters behavior
in case of almost equality between any two candidates.

Last, in Section 7 we consider another kind of voter’s behavior, where voters are
reluctant to approve of a candidate who is ranked low in their preference order. The
arbitration between a strategy such as the LR and this reluctance can, surprisingly,
make the CPD a chaotic dynamical system, making the prediction of the next winners
from the observation of a sequence of previous expected winners practically impossible.
We introduce some tools from dynamical systems to quantify the amount of chaos in
the CPD.

1.5 Brief overview of the literature
Let us end this section by describing some more previous works; with no pretense to
exhaustivity, the aim is to describe some directions previously explored in iterative
voting.

In the case of Plurality Voting, discussed in slightly more details below, very gen-
eral convergence results have been obtained by Meir and co-authors [MLR14, Mei15,
MPRJ17]. Many other voting rules –not Approval– have been considered by Lev and
co-authors [LR16, KSLR17]. Their theoretical results are negative (no guaranteed con-
vergence) but empirical tests seem to indicate that cycles are rare. Restricted strategies,
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where voters may be constrained are assumed not to use best or better responses, have
been studied in [OMP+15] and [GLR+13].

Non-myopic strategies have been considered for example in [BHY14] and [AGP17].
Note that there voters change their ballots a random or fixed number of times, and the
focus is on the quality of the last result: the dynamical aspect of iterative voting is
not considered. Both articles show that voters learning from past information produce
relatively good outcomes.

Note that in most of these results (the exceptions concerning Plurality), voters are
assumed to adjust their ballot one by one (a specific case of asynchronous iterative
voting). Other interesting results can be found in [OLP+15, ROL+15].

Considering Plurality Voting, the situation is complicated by the rigidity of the single-
name ballot, which forces voters to choose a trade-off between preferences and probability
to improve the outcome of the election. The works [MLR14] and [Mei15] have studied in
depth models taking into account the scores of the candidates and a level of uncertainty
to define the possible voters’ strategies. They obtained several results proving under
some assumptions convergence to equilibrium (the result closest to our present setting is
Theorem 5 in [Mei15], where at each iteration an arbitrary subset of voters adjust their
votes according to the current poll results, thus including the case studied here where
all voters adjust their votes at each iteration). In the case when strategies are restricted,
[OMP+15] gives sufficient conditions for convergence in many voting systems.

The question of the quality of equilibriums have been considered for Plurality, Veto
and Borda in [BCMP13], where the voters can adjust their votes one at a time, and
starting from the state where each voter casts her sincere ballot (which is unique in
these voting systems). Concerning Plurality, they find that Nash equilibriums that can
be attained in this way are all very good; but in their model, the individual updates are
made greedily and any candidate that would start with two or more votes less than the
starting winner will never receive any new vote. One could expect real voters to vote
not for immediate improvement of the winner, but in order to give a better position to
a contender that might receive more support from others.

Note that if we tried to design a very simple strategical model inspired by Leader Rule
for Plurality voting, we could consider the case when every voter votes for either the
expected winner or the expected runner-up, whoever comes first in her order of preference
(the rationale is that when the electorate is large, a vote to any other candidate is orders
of magnitude less likely to change the outcome of the election); this corresponds to the “2-
pragmatist” strategy mentioned e.g. in [RE12], and in [GLR+13] which studies restricted
strategic voting in asynchronous iterated voting. If we assume that all voters apply a 2-
pragmatist strategy, then of course the first poll is decisive in the Polling Dynamics and
the outcome of the election, since the expected winner and expected runner-up are the
only ones staying in competitions. Then there is always convergence to an equilibrium,
and a very fast one at that (the polls are constant after the second iteration!) However
there are very many equilibriums: every candidate that is not a Condorcet loser could
be elected, depending on the results of the first poll. In a sense, this strategy reduces the
PD to a two-rounds voting system where the first two candidates in the first round make
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it to the second one, which is decided by majority.3 At least a Condorcet loser cannot be
elected, since if she makes it to the second poll she is defeated in each poll after the first.
Note that this reasoning shows that any system with an ultimate two-candidates round
(e.g. Instant Runoff Voting) will avoid electing a candidate ranked last by a majority
of voters, including after successive polling; this is a very weak but positive feature that
Approval Voting lacks.

Acknowledgments. I am indebted to Adrien Fauré @AdrienGazouille for a long de-
bate on twitter (in French) that lead me to seek and design the examples presented here,
and to François Durand for introducing me to the Social choice theory and for many dis-
cussions on Voting Systems. This article benefited from relevant comments provided by
Adrien Fauré, Jean-François Laslier, Reshef Meir and anonymous referees who I warmly
thank.

2 Formalism and notations
Let us set up some notations for our discrete model and formalize the Polling Dynamics
(PD).

2.1 Candidates, electorate, preferences and strategies.
We consider a finite set of candidates, named by lower-case letters from the beginning
of the alphabet, C = {𝑎, 𝑏, 𝑐, . . . }. An outcome, the set of which is denoted by O, is a
result of an election (or poll, or anticipation of result by a voter) and can be of different
nature depending on the setting: it can for example give the number of votes received by
each candidate, or only their rankings (supposed to be a linear order: a tie-breaking rule
is assumed, e.g. alphabetic order), or only the identity of the winner and the runner-up.
A linear order on the set of candidates is written as a word in the candidates names
(so that for three candidates, the possible linear orders are 𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑎𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏, 𝑐𝑏𝑎),
the first-ranked on the left. We assume that at least the winner and runner-up can be
deduced from the outcome; if the outcome is 𝑜, we denote them by 𝑤(𝑜) and 𝑟(𝑜), re-
spectively. We denote 𝛼 ≻𝑜 𝛽 to say that in the outcome 𝑜, 𝛼 is ranked before 𝛽 (so that
for example 𝑤(𝑜) ≻𝑜 𝑟(𝑜)). Using this notation implicitly assumes that the information
given by the outcome is sufficient to deduce the order between 𝛼 and 𝛽.

The preferences of a voter is a linear order on C , but with the anti-symmetric property
relaxed to allow ties (this will play a role in our second example); we denote 𝛼 >𝜋 𝛽 to
say that 𝛼 is strictly preferred to 𝛽 in the preferences 𝜋, and 𝛼 ≥𝜋 𝛽 to say that 𝛼 is
preferred to 𝛽 or tied with her. A set of preferences is denoted in the same way than
a linear order, with parentheses to group the tied candidates: 𝑎(𝑏𝑐)𝑑 means 𝑎 is the

3In some sense, multiple-round voting systems could be thought of as a way to counter the reluctance
of some voters to vote strategically.
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favorite candidate, 𝑑 is the least preferred, and 𝑏 and 𝑐 are tied, both ranked between 𝑎
and 𝑑. The set of possible preferences is denoted by P.

We assume Approval Voting is used, so that a ballot is an arbitrary subset of C ; the
set of ballots is denoted by B. For a voter with preferences 𝜋 ∈ P, a ballot 𝐵 is said
to be sincere whenever for all 𝛼 ∈ 𝐵 and all 𝛽 /∈ 𝐵, 𝛼 >𝜋 𝛽.4 For example, if there are
4 candidates and 𝜋 = 𝑎(𝑏𝑐)𝑑, the possible sincere ballots are ∅ (the empty ballot, aka
blank vote, which we will mostly ignore in this article), {𝑎}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐, 𝑑} (which
is in practice equivalent to a blank vote, and which we will therefore also ignore). A
sincere ballot is simply determined by a limit of acceptance, all names above this limit
being written in the ballot. For each 𝜋 ∈ P, there are thus at most |C | − 1 sincere
ballots that are meaningful (in the sense that they are neither blank nor do they contain
all names), and this bound is attained exactly when there are no ties in 𝜋.

A consistent strategy is a mapping 𝑓 : O → B; we shall often call them simply
strategies. We say that a voter applies strategy 𝑓 if whenever she expects the outcome
𝑜 ∈ O, she casts the ballot 𝑓(𝑜) (in either an election or in a poll). An inconsistent
strategy would be given by a sequence (𝑓𝑛)𝑛≥1 of such maps, with 𝑓𝑛 applied in the 𝑛-th
iteration. A strategy 𝑓 is said to be sincere if for all 𝑜 ∈ O, 𝑓(𝑜) is a sincere ballot.
Here, we will say that 𝑓 is a simple strategy whenever 𝑓(𝑜) only depends on the ranking
between the candidates.

A particular example of consistent, simple and sincere strategy, associated with pref-
erences 𝜋 without ties, is the Leader Rule 𝑓LR

𝜋 introduced by Laslier [Las09], defined as
follows: for all 𝑜 ∈ O and all 𝛼 ∈ C , 𝛼 ∈ 𝑓LR

𝜋 (𝑜) if and only if either 𝛼 >𝜋 𝑤(𝑜) or
𝛼 = 𝑤(𝑜) >𝜋 𝑟(𝑜). In other words, applying the Leader Rule consists in approving all
candidates preferred to the expected winner, and to vote for the expected winner if and
only if she is preferred to the runner-up.

We assume a finite set of voter types, named by upper-case letters from the end of the
alphabet T = {𝑍, 𝑌, 𝑋, . . . }, with all voters of a given type applying the same strategy
(this condition will be somewhat relaxed later in this article). The electorate is the data
for each voter type Ω of preferences 𝜋Ω, a strategy 𝑓Ω and a number of voters 𝑛Ω.

2.2 Elections and Successive Polling Dynamics.
An election (also modelling polls) is a tuple of non-negative integers (𝑛𝐵)𝐵∈B giving the
number of each possible ballot cast. The set of all possible elections is denoted by E .
A map 𝐹 : O → E is defined by applying the strategies of each voter type given an
expected outcome 𝑜 and compounding the resulting ballots:

𝐹 (𝑜) =
⎛⎝ ∑︁

Ω s.t. 𝑓Ω(𝑜)=𝐵

𝑛Ω

⎞⎠
𝐵∈B.

4Sincerity is often defined with respect to a linear order, i.e. without ties. When ties are allowed,
there are two possible ways to extend the definition, ours or only asking 𝛼 ≥𝜋 𝛽 instead of 𝛼 >𝜋 𝛽.
Choosing strict comparison makes the sincerity a stronger condition, and thus our results are made
stronger.
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Meanwhile, the use of Approval Voting yields a fixed mapping AV : E → O, which de-
pending on the choice of outcomes gives the number of votes received by each candidate,
or their ranking (ties broken by alphabetic order), or the winner and runner-up.

These data together determine the Polling dynamics (PD), which is the mapping
taking as argument an outcome assumed by all voters, and returning the outcome from
Approval Voting when each voter casts a ballot following her strategy:

PD : O → O

𝑜 ↦→ AV(𝐹 (𝑜)).

This model in particular assumes consistent strategies (strategies do not vary in time).
Since O is the space where PD operates, outcomes are also called states. PD models
the situation where before the election a certain number 𝑘 of perfect polls are conducted
(perfect meaning that they are answered sincerely, i.e. each voter tells the ballot he or
she would cast given the current expected outcome, they are made publicly available,
and all voters are polled). Then, if we assume initial intended ballots 𝑏0(Ω) for each
voter type Ω, the first poll result is

𝑜0 = AV
⎛⎝⎛⎝ ∑︁

Ω s.t. 𝑏0(Ω)=𝐵

𝑛Ω

⎞⎠
𝐵∈B

⎞⎠
and the final outcome of the election is PD𝑘(𝑜0).

We are thus interested in the dynamical properties of PD, i.e. of the behavior of its
iterates PD𝑘 and especially in its orbits (i.e. the families (PD𝑘(𝑜))𝑘∈Z+ where 𝑜 ∈ O).
A periodic orbit (also named cycle) is a family of distinct states 𝑜1, . . . , 𝑜𝑝 such that
PD(𝑜𝑖) = 𝑜𝑖+1 for all 𝑖 ∈ {1, . . . , 𝑝 − 1} and PD(𝑜𝑝) = 𝑜1. The number 𝑝 is called the
period of the periodic orbit, which is also called a cycle, or 𝑝-cycle to precise the period.
A fixed point (also named dynamical equilibrium) is a 1-cycle, i.e. a state 𝑜 such that
PD(𝑜) = 𝑜. A cycle is said to be trivial if all its states have the same winner; otherwise
it is said to be non-trivial (non-triviality implies that the cycle has period at least 2).

When O is finite (e.g. when outcomes are the ranking of candidates), we can represent
PD by the oriented graph with O as set of vertices, and with exactly one outgoing edge
for each 𝑜 ∈ O, with endpoint PD(𝑜). Cycles are then cycles of the oriented graph, and
fixed points are states with a loop (to increase readability, we will omit loops in our
representation of graphs of Polling Dynamics; fixed points are thus represented without
an outgoing edge). In this case, the basin of attraction of a cycle 𝑜1, . . . , 𝑜𝑝 is the set of
all states 𝑜′ such that there exist 𝑘 ∈ Z+ and 𝑖 ∈ {1, . . . , 𝑝} such that PD𝑘(𝑜′) = 𝑜𝑖.

Remark 2.1. This model is restrictive as it assumes all voters adjust their ballots
simultaneously; see Section 6 for a generalization. While it feels unrealistic that all
voters are informed of a poll and adjust their strategies before the next poll, for political
elections it stays more realistic than voters adjusting their votes one by one, and the
information being updated at each of these tiny steps.
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2.3 Remarkable Candidates and the Polling Dynamics.
Note that the preferences play no role in PD; their importance is that they enable to
define a sincere strategy (and not all strategies have a preference 𝜋 for which they are sin-
cere, so the sincerity assumption is a restriction even if the preferences are unrestricted),
and they enable to define particular candidates with particular significance with respect
to a given electorate.

When a cycle occurs, an important point is whether the elected candidates in the
various states of the cycle are the same, and whether they have a particular quality.
Given an electorate, a candidate 𝛼 is said to dominate a candidate 𝛽 (sometimes written
𝛼 > 𝛽, but beware that this is not a transitive relation) whenever there are strictly
more voters that strictly prefer 𝛼 to 𝛽 than voters that strictly prefer 𝛽 to 𝛼 (i.e. in the
majority graph, assuming indifferent voters abstain, there is an arrow from 𝛼 to 𝛽). A
candidate 𝛼 is then said to be a Condorcet winner whenever she dominates every other
candidate; a Condorcet winner may or may not exist, but if it exist it is unique. When
preferences have no ties, this is the usual definition of a Strong Condorcet Winner; when
there are ties, a stronger definition could be possible: to dominate, one could ask for
a majority of all voters, including abstainers. When ties are allowed, we shall mention
whenever our results still hold with this stronger definition.

A candidate 𝛽 is said to be a Condorcet loser whenever she is dominated by every
other candidate; again, a Condorcet loser may or may not exist and is unique if she
exist. Similarly, one says that a linear order 𝜏 on the candidates is a Condorcet order
whenever each candidate dominates all candidates ranked below them in 𝜏 . Last, we
will use a stronger notion than Condorcet loser: a candidate is said to be a consensual
loser whenever there is a strict majority of the electorate that ranks her last (possibly
tied with others) in their preferences. A consensual loser rarely exist, and when she does
she is a Condorcet loser.

Given a set of candidates and an electorate, there are many questions of interest:
are there equilibrium or trivial cycles, and which candidate do they elect? are there
non-trivial cycles, and which candidates are elected in the various states of the cycles?
when there are several cycles, how big are their respective basin of attraction? which
cycle has a particular state, e.g. the state where each voter votes only for her favorite
candidate, in its basin of attraction, and which candidates can be elected in this cycle?
how do the answers to all these questions depend on the electorate?

3 Discrete examples of bad cycles
3.1 Non-convergence of the Leader Rule
The main goal of this Section is to prove the following.

Theorem A. Using Approval Voting, there exists an electorate on a set of 4 candidates
such that:

• there is a Condorcet winner,
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• each voter has preferences without ties and follows as strategy the Leader Rule,

• PD has a cycle, whose basin of attraction contains a majority (actually two-third)
of the states, and none of whose states elects the Condorcet winner.

Proof. We set C = {𝑎, 𝑏, 𝑐, 𝑑} and consider an electorate with 7 types of voters, with
the following preferences and numbers (strategies are given by the Leader Rule):

𝑇 : 𝑎𝑏𝑐𝑑 100 𝑈 : 𝑏𝑎𝑐𝑑 1000 𝑋 : 𝑏𝑐𝑎𝑑 1004
𝑉 : 𝑐𝑎𝑑𝑏 1001 𝑌 : 𝑐𝑑𝑎𝑏 1008
𝑊 : 𝑑𝑎𝑏𝑐 1002 𝑍 : 𝑑𝑏𝑎𝑐 1016

The voters in classes 𝑈, 𝑉, 𝑊 like 𝑎 but each prefers one of 𝑏, 𝑐, 𝑑 better, while the voters
in classes 𝑋, 𝑌, 𝑍 do not like 𝑎 too much but distaste one of 𝑏, 𝑐, 𝑑 even more, creating
a cycle in the majority graph 𝑏 > 𝑐 > 𝑑 > 𝑏 with 𝑎 close to tie with each of 𝑏, 𝑐, 𝑑.
Meanwhile, voters in 𝑇 prefers 𝑎 to any other player, and their moderate number suffice
to make 𝑎 a Condorcet winner, while maintaining the cycle 𝑏, 𝑐, 𝑑 in the majority graph.
The precise numbers of classes 𝑈 to 𝑍 are chosen, for the sake of fanciness, to exclude
any perfect tie (different sums of distinct powers of 2 never agree).

To define the Leader Rule, the outcomes need only give the winner and runner-up,
and they are denoted by ordered pairs 𝑤𝑟 or 𝑤, 𝑟. Consider the outcome 𝑜1 = 𝑏𝑎. Under
the Leader Rule, it leads to the following ballots and results:

𝑇 : {𝑎} 𝑈 : {𝑏} 𝑋 : {𝑏} 𝑎 : 3111 𝑏 : 3020
𝑉 : {𝑐, 𝑎, 𝑑} 𝑌 : {𝑐, 𝑑, 𝑎} 𝑐 : 2009
𝑊 : {𝑑, 𝑎} 𝑍 : {𝑑, 𝑏} 𝑑 : 4027

so that 𝑜2 := PD(𝑜1) = 𝑑𝑎 – i.e. 𝑎 stays second, while the previously unthreatening 𝑑
comes in first position. The strategic adjustments triggered by 𝑜2 are as follows:

𝑇 : {𝑎, 𝑏, 𝑐} 𝑈 : {𝑏, 𝑎, 𝑐} 𝑋 : {𝑏, 𝑐, 𝑎} 𝑎 : 3105 𝑏 : 2104
𝑉 : {𝑐, 𝑎} 𝑌 : {𝑐, 𝑑} 𝑐 : 4113
𝑊 : {𝑑} 𝑍 : {𝑑} 𝑑 : 3026

so that 𝑜3 := PD(𝑜2) = 𝑐𝑎. The corresponding strategic adjustments are then:

𝑇 : {𝑎𝑏} 𝑈 : {𝑏, 𝑎} 𝑋 : {𝑏, 𝑐} 𝑎 : 3118 𝑏 : 4122
𝑉 : {𝑐} 𝑌 : {𝑐} 𝑐 : 3013
𝑊 : {𝑑, 𝑎, 𝑏} 𝑍 : {𝑑, 𝑏, 𝑎} 𝑑 : 2018

so that PD(𝑜3) = 𝑜1.
Similar computations gives the graph of PD, represented in Figure 1.
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Figure 1: The PD of the first example. States where the Condorcet winner is elected are shown
in green, light green for the dynamical equilibrium. The periodic states not electing
the Condorcet winner are shown in orange.

Remark 3.1. It is worthwhile to observe (although but a bit tedious to check) that in
this example, all states can be obtained from a certain choice of a sincere ballots for
each voter type. For example, 𝑑𝑐 is obtained if all voters cast the ballot with only their
preferred candidates. That all states are covered is hardly surprising: there are only 12
states, but 37 = 2187 combinations of sincere ballots.
Remark 3.2. In the cases of 𝑛 > 4 candidates, we can take the above example and
add 𝑛 − 4 dummy candidates that appear at the end of all voters preferences. The only
property that may not be preserved in this operation is the size of the basin of attraction
of the 3-cycle: for example the states starting with one of the dummy candidates will
all be sent by PD to a state starting with 𝑎, since voters would vote for all of 𝑎, 𝑏, 𝑐, 𝑑.
However this is easily fixed by adding a voter type, for example in the case of a fifth
candidate 𝑒 one could take 𝑆 : 𝑏𝑒𝑐𝑑𝑎, 50. Indeed, this voters will break the tie between
𝑎, 𝑏, 𝑐, 𝑑 whenever 𝑒 is the expected winner, in favor of 𝑏, thus leading to the basin of
attraction of the 3-cycle.
Remark 3.3. As pointed out by one of the anonymous referees, Theorem A does not
hold for 3 candidates. Assume there is a Condorcet Winner 𝑎 and two other candidates
𝑏, 𝑐. Assuming preferences have no ties (an implicit assumption for the LR), there are
6 possible voter types; let 𝑇𝛼𝛽 denotes the voters ranking 𝛼 first and 𝛽 second, and let
it also denotes the proportion of such voters. We assume there is no equality in any
partition into two groups of three voter types, which is a generic condition, to avoid
dealing with ties. Since 𝑎 is a Condorcet winner,

𝑇𝑎𝑏 + 𝑇𝑎𝑐 + 𝑇𝑐𝑎 >
1
2 > 𝑇𝑏𝑐 + 𝑇𝑏𝑎 + 𝑇𝑐𝑏

𝑇𝑎𝑏 + 𝑇𝑎𝑐 + 𝑇𝑏𝑎 >
1
2 > 𝑇𝑏𝑐 + 𝑇𝑐𝑎 + 𝑇𝑐𝑏

One of 𝑏 and 𝑐 would win a duel against the other, and without loss of generality we
assume 𝑏 does, i.e.

𝑇𝑏𝑎 + 𝑇𝑏𝑐 + 𝑇𝑎𝑏 >
1
2 > 𝑇𝑐𝑎 + 𝑇𝑐𝑏 + 𝑇𝑎𝑐.
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We assume that all voters follow the Leader Rule and prove that the Polling Dynamic
converges to one of the outcomes 𝑎𝑏𝑐 or 𝑎𝑐𝑏.

First, whatever the expected outcome is, 𝑎 receives either 𝑇𝑎𝑏+𝑇𝑎𝑐+𝑇𝑐𝑎 or 𝑇𝑎𝑏+𝑇𝑎𝑐+𝑇𝑏𝑎

votes, depending on whether 𝑏 is above 𝑐 or not, in any case more than half.
When 𝑎 is expected winner, 𝑏 and 𝑐 receives 𝑇𝑏𝑐 +𝑇𝑏𝑎 +𝑇𝑐𝑏 < 1

2 and 𝑇𝑏𝑐 +𝑇𝑐𝑎 +𝑇𝑐𝑏 < 1
2

votes respectively, so that 𝑎 stays ahead and either 𝑎𝑏𝑐 or 𝑎𝑐𝑏 is an equilibrium, attracting
the other one of these two states.

Whenever 𝑎 is second, none of the voters for 𝑎 vote for the expected winner, and it
follows that in the next round, the contender will be behind 𝑎. The third candidate
will receive the votes of voters preferring her to the expected winner; in the case of 𝑐,
it means either 𝑇𝑐𝑎 + 𝑇𝑐𝑏 + 𝑇𝑎𝑐 or 𝑇𝑐𝑎 + 𝑇𝑐𝑏 + 𝑇𝑏𝑐 votes, according to whether 𝑏 or 𝑎 is
expected to win, and both are less than 1

2 . It remains to consider the outcome 𝑐𝑎𝑏, where
𝑏 receives the votes 𝑇𝑏𝑎 + 𝑇𝑏𝑐 + 𝑇𝑎𝑏. In this case, we can have a sequence of outcomes
𝑐𝑎𝑏, 𝑏𝑎𝑐 but then 𝑎 wins in the next outcome. Whenever 𝑎 gets at least second, she will
therefore become first and stay first ever after.

Now, in every case where 𝑎 is third, she will receive more than half the votes and 𝑐 will
receive less than half, so that 𝑎 will get at least the second position in the next round,
after which she will take the lead. This ends the proof of convergence to equilibrium.

3.2 Second example: the possible election of a consensual loser
This second example, at the small cost of introducing a modification of the LR accounting
for ties, improves on the previous one on two accounts: it necessitates only 3 candidate,
and it exhibits a cycle where a consensual loser could get elected.

Theorem B. Using Approval Voting, there exists an electorate on 3 candidates, with
ties in preferences allowed, such that:

• there are a Condorcet winner and a consensual loser,

• each voter follows a consistent, sincere and simple strategy,

• PD has a 2-cycle, whose basin of attraction contains a majority (actually two-third)
of the states, and one of whose state elects the consensual loser,

• there is an equilibrium not electing the Condorcet winner.

Proof. We consider the following types of voters:

𝑍 : 𝑎𝑏𝑐 101 𝑌 : 𝑎(𝑏𝑐) 2 𝑋 : 𝑏𝑎𝑐 100 𝑊 : 𝑐(𝑎𝑏) 104

with as strategy the Leader Rule as it was introduced above: for all 𝛼 ∈ C , 𝛼 ∈ 𝑓LR
𝜋 (𝑜)

if and only if 𝛼 >𝜋 𝑤(𝑜) or 𝛼 = 𝑤(𝑜) >𝜋 𝑟(𝑜); we call this the modified Leader Rule
to emphasize the presence of ties since as shown by this example they prevent Laslier’s
Theorem [Las09] to hold. With the ties some new situations appear: voters of type 𝑊
will not choose between 𝑎 and 𝑏, thus always casting the ballot {𝑐}, no matter which
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outcome is expected. Similarly, voters of type 𝑌 always cast the ballot 𝑎 (this last type
is only introduced here for tie-breaking).

Note that 𝑎 is a Condorcet winner, beating 𝑏 with a score of 103 to 100 (voters of type
𝐶 abstaining) and 𝑐 with a score of 203 to 104. Moreover 𝑐 is a Condorcet loser, loosing
to 𝑏 by another landslide 104 to 201: about two-third of the electorate would never vote
for 𝑐, making it a consensual loser (by quite a margin).

Assume as starting expected outcome the result obtained if each voter votes for every
candidates she does not rank last:

𝑍 : {𝑎, 𝑏} 𝑌 : {𝑎} 𝑋 : {𝑏, 𝑎} 𝑊 : {𝑐}
𝑎 : 203 𝑏 : 201 𝑐 : 104

leading to 𝑎 being expected winner and 𝑏 expected runner-up (corresponding to the
Condorcet order). This leads voters of type 𝑍 and 𝑋 to adjust their votes: their favorite
candidate is either threatened by their second-favorite (for 𝑍) or have a shot at winning
the election from a current runner-up position (for 𝑋). Consistently with their strategies
they choose to vote only for their favorite candidate:

𝑍 : {𝑎} 𝑌 : {𝑎} 𝑋 : {𝑏} 𝑊 : {𝑐}
𝑎 : 103 𝑏 : 100 𝑐 : 104.

The second poll thus results in a close-call win of 𝑐 with 𝑎 as runner-up. This result
induces voters of type 𝑍 and 𝑋 to resume approving both 𝑎 and 𝑏, in order not to let
𝑐 be elected (again, this is a consistent application of the modified Leader Rule). This
results in the the same ballots being cast as in the first poll, so we get a 2-cycle, one of
the states electing the worse candidate.

Drawing the full graph of PD in this case (Figure 2), we see that of 6 states, 4 lead to
the cycle that can elect either the Condorcet winner 𝑎 or the consensual loser 𝑐 depending
on whether the number of polls conducted before the election is odd or even, while the
other 2 are equilibriums, one electing the Condorcet winner 𝑎 the other the Condorcet
runner-up 𝑏.

Remark 3.4. If we accept to depart further from the LR, we could avoid ties in prefer-
ences and preserve the features of the examples by splitting 𝑊 into two types of voters
of equal size, with respective preferences 𝑐𝑎𝑏 and 𝑐𝑏𝑎 and strategy to always vote {𝑐}
(with the interpretation that these voters prefer 𝑐 to the other two by far, but still have
a slight preference between 𝑎 and 𝑏). This shows that Theorem B also holds with the
stronger definition of Condorcet winner (see Section 2.3).

Remark 3.5. It could be argued that in a real-life situation, some of the electors would
fail to adjust their votes and the close-call situation where 𝑐 receive 104 votes and 𝑎 only
103 might not happen. However, we made these choice of numbers to make 𝑐 the worst
possible candidate we could; we can preserve the essence of the example by taking |𝑊 |
anywhere between 103 and 200, trading stability of the 2-cycle against unpopularity of
𝑐.
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Figure 2: The PD map of the second example. Grey states cannot occur after a certain number
of iterations (here, 1 iteration). Light green states are accessible after an arbitrary
large number of iterations and elect the Condorcet winner; orange (periodic) and red
(fixed point) states are accessible after an arbitrarily large number of iterations but do
not elect the Condorcet winner. The orange state is arguably the most problematic,
as it elects the consensual loser 𝑐.

Remark 3.6. Another argument that could be raised against this example is that it
needs that a large proportion of voters having 𝑐 as favorite candidate would never vote
for any other candidate. While this is indeed a crucial feature of the voters preferences
in this example, there are two counter-arguments. First, this situation seems not all that
unlikely: far-right candidates with a strong anti-establishment discourse can have many
supporters who would consider all other candidates (or at least those with a chance of
being elected) as part of the very same “establishment” and thus would only approve 𝑐.
Second, this can be a textbook case of manipulation by a coalition: if the minority of
all voters who prefer 𝑐 (with preferences 𝑐𝑏 or 𝑐𝑎 say) gather in a coalition and decide to
vote only for 𝑐, they get a good chance to have 𝑐 elected against the will of a two-third
majority! Actually, these counter-arguments feed on each other: an anti-establishment
discourse can serve the purpose of forming a coalition-in-practice of voters who will not
express their preferences between 𝑎 and 𝑏 in order to favor 𝑐.

4 Experimental exploration of bad cycles
The examples of the previous section are interesting from a theoretical point of view,
showing that the existence of equilibriums and the quality of candidates they elect, do
not by themselves suffice to ensure a good outcome. But from a practical point of view,
it could be that the bad cycles we exhibited are so rare that they do not matter too
much.

In this section, we present experimental estimates of the frequency of bad cycle in
electorate where a Condorcet winner exists. We continue to follow the setup of Section
2, using either the Leader Rule or the modified Leader Rule used in Section 3.2. This
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leaves us to model the electorate, and for this we compare several “cultures”.

4.1 Description of the experimental setup
We fix the number of candidates to 6, C = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and the number of voter types
to 20 (to be realistic, the number of voters type should be quite larger than the number
of candidates so that many preferences are represented, but we kept the number limited
for computational power reasons). The influence of these numbers is tested at the end
of the section.

Each voter type is assigned a number of voters (pseudo-)uniformly drawn in [0, 1]
(since we use floats, this is equivalent to using very large integers; using smaller, more
realistic integers would only increase the use of the tie-breaking rule, which would still
be rare anyway). Each voter type is assigned a preference, which is modeled by a linear
order on C = C ∪ {limit}; if we use the Leader Rule, limit is simply ignored, but if
we use its modified version, the candidates ranked beyond limit are considered tied and
all ranked last (and thus never put on this voters’ ballots). For example, the order
𝑎 > 𝑏 > limit > 𝑐 > 𝑑 > 𝑒 > 𝑓 corresponds to the preference 𝑎𝑏𝑐𝑑𝑒𝑓 when the LR
is used, and to 𝑎𝑏(𝑐𝑑𝑒𝑓) when its modified version is used. This choice enables us to
completely decouple the assumed strategies from the culture, i.e. the construction of
the preferences.

We first consider the Impartial Culture: each voter type draws uniformly a linear order
on C . This is the most commonly studied culture and often serves as a benchmark.

We also consider more structured political cultures where various independent axes are
assumed to represent various criteria on which the position of each candidate is evaluated
by each voter. The dimension 𝑑, representing the number of those axes, parametrizes
this family of cultures. The “political landscape” is then represented by the hypercube
[0, 1]𝑑, equipped with the ℓ1 distance

𝑑((𝑥1, . . . , 𝑥𝑑), (𝑦1, . . . , 𝑦𝑑)) =
𝑑∑︁

𝑖=1
|𝑥𝑖 − 𝑦𝑖|.

This choice of distance corresponds to summing disagreements along each axis, seems at
least as good as any other, and is slightly less demanding than the Euclidean distance for
computations. Assuming a 𝑑-dimensional culture means we draw uniformly a position
in [0, 1]𝑑 for each candidate and for each voter type. The preferences of a voter type
is obtained by sorting the candidates by increasing distance to the voter type; limit is
inserted by drawing a random “distance” to the voter type, with the same law than
the distance between two uniform points in [0, 1]𝑑 (it would make no sense to assign a
position for limit common to all voters, and various voter types should be allowed to be
more or less inclusive in their preferences). This choice ensures that limit is on average in
the middle of the preferences, independently of 𝑑 and similarly to the Impartial Culture.
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4.2 Experimental results
We ran extensive experiments for each combination of a set of strategies (Leader Rule
or its modification) and each political culture among the Impartial Culture and the
𝑑-dimensional cultures with 𝑑 ∈ {1, 2, 3, 400}. In each case, we generated 100 000 inde-
pendent electorates and recorded whether a Condorcet winner exists, and if yes whether
the Polling Dynamic has a “bad cycle” (or bad equilibrium), some of whose states do
not elect the Condorcet winner. Each run took a couple of hours on a single core of a
modern CPU. The results are provided in Table 1.

Strategy
Culture Impartial 𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 400

Leader Rule (70%)

1.3%
(100%)

0.0%
(90%)

0.2%
(87%)

0.2%
(85%)

0.3%
modified Leader Rule (75%)

6.3%
(92%)

15%
(89%)

7.8%
(88%)

6.0%
(87%)

3.0%

Table 1: Experimental results with 6 candidates and 20 voter types. In small, the proportion
of electorates where a Condorcet winner exists; in normal size, the proportion of
electorates with a bad cycle or equilibrium, among electorates having a Condorcet
winner (both rounded). The 95% confidence Wilson score interval gives a deviation of
less than 0.23 percentage point for the 15% value and less than 0.2 percentage point
for the other values; the deviation is less than 0.04 percentage point for the value
0.3% and below.

We see that the Leader Rule is very effective in electing the Condorcet winner in
practice, with only the Impartial Culture witnessing slightly larger odds of not electing
her. Structured landscape very rarely produce bad cycles, with the linear (𝑑 = 1)
landscape having produced none in 100 000 attempts (this is no accident, see Section 5).

On the contrary, when voters apply the relaxed rule and, thus, refuse to vote to
candidate below their personal threshold no matter what, bad cycles are more common.
They never dominate, but they culminate precisely in the case of a linear landscape, with
15% of electorates leading to a bad cycle in the Polling Dynamic. The situation that is
most favorable to the Leader Rule, is also the worst one for its modification! This means
that when some voters expect a candidate they do not like to be a Condorcet winner,
their best interest can be not to apply the Leader Rule. At first sight, this may seem
difficult to reconcile with the optimality of the Leader Rule proven by Laslier [Las09].
The point is that Laslier assumes a voter thinking she will be the only one to change
her mind, and trying to optimize the expected outcome. Our experimental result show
that, as soon as a voter anticipates that other voters may also change their votes in view
of a poll, the Leader Rule may not be their optimal course of action anymore.

This experiment also gave the opportunity to find various kind of problematic Polling
Dynamics, presented in Figures 3, 4, 5, 6.
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Figure 3: A bad cycle of period 5 under the Leader Rule, produced with the 𝑑 = 400 landscape.

Figure 4: A very exceptional bad cycle of period 7 under the Leader Rule, produced with the
Impartial Culture.
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Figure 5: Both a bad cycle and an equilibrium not electing the Condorcet winner under the
modified Leader Rule, produced with the Impartial Culture.

Figure 6: A bad cycle and two equilibriums not electing the Condorcet winner under the modi-
fied Leader Rule, produced with the Impartial Culture. Note two remarkable features
of this example: the equilibrium that does elect the Condorcet winner has a very
small basin of attraction, only 3 states out of 30; and there are states where the
Condorcet winner is elected, but that lie in the basin of attraction of the bad cycle
(this never happens with the Leader Rule).
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4.3 Effect of the numbers of candidates and voter types
We report in Table 2 more modest numerical experiment to assert the influence of the
number of candidates and the number of voters. Here we only draw 6 250 electorates
in each condition, yielding typically 4 times larger confidence intervals than samples of
size 100, 000, leaving the expected deviations under the percentage point.

Cul.
& Strat.

|C | & |T |
3, 10 4, 10 6, 10 6, 20 6, 30 8, 20

Impartial, LR (92%)
0

(84%)
0.3%

(71%)
1.0%

(70%)
1.3%

(69%)
1.3%

(60%)
2.0%

1-dim., LR (100%)
0

(100%)
0

(100%)
0

(100%)
0

(100%)
0

(100%)
0

2-dim., LR (97%)
0

(94%)
0.05%

(90%)
0.3%

(90%)
0.2%

(91%)
0.05%

(87%)
0.5%

3-dim., LR (96%)
0

(92%)
0.1%

(85%)
0.4%

(87%)
0.2%

(89%)
0.1%

(84%)
0.4%

400-dim., LR (95%)
0

(90%)
0.1%

(81%)
0.3%

(85%)
0.3%

(89%)
0.3%

(81%)
0.6%

Impartial, modified LR (94%)
2, 1%

(88%)
3.5%

(77%)
5, 9%

(75%)
6.3%

(75%)
6.4%

(66%)
8.0%

1-dim., modified LR (98%)
2.6%

(96%)
5.4%

(90%)
10%

(92%)
15%

(92%)
19%

(88%)
20%

2-dim., modified LR (97%)
1.5%

(95%)
3.4%

(89%)
6.2%

(89%)
7.8%

(91%)
7.8%

(84%)
11%

3-dim., modified LR (97%)
1.4%

(93%)
2.7%

(86%)
5.3%

(88%)
6%

(90%)
5.9%

(84%)
8.2%

400-dim., modified LR (96%)
0.9%

(92%)
2.1%

(84%)
3.4%

(87%)
3.0%

(89%)
2.6%

(82%)
4.1%

Table 2: Complementary experimental results to check robustness. Samples have 6 250 pseudo-
random electorates (except for 6 candidates and 20 voter types, where we reported the
previous results with larger samples). In small, the proportion of electorates where
a Condorcet winner exists; in normal size, the proportion of electorates with a bad
cycle or equilibrium, among electorates having a Condorcet winner (both rounded).
We observe that the number of candidates influences results, more candidates making
bad cycles more likely. The number of voter types seems to have little influence in
most conditions.

We see that the number of voter types has relatively small influence, at least in the
range tested, with the exception of the 1-dimensional culture with the modified LR,
where a larger voter type makes bad cycles and equilibriums more likely. The main take
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away, valid in all considered conditions except the 1-dimensional culture with the LR,
is that:

A larger number of candidates seems to make bad cycles and equilibri-
ums more common among situations where a Condorcet Winner exists.

Computational power prevented us to explore larger number of candidates with sam-
ples large enough to draw conclusions.

5 Convergence of the Leader Rule in one-dimensional
cultures

In view of the above experiments, it seems that the one-dimensional culture combines
well with the Leader Rule. Black’s Median Voter Theorem [Bla86] implies the existence
of a Condorcet winner, and from [Las09] it follows that there exist equilibriums and that
all equilibriums elect 𝜔. Here we prove that in this particular culture, we moreover have
convergence of the Polling Dynamics.

Definition 5.1. We say that an electorate can be modeled by a one-dimensional culture
when there exist a positional mapping

𝑥 : C ∪ T → R

with the following property: the preferences 𝜋 of any voter type Ω ∈ T is given by

∀𝛼 ̸= 𝛽 ∈ C , 𝛼 >𝜋 𝛽 if and only if |𝑥(𝛼) − 𝑥(Ω)| < |𝑥(𝛽) − 𝑥(Ω)|.

For simplicity, we assume further that |𝑥(𝛼) − 𝑥(Ω)| ̸= |𝑥(𝛽) − 𝑥(Ω)| for all 𝛼 ̸= 𝛽 and
all Ω, so that all preferences are linear orders (without ties); and we assume that there is
no partition of the voter types in two groups that have equal total number of voters, so
that no duel between two candidates would end up in a tie (these are generic conditions:
they are stable under small perturbation of the data and any data can be approximated
arbitrarily close by data satisfying those conditions).

The goal of this section is to prove the following result.

Theorem 5.2. If the electorate can be modeled by a one-dimensional culture and applies
the Leader Rule, then the Polling Dynamic converges to an equilibrium (which elects the
Condorcet winner, as prescribed by Laslier’s Theorem).

The end of the section is dedicated to the proof of Theorem 5.2. We use outcomes
reduced to the winner and runner-up, we assume that the electorate can be modeled by a
one-dimensional culture and we fix a positional mapping 𝑥. Denoting by 𝑁 = ∑︀

Ω∈T 𝑛Ω
the total number of voters, a median is a value 𝑚 ∈ R such that

∑︁
Ω: 𝑥(Ω)≤𝑚

𝑛Ω ≥ 𝑁

2 and
∑︁

Ω: 𝑥(Ω)≥𝑚

𝑛Ω ≥ 𝑁

2
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i.e., at least half the voters have a position on the left of 𝑚, and at least half have
position on the right of 𝑚. The assumption that there is no partition of voter types in
two groups of equal size ensures that there is a unique median 𝑚, coinciding with the
position of some voter type: 𝑚 = 𝑥(𝑋𝑚), where the voter type 𝑋𝑚 is called the median
type. By assumption, there is a single candidate 𝜇 whose position is closest to 𝑥(𝑋𝑚).

We start with the following particular instance of Black’s Median Voter Theorem,
which we prove for the sake of completeness.

Lemma 5.3. The candidate 𝜇 is a Condorcet winner.

Proof. Let 𝛼 be any other candidate. Voters preferring 𝜇 to 𝛼 are those positioned on
the half line 𝐿 of endpoint 1

2(𝑥(𝛼)+𝑥(𝜇)) and containing 𝑥(𝜇). Since 𝑥(𝜇) is closer from
𝑥(𝑋𝑚) than 𝑥(𝛼), 𝐿 contains 𝑥(𝑋𝑚) and thus contains at least half the voters. Since
there are no possible ties, 𝜇 dominates 𝛼.

Lemma 5.4. Let 𝛼𝛽 be an outcome such that 𝛼 ̸= 𝜇 and let 𝛼′𝛽′ = PD(𝛼𝛽). Then
either |𝑥(𝛼′) − 𝑥(𝜇)| < |𝑥(𝛼) − 𝑥(𝜇)|, or 𝛼′ = 𝛼 and |𝑥(𝛽′) − 𝑥(𝜇)| < |𝑥(𝛽) − 𝑥(𝜇)|.

Proof. The positions 𝑥(𝛼) and 𝑥(𝛽) divide the real line in three component: the open
bounded interval 𝐼 between them, the open half-line 𝐴 with extremity 𝑥(𝛼) avoiding 𝐼,
and the open half-line 𝐵 with extremity 𝑥(𝛽) avoiding 𝐼.

If 𝑥(𝜇) ∈ 𝐴, 𝛼 will receive the votes of all voters positioned in a half line starting
at (𝑥(𝛼) + 𝑥(𝛽))/2 and containing 𝑥(𝜇), while other candidates receive votes only from
voters positioned in 𝐴 or in 𝐼 ∪ 𝐵. It follows that 𝛼′ = 𝛼 and 𝛽′ is the candidate
positioned next to 𝛼, in the direction of 𝑥(𝜇) (possibly 𝛽′ = 𝜇). In this case, we thus
have 𝛼′ = 𝛼 and |𝑥(𝛽′) − 𝑥(𝜇)| < |𝑥(𝛽) − 𝑥(𝜇)|.

In all other cases, 𝛼′ is the candidate positioned next to 𝛼, in the direction of 𝜇
(possibly 𝛼′ = 𝜇), therefore |𝑥(𝛼′) − 𝑥(𝜇)| < |𝑥(𝛼) − 𝑥(𝜇)|.

Let ≺ be the “lexicographic” order on outcomes, defined by 𝛼𝛽 ≻ 𝛼′𝛽′ whenever

|𝑥(𝛼′) − 𝑥(𝜇)| < |𝑥(𝛼) − 𝑥(𝜇)|, or 𝛼′ = 𝛼 and |𝑥(𝛽′) − 𝑥(𝜇)| < |𝑥(𝛽) − 𝑥(𝜇)|.

The previous lemma shows that along an orbit of PD, the outcome can only decrease
in this order until 𝜇 becomes winner. Since there cannot be an infinite decreasing
sequence of outcome, eventually 𝜇 becomes winner. Now, as is well-known, this is a
stable situation: for all 𝛽, PD(𝜇𝛽) = 𝜇𝛽0 where 𝛽0 is the candidate getting the better
score in a duel against 𝜇. Therefore, every state converges under PD to the state 𝜇𝛽0,
and the proof of Theorem 5.2 is complete.

6 A continuous-state model
The above discrete-time, discrete space model is quite crude and thus can fail to convince
that cycles could appear in practice. Discreteness of time is relevant, since polls occur at
precise times, triggering some ballot adjustments: completely asynchronous dynamics,
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where voters have the opportunity to change their vote one by one and the information is
shared immediately after each vote change, is unrealistic whenever voters are numerous,
in particular for political election in a large population.

Discreteness of space is more of a weakness of our model; more precisely, the as-
sumptions that all voters of a given type adjust their ballots at each poll, and that the
strategies depend only on the expected outcome without taking into account almost ties
are unrealistic. In this section, we introduce a discrete-time, continuous-space setting
and show that the cycles in the above examples are stable: they persist even when we
assume only a (large enough) fraction of voters to adjust their ballot at each poll, and
whatever the voter’s strategies are in case of an almost tie. Moreover, in this continuous
model the cycle are attractive: all states close enough to the cycle are attracted to it.
In the next section, we will take advantage of this continuous setting to consider other
possible models of voters’ reactions to polls.

6.1 Continuous Polling Dynamics
A continuous state-space

We expand the setting of Section 2 to a continuous-space model. To each voter type Ω is
associated a set BΩ ⊂ B of admissible ballots, representing the ballots that could be cast
by voters of this type. It could be the set of sincere ballots according to their preferences
𝜋Ω, thus assuming mere sincerity; or if we are embedding a discrete example as we will,
it could be the image set 𝑓Ω(O) of the strategy 𝑓Ω of this type. This restriction is meant
to reduce the dimension of the space of states.

Given a finite set X , we consider the simplex of vertex set X :

Δ(X ) :=
{︁
𝑃 = (𝑝𝑥)𝑥∈X ∈ [0, 1]X

⃒⃒⃒ ∑︁
𝑥∈X

𝑝𝑥 = 1
}︁
.

An element of of Δ(X ) can be interpreted as a probability vector on X or simply as
a the proportions of a distribution of some quantity over the elements of X . A state is
now an element of

S :=
∏︁

Ω∈T

Δ(BΩ)

i.e. a state 𝑠 ∈ S gives for each voter type and each admissible ballot the proportion
of the voters of that type planning to cast this ballot. The use of a continuous model
assumes voters are sufficiently numerous that we can consider each type arbitrarily
finely divisible; the voters’ counts 𝑛Ω now only represent their respective proportion of
all voters, rather than absolute numbers. A state 𝑠 = (𝑠Ω)Ω∈T is said to be extreme
when for each Ω, in 𝑃 = 𝑠Ω exactly one of the proportion is 1 and the others are 0
(i.e., all voters in any given voter type will cast the same ballot). If 𝐵 ∈ BΩ, we will
denote by 1𝐵 the element of Δ(BΩ) that gives weight 1 to 𝐵 and 0 to the other ballots.
The set of extreme states is finite and can be identified with ∏︀

Ω∈T BΩ, the element
(1𝐵Ω)Ω∈T ∈ S representing the situation where for each Ω, all voters of this type cast
the ballot 𝐵Ω.
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Generalized strategies and Continuous Polling Dynamics

There is a natural mapping which associates to each state the election that would result
from the casting of the planned ballots:

𝑣 : S → E

𝑠 =
(︁
𝑠Ω = (𝑠Ω

𝐵)𝐵∈BΩ

)︁
Ω∈T

↦→
(︁ ∑︁

Ω
𝑛Ω · 𝑠Ω

𝐵

)︁
𝐵∈B

where 𝑠Ω
𝐵 is considered zero whenever 𝐵 /∈ BΩ. The mapping AV∘𝑣 : S → O thus sends

a state to the outcome that would result from it. Here, we will consider as set of outcomes
O the set of all detailed vote results; an outcome thus takes the form (𝑉𝛼)𝛼∈C where 𝑉𝛼

is the proportion of votes in favor of candidate 𝛼. Recall that we assumed a tie-breaking
rule, e.g. by alphabetical order, so that from such an outcome the total ranking of all
candidates, in particular the winner and runner-up, can be deduced. These extended
outcomes enable voters decision to depend on the scores of the different candidates.

A generalized strategy for a voter type Ω is a map 𝑔Ω : Δ(BΩ)×O → Δ(BΩ) recording
the respective proportions of voters of type Ω casting each admissible ballot in reaction
to an outcome. With this definition, we allow that not all voters of a given type react in
the same way to an outcome; some may for example be more reluctant to change their
ballot (hence the Δ(BΩ) factor on the starting set, serving as memory of the previously
planned ballots by this type of voters). We do not permit the decisions of voters to
depend on the ballots previously cast by other types than theirs: this information is
considered unavailable. As in Section 2 we introduce a relation between preferences and
strategy: a generalized strategy is sincere if it only gives positive proportion to sincere
ballots for this type’s preferences.

An continuous electorate is now the data of T and for each voter type Ω of: a set of
admissible ballots BΩ, a number of voters 𝑛Ω, and a generalized strategy 𝑔Ω.

The continuous polling dynamics (CPD) associated with a continuous electorate is the
map Φ : S → S defined by

Φ(𝑠) =
(︂

𝑔Ω
(︁
𝑠Ω; AV ∘ 𝑣(𝑠)

)︁)︂
Ω∈T .

In other words, from a state 𝑠 and for each voter type Ω we extract the information 𝑠Ω

on ballots previously cast by the voters of this type, we compute the expected outcome
AV ∘ 𝑣(𝑠), and then apply the generalized strategies to build the next state. Note that
we shifted where in the cycle

· · · → outcome → voters’ choice → outcome → . . .

we record information: in the discrete setting, we recorded the successive outcomes; here
we record the successive choices of voters, which usually provides richer information.

Embedding and perturbation of the Polling Dynamics

Given an electorate (in the sense of Section 2), we choose as suggested above BΩ = 𝑓Ω(O)
and consider as generalized strategies the translation of the strategies in the continuous

26



model, i.e. 𝑔Ω(𝑃, 𝑜) = 1𝑓Ω(𝑜) – in other words, all voters apply the strategy of their type
given the expected outcome, irrespective of the information 𝑃 on their previously cast
ballots. This yields the following CPD:

Φ0(𝑠) =
(︁
1𝑓Ω∘AV∘𝑣(𝑠)

)︁
Ω∈T .

To compute Φ0(𝑠), one thus first applies 𝑣 to 𝑠 to obtain the expected election, then ap-
plies AV to the result to obtain the expected outcome, then applies to this the strategies
𝑓Ω to obtain the voters new choice of ballots. The mapping Φ0 takes its values in the
set of extreme states, and after the first iteration does not convey any more information
than the (discrete) polling dynamics given by the electorate. In this section our goal is
to study the dynamics of CPDs which are close to Φ0 in a sense we now define.

We consider the supremum norm |·| on S , i.e. given two states 𝑠 = (𝑠Ω
𝐵) and 𝑠 = (𝑠Ω

𝐵)
we set

‖𝑠 − 𝑠‖ = sup
Ω∈T ,𝐵∈BΩ

⃒⃒⃒
𝑠Ω

𝐵 − 𝑠Ω
𝐵

⃒⃒⃒
Given two CPDs Φ, Ψ and a set of states 𝐴 ∈ S , we consider

𝐷𝐴(Φ, Ψ) := sup
𝑠∈𝐴

⃦⃦⃦
Φ(𝑠) − Ψ(𝑠)

⃦⃦⃦
.

We use 𝐷 as a shortcut for 𝐷S , which is a metric on the set of all CPDs. More generally,
𝐷𝐴(Φ, Ψ) quantifies how close Φ and Ψ are on 𝐴; a smaller 𝐴 makes upper bounds on
𝐷𝐴 more lenient.

6.2 A continuous-state example with a cycle
Using a slight modification of our second example above, we get the following result
where choices have been made to make all constants explicit (but they are not optimal).

Theorem C. There exists an electorate on three candidates such that:

• there are a Condorcet winner and a consensual loser,

• each voter type is assigned a consistent, sincere and simple strategy,

• for any CPD Φ where a proportion 𝑝 ≥ 85% of the voters of each type adjust
their ballot according to their type’s strategy whenever the expected election gives
an outcome with at least 4 percentage points of margin between candidates (the
reminding voters keeping their previous ballot and the CPD being arbitrary when
margins are lower than 4%), Φ has an attractive 2-cycle one of whose states elects
the consensual loser.

An example is presented in Figure 7.
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Figure 7: An example of a CPD verifying the hypotheses of Theorem C. Top-left: initial points
of the plane; then from left to right then top to bottom, the first five iterations of
a continuous CPD where, whenever margins are above 4 %, 85 % of voters apply
the Leader Rule and 15 % keep their ballot unchanged. Points are drawn with the
color corresponding to initial position (darker above for better readability). After
the first iteration, already most points are attracted to the periodic points near the
four corners. The top-left and bottom-right corners are attracting fixed points, and
there is an attractive orbit of period 2 near the other corners.
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Proof. We consider the following four-types electorate

𝑍 : 𝑎𝑏𝑐 3 𝑌 : 𝑎(𝑏𝑐) 1 𝑋 : 𝑏𝑎𝑐 3 𝑊 : 𝑐(𝑎𝑏) 5

with the modified Leader Rule as in Section 3.2 and the corresponding sets of admissible
ballots. Again, 𝑎 is a Condorcet winner and 𝑐 a consensual loser (now refused by 7/12th
of the electorate: we traded some badness of 𝑐 for more stability). Note that we can
make 𝑎 a Condorcet Winner in the strongest sense (see Section 2.3) by using the trick
mentioned in Remark 3.4. Observe that

• Δ(B𝑌 ) = Δ(
{︁
{𝑎}

}︁
) and Δ(B𝑊 ) are both singletons and can be ignored in the

product,

• Δ(B𝑋) = Δ(
{︁
{𝑏}, {𝑎, 𝑏}

}︁
) can be identified with [0, 1], denoting by 𝑥 the propor-

tion of voters of type 𝑋 that cast the ballot {𝑎, 𝑏},

• Δ(B𝑍) = Δ(
{︁
{𝑎}, {𝑎, 𝑏}

}︁
) can be identified with [0, 1] by representing a probabil-

ity vector by the proportion 𝑧 of voters of type 𝑍 that cast the ballot {𝑎, 𝑏}.

In the notation above, we thus have

𝑠𝑍
{𝑎,𝑏} = 𝑧 𝑠𝑍

{𝑎} = 1 − 𝑧 𝑠𝑋
{𝑎,𝑏} = 𝑥 𝑠𝑋

{𝑏} = 1 − 𝑥.

We can thus identify S and [0, 1]2 with coordinates (𝑥, 𝑧), see Figure 8, which contains
the end of proof and which we now explain.

The three lines corresponding to ties (of equation (𝑧 = 𝑥 + 1
3) for 𝑎 and 𝑏; (𝑥 = 1

3)
for 𝑎 and 𝑐; (𝑧 = 2

3) for 𝑏 and 𝑐) are concurrent at the point where all three candidates
are tied, and define six regions in S corresponding to the six possible outcomes (the
lines themselves are attributed to one outcome according to the tie-breaking rule). The
region 𝐴1 delimited by the lines of equations (𝑧 < 𝑥 + 1

6) and (𝑧 > 5
6) results in the

outcome 𝑎𝑏𝑐 with margins of 1
24th of the electorate, i.e. slightly over 4%. Similarly,

the region 𝐴2 delimited by the lines of equations (𝑧 < 𝑥 + 1
6) and (𝑥 < 1

6) result in
the outcome 𝑐𝑎𝑏 with the same margins. Assuming Φ is a CPD with the property
assumed in the third item, we have Φ(𝑥, 𝑧) = ((1 − 𝑝)𝑥, (1 − 𝑝)𝑧) whenever (𝑥, 𝑧) ∈ 𝐴1
and Φ(𝑥, 𝑧) = (𝑝 + (1 − 𝑝)𝑥, 𝑝 + (1 − 𝑝)𝑧) whenever (𝑥, 𝑧) ∈ 𝐴2. One easily checks
that Φ(𝐴1) ⊂ 𝐴2 and Φ(𝐴2) ⊂ 𝐴1. It follows that Φ2(𝐴1) ⊂ 𝐴1, and since Φ2 is a
contraction on 𝐴1 (of ratio (1 − 𝑝)2), the Contraction Mapping Theorem ensures it has
a fixed point (𝑥1, 𝑧1) ∈ 𝐴1. Then the orbit of (𝑥1, 𝑧1) is a 2-cycle with one state inducing
the outcome 𝑎𝑏𝑐 and the other inducing 𝑐𝑎𝑏. Moreover any element of the open set
𝐴1 ∪ 𝐴2 is attracted to this cycle exponentially fast: e.g. if (𝑥, 𝑧) ∈ 𝐴1, for all 𝑛 ∈ N
we have |Φ2𝑛(𝑥, 𝑧) − (𝑥1, 𝑧1)| ≤ (1 − 𝑝)2𝑛|(𝑥, 𝑧) − (𝑥1, 𝑧1)| and |Φ2𝑛+1(𝑥, 𝑧) − Φ(𝑥1, 𝑧1)| ≤
(1 − 𝑝)2𝑛+1|(𝑥, 𝑧) − (𝑥1, 𝑧1)|.

6.3 A general stability result
The above example was meant to be tangible and explicit, but the underlying phe-
nomenon is quite general.
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Figure 8: A continuous-space example. Left: the state space S . Coordinates 𝑥, 𝑧 represent
respectively the proportion of voters of type 𝑋 casting the ballot {𝑎, 𝑏} (the others
casting {𝑏}) and the proportion of voters of type 𝑍 casting the ballot {𝑎, 𝑏} (the
others casting {𝑎}). Regions are drawn showing how the outcome depends on 𝑥, 𝑧.
The corners are the extreme states, corresponding to the four outcomes that are
possible under the CDP Φ0: if all voters adjust their ballot after a poll, the whole
𝑎𝑏𝑐 and 𝑏𝑎𝑐 regions are sent to the bottom-left corner, the 𝑐𝑎𝑏 and 𝑐𝑏𝑎 regions to
the upper-right corner, the 𝑏𝑐𝑎 region to the upper-left corner and the 𝑎𝑐𝑏 region
to the lower-right corner. Right: on the same state space, any CPD where 85% of
voters adjust their ballot according to the modified Leader Rule when candidates
are separated by 4% margins will send the light-grey regions 𝐴1 and 𝐴2 into each
other (images shown in dark grey), thus ensuring a 2-cycle with one state near the
upper-rigth corner, one near the lower-left corner.
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Consider an electorate on a given set C of candidates, such that the PD has a cycle
𝑜1, . . . , 𝑜𝑘. We denote by 𝐵𝑖 = (𝑓Ω(𝑜𝑖−1))Ω∈T the 𝑘 vectors of the ballots cast by the
different types along this cycle.

Consider first the continuous electorate corresponding to the CPD Φ0, i.e. assume
temporarily that all voters apply their type’s strategy at each poll. For each poll 𝑖 along
the cycle, the ballots 𝐵𝑖 gives the candidates some scores 𝑆𝑖(𝑎), 𝑆𝑖(𝑏), . . . expressed in
percentage of votes received; we set

𝜀0 = min
1≤𝑖≤𝑘

min
𝛼 ̸=𝛽∈C

|𝑆𝑖(𝛼) − 𝑆𝑖(𝛽)|

the least margin separating two candidates according to any ballot vector 𝐵𝑖.
When 𝜀0 > 0 (i.e. when the tie-breaking rule is not needed in the considered cycle),

(0, 𝜀0] is non-empty and for all 𝜀 ∈ (0, 𝜀0] we denote by 𝐴𝜀
𝑖 the sub region, in the part of

S corresponding to 𝐵𝑖, where all candidates are separated by a fraction of the electorate
at least 𝜀. Then 𝐴𝜀

𝑖 has non-empty interior (it is neither empty nor reduced to e.g. a
subspace of dimension less than the dimension of S ).

Theorem D. Assume the above setting, in particular that the Polling Dynamics has a
cycle 𝑜1, . . . , 𝑜𝑘, with each 𝑜𝑖 surrounded by a region 𝐴𝜀0

𝑖 in which 𝑜𝑖 is the outcome with
margins at least 𝜀0 between the candidates. If 𝜀0 > 0, for all 𝜀 ∈ (0, 𝜀0) there is a 𝛿 > 0
with the following property. Every CPD Φ such that, for each 𝑖:

• Φ is continuous on each 𝐴𝜀
𝑖 , and

• 𝐷𝐴𝜀
𝑖
(Φ, Φ0) < 𝛿

has a 𝑘-cycle whose elements are in the 𝐴𝜀
𝑖 , in particular with corresponding outcomes

𝑜1, . . . , 𝑜𝑘.

This result means that any cycle of the discrete-space model that does not rely on the
tie-breaking rule is stable: any CPD that is close enough to Φ0 near the cycle exhibits
a similar cycle. In particular, if we only assume a large enough fraction of each voter’s
type adjust their ballot at each polls, and if we only assume the prescribed strategies
away from almost-ties, we still have a cycle.

Proof. By definition of 𝜀0, each 𝐴𝜀
𝑖 is the intersection of S with a polyhedron containing

in its interior the extreme point corresponding to 𝐵𝑖, and Φ0 maps 𝐴𝜀
𝑖 entirely to the

extreme point 𝐵𝑖+1. In particular, Φ𝑘
0 sends the whole of 𝐴𝜀

1 to the extreme point 𝐵1.
If 𝛿 is small enough and 𝐷𝐴𝜀

𝑖
(Φ, Φ0) < 𝛿 for all 𝑖, then Φ𝑘 is close enough to Φ𝑘

0 to
map 𝐴𝜀

1 into itself. By assumption, Φ𝑘 is continuous on 𝐴𝜀
1 which is homeomorphic to

a closed ball. By Brouwer’s fixed point theorem, Φ𝑘 has a fixed point in 𝐴𝜀
1, leading to

the desired cycle of Φ.

Observe that without the continuity hypothesis, we would still get a cycle of outcomes
𝑜1, . . . , 𝑜𝑘, but possibly not a cycle of states nor of elections. The cycle of states is
attracting as soon as Φ is contracting on each 𝐴𝜀

𝑖 ; this is for example the case when Φ
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is a variant of a Polling Dynamics, where only a fraction of voters adjust their ballots
upon receiving the result of the last poll, such as in Theorem C. More generally, Φ is
contracting on each 𝐴𝜀

𝑖 when in the absence of almost ties, voters of any given type tend
to agree more on their next choice than they did on the previous one. In particular the
discrete Polling Dynamics, where all voters of a type make the same choice given an
expected outcome, exhibits a very extreme form of contractivity.

7 Reluctance to cooperate and chaos
Now we turn to other generalized strategies, motivated by the reluctance a voter is
expected to have to approve of candidates that are low on her preferences; such an
approbation can be seen as a cooperation with other voters sharing a strong dislike for
the expected winner. Consider a voter driven by a strategy, say the Leader Rule, and
planning to cast a certain ballot. When the information of a poll becomes available,
if adding one or several names on her ballot could improve the outcome, there is a
competition between the strategic reasoning and the impetus not to approve of these
disliked candidates. It can also be tempting to remove names from the ballot if they
seem not to be needed anymore to prevent a worse candidate to be elected.

We shall make the following assumptions:

Continuity: all generalized strategies are continuous: a small change in the outcome 𝑜
or the planned ballots 𝑠Ω results in a small change in 𝑔Ω(𝑠Ω, 𝑜).

Opportunity-driven strategies: voters are less likely to include in (and more likely to
exclude from) their ballot a name that is low in their preferences when the proba-
bility that this inclusion (or exclusion) would influence the outcome is small.

Political weight of full outcomes: voters aim primarily to elect a highly preferred can-
didate, but also try that candidates they dislike much have fewer votes and candi-
dates they like much have more votes.

The first assumption is meant to depart from the unrealistic discontinuities implied by
a perfect application of strategies such as the Leader Rule: when two candidates are
very close one to the other, which one is first should not change completely the choices
of voters.

The second assumption, which is at the heart of this section, is to be understood as a
trade-off between a reluctance to approve of a low candidate in one’s preferences and the
potential gain in the outcome. This trade-off can be estimated differently from voter to
voter, even inside a given type –this is typically what the continuous model is designed
to model. It is to be noted that the “opportunity-driven strategies” assumption is very
different from the models above: far from almost ties, voters will be more numerous to
restrict to ballots with few names, while near almost-ties they will be more numerous to
instead apply a strategy such as the Leader Rule.

The last assumption backs the second and reflects that, to a certain extent, the final
number of votes received will have political effects to be taken into account, e.g. a
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disliked candidate may look legitimate if ranked high, even if not elected, and could
be more likely to be a threat in next elections. In some countries, votes can also have
consequences on party funding, and voters could thus be careful not to fund unnecessarily
a candidate they dislike. This assumption is flexible, as one can put more or less weight
to these considerations.

Let us now consider a simple, piecewise linear model following these requirements and
have a look at its CPD.

7.1 A simple model based on the example of Theorem C
We consider again the following four-types electorate

𝑍 : 𝑎𝑏𝑐 3 𝑌 : 𝑎(𝑏𝑐) 1 𝑋 : 𝑏𝑎𝑐 3 𝑊 : 𝑐(𝑎𝑏) 5

(recall that 𝑎 is a Condorcet winner and 𝑐 a consensual loser). As above, the correspond-
ing sets of admissible ballots makes S a square with coordinates (𝑥, 𝑧) where 𝑥, 𝑧 are
the proportions of voters of type 𝑋 , 𝑍 respectively that “cooperate” by voting {𝑎, 𝑏}.

We recall an outcome is a triple 𝑜 = (𝑉𝑎, 𝑉𝑏, 𝑉𝑐), and we choose here the following
generalized strategies (where we do not use the possibility of dependency on 𝑠Ω = 𝑥 or
𝑧):

𝑔𝑍(𝑧, (𝑉𝑎, 𝑉𝑏, 𝑉𝑐)) = 𝐶 ∘ 𝑆(𝑉𝑎, 𝑉𝑏, 𝑉𝑐) 𝑔𝑋(𝑥, (𝑉𝑎, 𝑉𝑏, 𝑉𝑐)) = 𝐶 ∘ 𝑆(𝑉𝑏, 𝑉𝑎, 𝑉𝑐)

where 𝐶, 𝑆 will be defined below, to be interpreted as follows:

• 𝑆 is a “safety function”, quantifying how unlikely it seems that cooperating would
be useful to counter a threat by 𝑐 (notice how 𝑉𝑎, 𝑉𝑏 are exchanged in 𝑔𝑋 , to take
into account the preferences of this type). 𝑆 will be in particular very small when
both 𝑐 is expected winner or close to be expected winner, and collaborating has a
good chance to prevent her to win,

• 𝐶 is a “collaboration function”, translating a level of safety into a proportion of
collaborations (high safety resulting in low collaboration).

We take here a very simple safety function:

𝑆(𝑉1, 𝑉2, 𝑉3) =

⎧⎨⎩|𝑉2 − 𝑉3| when 𝑉2 > 𝑉1
1
2 |𝑉2 − 𝑉3| + 1

2 |𝑉1 − 𝑉3| otherwise.

i.e. when the second-preferred candidates is ranked higher than the preferred one, the
safety is the margin in her race with the least-preferred one; otherwise, safety is an
average of the margins in races of the two preferred candidates against the last one. For
example, if 𝑉1 ≫ 𝑉3 ≃ 𝑉2 then the safety is not too small (the least preferred candidate
has little chance of winning) but not maximal, since there is an opportunity to ensure 𝑐
finishes at the last rank. When 𝑉1 ≃ 𝑉2, the safety is close to both |𝑉1 −𝑉3| and |𝑉2 −𝑉3|
(in particular, 𝑆 is continuous).
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Finally, we choose a simple collaboration function extrapolating linearly between the
value 1 (all voters collaborate) when the safety vanishes, and the value 0 (no voter
collaborates) when the safety is large enough:

𝐶(𝑡) = (1 − 5𝑡)+ := max(0, 1 − 5𝑡)

where as indicated (·)+ is the positive part, and where the coefficient 5 is quantifies the
reluctance to collaborate: the higher, the less likely 𝑋 and 𝑍 voters will collaborate. 5
is rather moderate: 1−5𝑡 reaches 0 only at 𝑡 = 0.2, i.e. when the safety margins reaches
a staggeringly high 20% of voters.

Since a state (𝑥, 𝑧) results in the outcome (𝑉𝑎, 𝑉𝑏, 𝑉𝑐) = (3𝑥+4, 3𝑧+𝑥, 5), these choices
yield the CPD Φ defined by:

Φ(𝑥, 𝑧) =
(︁(︁

1 − 5|3𝑥 − 1|
)︁

+
,
(︁
1 − 2.5|3𝑥 − 1| − 2.5|3𝑧 + 𝑥 − 5|

)︁
+

)︁
when 2𝑥 + 4 ≥ 3𝑧 and

Φ(𝑥, 𝑧) =
(︁(︁

1 − 2.5|3𝑧 + 𝑥 − 5| − 2.5|3𝑥 − 1|
)︁

+
,
(︁
1 − 5|3𝑧 + 𝑥 − 5|

)︁
+

)︁
when 2𝑥 + 4 ≤ 3𝑧. While Φ may look like an innocent map, drawing an orbit of this
map reveals an interesting pattern (Figure 9). It turns out all orbits yield pretty much
the same image.

Figure 9: One orbit of the CPD Φ. Left: full picture. Right: a zoom to the upper-right part
showing a linear/fractal struture.
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In the next section, we will introduce tools (well known in the mathematical com-
munity) to assert the chaotic nature of this dynamics, and more importantly of the
sequence of elected candidates along any orbit. While we will not prove chaos here,
we will show compelling numerical evidence. We will also construct a simpler example
where chaos follows from well-known results in the dynamical system literature. This is
to be understood as a rather theoretical study; in practice there is very little difference
between a bad cycle and a chaotic attractor. However it is worthwhile to realize that in
a continuous-state model, orbits can have much more varied behavior than converging
to an equilibrium or a periodic orbit.

7.2 Asserting chaos: a primer on entropy
In dynamical systems, chaos is not a formally defined word, but refers to a number
of properties all seeking to translate the idea that orbits behave in an unpredictable
fashion. The most prominent one is entropy, which comes in a number of versions. We
start by giving a brief overview of entropies for maps, before introducing the variant
that will be most relevant to us.

The topological entropy ℎtop(𝑓) of a map 𝑓 is a non-negative number, defined in brief
as the exponential rate of growth with 𝑛 ∈ N of the number of length 𝑛 orbit segments
(𝑥, 𝑓(𝑥), 𝑓 2(𝑥), . . . , 𝑓𝑛−1(𝑥)), after identifying orbit segments that stay “close” one to
another. A precise definition is for example given in [KH95], together with proofs of the
claims stated below. The frontier of chaos is usually drawn between exponential and
sub-exponential growth; with respect to entropy, one thus says that a map is chaotic
whenever its topological entropy is non-zero.

When the map moreover has a invariant probability measure 𝜇, i.e. a law of random
variable 𝑋 such that 𝑓(𝑋) has the same law as 𝑋, one can define the Kolmogorov-Sinai
entropy5 ℎKS(𝑓, 𝜇) of the pair (𝑓, 𝜇). It is similar to the topological entropy, except that
orbit segments are in a way weighted using 𝜇: if many distinguishable orbit segments
exist, but very few occur most of the time when we choose 𝑥 randomly with law 𝜇,
then the Kolmogorov-Sinai entropy is rather small. When 𝑓 is continuous and acts on a
compact space, these two entropies are related by the variational principle:

ℎtop(𝑓) = sup
𝜇

ℎKS(𝑓, 𝜇)

where the least upper bound is taken over all 𝑓 -invariant probability measures. What is
most important to us is that for every invariant probability measure, ℎtop(𝑓) ≥ ℎKS(𝑓, 𝜇),
so that proving ℎKS(𝑓, 𝜇) > 0 is stronger than proving ℎtop(𝑓) > 0.

Now, when 𝑓 = Φ is a CPD, it may happen that the topological entropy is positive
while the winner of the election is constant, or ultimately constant, on each orbit. In
this case, the chaos of the map is irrelevant to the core feature of the election. To extract
this feature from orbits, we introduce some notation. For each candidate 𝛼, let 𝑊𝛼 ⊂ S
be the set of states leading to the election of 𝛼, formally

𝑊𝛼 = {𝑠 ∈ S | 𝛼 wins in AV ∘ 𝑣(𝑠)}.

5Also called metric entropy or measure-theoretic entropy.
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The set {𝑊𝛼 : 𝛼 ∈ C } is a partition of S , and given 𝑠 ∈ S we denote by 𝑤𝑠 ∈ C the
winner of 𝑠, i.e. the candidate such that 𝑠 ∈ 𝑊𝑤𝑠 .

The set C of candidates will serve as an alphabet, and sequence of winners will
be written as words. Formally a finite word of length 𝑛 is an expression 𝛼1𝛼2 · · · 𝛼𝑛,
i.e. a 𝑛-tuple written without coma and parentheses. The set of words of length 𝑛
is thus denoted by C 𝑛, and the set of finite words is C * := ∪𝑛∈NC 𝑛. An infinite
word 𝜔 is an infinite expression 𝛼1𝛼2 · · · (i.e. a sequence, written without comma and
parentheses) and the set of infinite words is denoted by C N. For all 𝑘 < 𝑚 ∈ N we set
𝜔𝑘:𝑚 = 𝛼𝑘𝛼𝑘+1𝛼𝑘+2 · · · 𝛼𝑚; each 𝜔𝑘:𝑚 is called a subword of 𝜔 (of length 𝑚 − 𝑘 + 1).

Given any state 𝑠, its winners word is the word 𝜔(𝑠) = 𝑤𝑠𝑤Φ(𝑠)𝑤Φ2(𝑠) · · · . What we
want to address is how difficult it would be to guess a length ℓ segment of winners

𝜔(𝑠)𝑘+1:𝑘+ℓ = 𝑤Φ𝑘+1(𝑠)𝑤Φ𝑘+2(𝑠) · · · 𝑤Φ𝑘+ℓ(𝑠).

We shall measure this with a variant of entropy for words. As above, two versions
(topological and Kolmogorov-Sinai) can be defined.

Definition 7.1. Let 𝜔 = 𝛼1𝛼2 · · · be an infinite word. For all ℓ ∈ N, let 𝑆ℓ(𝜔) be the
number of distinct subwords of length ℓ of 𝜔. We define the topological entropy of the
word 𝜔 as

ℎtop(𝜔) = lim
ℓ→∞

1
ℓ

log 𝑆ℓ(𝜔).

For all 𝑛, ℓ ∈ N with ℓ ≤ 𝑛 and all finite word 𝜃 of length ℓ, we denote by 𝑆𝜃
𝑛(𝜔) the

number of times the subword 𝜃 appears in 𝜔1:𝑛, we set

𝑃 𝜃
𝑛(𝜔) := 𝑆𝜃

𝑛(𝜔)
𝑛 − ℓ + 1

the proportion of length ℓ subwords of 𝜔1:𝑛 equal to 𝜃, and by 𝑃 ℓ
𝑛(𝜔) the “probability

vector” (𝑃 𝜃
𝑛(𝜔))𝜃∈C ℓ . Finally we define the Kolmogorov-Sinai entropy of the word 𝜔 as

ℎKS(𝜔) = lim
ℓ→∞

1
ℓ

lim sup
𝑛→∞

𝐻(𝑃 ℓ
𝑛(𝜔))

where

𝐻(𝑝1, 𝑝2, . . . , 𝑝𝑘) =
𝑘∑︁

𝑖=1
−𝑝𝑖 log 𝑝𝑖 with the convention 0 log 0 = 0.

Let us point out a few observations to explain these definitions.
The limit in the definition of ℎtop(𝜔) exists by Fekete’s lemma since the sequence

(log 𝑆ℓ)ℓ is subadditive (a subword of length ℓ + 𝑘 is the concatenation of a subword
of length ℓ and a subword of length 𝑘, so that 𝑆ℓ+𝑘 ≤ 𝑆ℓ × 𝑆𝑘). The topological
entropy of a word corresponds to the topological entropy of a particular dynamical sys-
tem constructed from 𝜔 called a “subshift”, but we will not use this. Observe that
ℎtop(𝜔) ∈ [0, log|C |] since there are in total only |C |ℓ words of length ℓ. The interpreta-
tion of ℎtop(𝜔) is that it takes the value ℎ when the number of subwords of length ℓ in
𝜔 is roughly of the order of 𝑒ℎℓ (or subexponential if ℎ = 0).
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In the definition of ℎKS(𝜔) the limit exists again by subadditivity, which is more
subtle than above and one of the reasons to choose the function 𝐻. When (𝑝𝑖)1≤𝑖≤𝑁

runs over all “probability vectors”of dimension 𝑁 (i.e. 𝑝𝑖 ∈ [0, 1] and ∑︀
𝑖 𝑝𝑖 = 1),

the expression 𝐻(𝑝1, . . . , 𝑝𝑁) runs over [0, log 𝑁 ], and it attains its maximum log 𝑁 at
a single point, namely ( 1

𝑁
, 1

𝑁
, . . . 1

𝑁
) (this is a simple application of the concavity of

𝑥 ↦→ −𝑥 log 𝑥). Moreover 𝐻(𝑝1, . . . , 𝑝𝑁 , 0, 0, . . . , 0) = 𝐻(𝑝1, . . . , 𝑝𝑁), and it follows that
ℎKS(𝜔) ∈ [0, ℎtop(𝜔)], with equality when all subwords of a given length ℓ that appear in
𝜔 do so with asymptotically the same abundance. When some subwords appear much
more often than others, the Kolmogorov-Sinai entropy is lower.

The value of an entropy is to be interpreted as the “uncertainty” of a random guess,
with the case an object drawn among 𝑁 uniformly having uncertainty log 𝑁 ; this makes
uncertainty linear in the number of objects to be guessed in the sense that guessing
ℓ independent objects each uniformly drawn among 𝑁 has uncertainty ℓ log 𝑁 . More
generally, one defines the uncertainty of a choice made according to a probability vector
(𝑝1, . . . , 𝑝𝑁) as 𝐻(𝑝1, . . . , 𝑝𝑁), and this definition enjoys many natural properties (see
e.g. [Wal82] Theorem 4.1).

To guess a segment 𝜔𝑘+1:𝑘+ℓ, one can take all subwords of 𝜔 of length ℓ and choose one
randomly. If this choice is made uniformly, the uncertainty is of the order of ℓ·ℎtop(𝜔). If
this choice is made with each subword given a probability proportional to its abundance
in 𝜔1:𝑛 for large 𝑛, uncertainty is down to approximately ℓ · ℎKS(𝜔).

If one knows 𝜔𝑘:𝑚 and wants to guess the next letters 𝛼𝑚+1 · · · 𝛼𝑚+ℓ, one would rather
consider all subwords of 𝜔 of length 𝑚−𝑘+1+ℓ starting with 𝜔𝑘:𝑚, and guess among the
words obtained by removing this 𝜔𝑘:𝑚 prefix from them. If this choice is made uniformly,
the uncertainty is

log 𝑆𝑚−𝑘+1+ℓ(𝜔)
𝑆𝑚−𝑘+1(𝜔) ∼ ℓ · ℎtop(𝜔) when ℓ → ∞.

If the choice is weighted by the respective abundance of the subwords of length 𝑚 − 𝑘 +
1 + ℓ, then the uncertainty is asymptotically ℓ · ℎ where ℎ depends on 𝜔𝑘:𝑚: some cases
may give much more information on the sequel than others. Then ℎKS(𝜔) is an average
of these values ℎ, weighted according to the abundance of 𝜔𝑘:𝑚 (rare subwords weight
less in this average).

Definition 7.1 has two features that matter in our situation. First, its relevance: the
entropy (either topological or, better, Kolmogorov-Sinai) of a winners word 𝜔(𝑠) gives
a quantification of the chaos, as an uncertainty akin to randomness, in the sequence of
winners starting from the state 𝑠. While 𝜔(𝑠) depends on 𝑠, in some situations we will
observe that ℎKS(𝜔(𝑠)) is independent of 𝑠. In any case, the existence of a state with
ℎKS(𝜔(𝑠)) > 0 means that at least in some starting intents of the voters, the Continuous
Polling Dynamics results in an unpredictable result. Also note that for all 𝑠, we have
ℎtop(Φ) ≥ ℎKS(𝜔(𝑠)), and the CPD Φ is chaotic as soon as there is one starting state
with positive entropy. Second, it is easy to estimate numerically these quantities. For
ℎKS, one simply plots the sequence ℓ ↦→ 𝐻(𝑃 ℓ

𝑛(𝜔)) for a fixed large 𝑛. If for ℓ large
enough the points are well-aligned, the slope of the interpolating line can be taken as an
estimation of the Kolmogorov-Sinai entropy of 𝜔(𝑠) (see eg. Figure 10). Taking various
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𝑠 then adds robustness to the analysis. With this tool at hand, let us return to the
Example of Section 7.1.

7.3 Exploration of chaos for some CPD
If we take the example of Section 7.1, the word of the successive winners starting from
the center of the space S is (32 first letters shown, capital 𝑐 for better readability):

𝜔(.5, .5) = 𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶 · · ·

There is some visible structure in this word, for example there are never two successive
𝑐 no four 𝑎 in a row; apart from the first three letters, the word seems constructed only
with the blocs 𝛽 = 𝑐𝑎 and 𝛾 = 𝑐𝑎𝑎𝑎. However, the succession of these blocks looks
somewhat random:

𝜔(.5, .5) = 𝑎𝑎𝑎𝛾𝛽𝛾𝛾𝛽𝛾𝛾𝛾𝛾𝛽𝛾𝛾𝛽𝛾𝛾𝛾𝛾𝛽𝛽𝛽𝛽𝛾 . . .

To quantify the randomness of 𝜔(.5, .5), we proceed as explained in the previous section
and plot the sequence ℓ ↦→ 𝐻(𝑃 ℓ

220(𝜔)), obtaining the graph shown in Figure 10. We
observe an extremely good alignment from ℓ = 4 onward, with slope ≃ 0.229. Every
starting state 𝑠 yields very similar results, a strong numerical indication that the map
Φ is chaotic, with chaotic sequences of winners. To check whether all states have orbits
accumulating on the attractor pictured in Figure 7, we have drawn the first iterates of
Φ in Figure 11. All orbits seem to accumulate to the attractor, which appears in fact
connected (a fact that can be confirmed by topological arguments), made of a very thin
curve between two arrow-shaped parts, which are exchanged by Φ.

Figure 10: Plot of the entropy-estimating sequence ℓ ↦→ 𝐻(𝑃 ℓ
220(𝜔)). The slope of the marked

line is ≃ 0.2291
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Figure 11: From left to right then top to bottom, 200 × 200 points of the state space regularly
spaced and their 8 first iterates by Φ (colors preserved along each orbit).
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While this is only a specific example, it was not difficult to construct: every addition
made to the example of Theorem C has been chosen as the simplest I could think
of satisfying the hypotheses of Continuity, Opportunity-driven strategies, and Political
weight of full outcomes. To dispel the possible feeling that this is an accidental discovery,
let us first look at the same example but with randomly chosen populations for all
four voter types. The following examples complements the previous one to form a
representative sample of what a quick experimental exploration revealed.

Example 7.2. Take

𝑛𝑋 = 0.05, 𝑛𝑌 = 0.02, 𝑛𝑍 = 0.8, 𝑛𝑊 = 0.8

Then 𝑎 is constantly elected. Observe that it always gets at least .82 votes while 𝑐
receives only .8, so the only possible contender would be 𝑏, but she would need almost
all of 𝑍 voters to cooperate and most 𝑋 voters not to cooperate, a behavior prevented
in our model. This is a non-chaotic, actually very stable example.

Example 7.3. Take now

𝑛𝑋 = 0.6, 𝑛𝑌 = 0.08, 𝑛𝑍 = 0.56, 𝑛𝑊 = 0.82

Then applying the same method as above, we get a higher entropy estimation:

ℎKS(𝜔(.5, .5)) ≃ 0.36

but the word itself looks a bit different, with long sequences of consecutive 𝑎:

𝜔(.5, .5) = 𝑎𝑎𝑎𝐶𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎𝐶𝑎 · · ·

This could be example of an “intermittent” behavior, with slow regions where Φ is
relatively tame but from which all orbits eventually escape to enter strongly chaotic
regions, constantly alternating between two behaviors: predictable and chaotic. See one
orbit in Figure 12 (left); other orbits produce very similar pictures.

Example 7.4. Changing only slightly the previous example,

𝑛𝑋 = 0.6, 𝑛𝑌 = 0.08, 𝑛𝑍 = 0.56, 𝑛𝑊 = 0.81

a radical change in behavior appears: entropy seems to vanish, with 𝐻(𝑃 ℓ
220) plateauing

abruptly from ℓ = 10 onward. When looking at subwords of 𝜔(.5, .5) of length 10 and
more, one observes that there are exactly 22 of them, no matter the length. Closer
observation then reveals that 𝜔(.5, .5) is the concatenation of copies of the lecgth 22
word 𝑎𝑎𝑎𝑐𝑎𝑐𝑎𝑎𝑎𝑐𝑎𝑐𝑎𝑐𝑎𝑐𝑎𝑎𝑎𝑎𝑎𝑎. Other starting states yield similar results, indicating
that Φ has here an attracting periodic orbit, of period 22 (see Figure 12, right). At the
time scale of an election, it would appear chaotic, but in the longer run it is not.

This examples incites us to plot very long orbits on top of our entropy estimation,
to rule out an attracting periodic orbit of length significantly larger than the maximal
length of subwords used in the entropy estimation. Rigorously proving positive entropy
would need more sophisticated mathematical tools (one would search for a “horseshoe”).
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Figure 12: Comparison of the orbits of 𝑠 = (.5, .5) for two close populations: example 7.3 on
the left, example 7.4 on the right, with colors of period 22. Both runs have 5000
points (larger points are used on the right for readability).

Figure 13: Plot of the entropy-estimating sequence ℓ ↦→ 𝐻(𝑃 ℓ
220(𝜔)) for example 7.4
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Last, one can wonder what happens if we change the model. Let us give only one
example, far from exhausting the possibilities.

Example 7.5. We consider the case studied in Section 7.1 with as single change a
different collaboration function

𝐶(𝑡) = 1
1 + 45𝑡

which is decreasing convex, takes the value .1 at 𝑡 = 0.2 where the previous reached 0,
and has much stronger slope at 0 thus yielding less collaboration when safety is small
and more collaboration when safety is large. We see again a chaotic behavior (entropy
of 𝜔(𝑠) estimated at 0.42), but with a quite different attractor, see Figure 14.

Figure 14: Orbit of 𝑠 = (.5, .5) for an alternative collaboration function (other starting states
yield a very close picture).

7.4 A provably chaotic example
To conclude this section, let us give a very simple example where chaos can be rigorously
proven without effort, only relying on the existing mathematical literature.

We consider again three candidates C = {𝑎, 𝑏, 𝑐} and three voter types:

𝑍 : 𝑎𝑏𝑐 2 𝑌 : 𝑏(𝑎𝑐) 3.5 𝑋 : 𝑐(𝑎𝑏) 4.5

Voters of type 𝑌 always cast the ballot {𝑏}, and voters of type 𝑋 always cast the ballot
{𝑐}. Here 𝑏 is a Condorcet winner, while 𝑐 and 𝑎 are consensual losers. Let 𝑧 be the
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proportion of voters of type 𝑍 “collaborating”, i.e. casting the ballot {𝑎, 𝑏}, the 1 − 𝑧
remaining fraction casting the ballot {𝑎}. The state space is reduced to an interval,
S = [0, 1] with coordinate 𝑧. We take the same model as in Section 7.1 for the behavior
of voters of type 𝑍, but with a higher reluctance to cooperate:

𝑔𝑍(𝑧, (𝑉𝑎, 𝑉𝑏, 𝑉𝑐)) = 𝐶 ∘ 𝑆(𝑉𝑎, 𝑉𝑏, 𝑉𝑐) 𝐶(𝑡) = (1 + 10𝑡)+, 𝑆(𝑉𝑎, 𝑉𝑏, 𝑉𝑐) = |𝑉𝑏 − 𝑉𝑐|

where 𝑆 is written that way to simplify, since candidate 𝑎 will be last for all values
of (𝑉𝑎, 𝑉𝑏, 𝑉𝑐) that can be obtained for any 𝑧. Given 𝑧, the outcome is given by 𝑉𝑏 =
(3.5+2𝑧)/10 and 𝑉𝑐 = 0.45, so that |𝑉𝑏 −𝑉𝑐| = 1

10 |2𝑧 −1|; this yields the following CPD:

Φ(𝑧) =

⎧⎨⎩2𝑧 when 𝑧 ≤ 1
2

2 − 2𝑧 when 𝑧 ≥ 1
2

This is the well-known tent map, which is an archetype of chaotic map. In particular, it
has entropy ℎtop(Φ) = log 2 (see e.g. [KH95] page 499); moreover, the Lebesgue measure
Leb is invariant for Φ, ergodic and of maximal entropy: ℎKS(Φ, Leb) = log 2. As a
consequence, for almost all 𝑧 (in the sense of Lebesgue measure), the winners word also
have ℎKS(𝜔(𝑧)) = log 2, and the orbit of 𝑧 is everywhere dense in [0, 1]. Using other
invariant measures, for example “Bernoulli measures”, one can show that for any value
ℎ ∈ [0, 2] there are uncountably many 𝑧 such that ℎKS(𝜔(𝑧)) = ℎ, but all these 𝑧 form
together a negligible set (let us recall that a subset of R is negligible when for all 𝜀, there
exist a countable family of intervals whose union contains the subset, and whose sum
of lengths is lesser than 𝜀; this is to be interpreted as any continuous random variable
taking value outside the subset with probability 1).

8 Conclusion
We have considered the synchronized iterated Approval Voting, assuming voters apply
simple, consistent, sincere strategies. This “Polling Dynamics” can be thought of as a
model of strategic voting, when voters try to anticipate the outcome of the election to
decide their votes, or as a (crude) model of actual polls before an election.

In this context, we exhibited two examples showing that Approval Voting is far less
of a Condorcet-in-practice voting system than could have been expected; specifically, we
showed that:

i. assuming voters apply Laslier’s Leader Rule, successive polls can lead from a ma-
jority of initial expected outcomes to a cycle failing to elect an existing Condorcet
winner,

ii. letting voters have only slightly more general strategies, successive polls can lead
to the election of a consensual loser,

iii. these bad cycles are quite uncommon under the Leader Rule, but can represent
up to 15 % (or more with enough candidates) of simulated electorate having a
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Condorcet Winner when ties in preferences are allowed, in particular showing that
in certain circumstances some voters’ best course of action is not to follow the
Leader Rule.

This shows that under Approval Voting, not only convergence to equilibrium may not
happen, but cycles can turn individually sound strategies into sub-optimal collective
strategies, possibly leading to the worst possible outcome.

We proved that these cycles are stable under natural perturbations: even assuming
only a proportion of voters adjust their ballots at each iteration, and assuming different
strategies in case of almost ties, similar cycles persist. To define these perturbations,
we introduced the notion of Continuous Polling Dynamics (CPD), which opens new
directions of study. We illustrated the possibilities of CPD by looking at the tip of the
iceberg of more general models for voters’ response to polls, and observed that even
simple, innocent-looking models easily produce chaotic dynamics.

There are many directions in which these results can be extended. First, one would
be interested in studying other voting methods; the sincerity hypothesis will have to
be relaxed in situation where it excludes strategic voting. One could also deepen the
analysis of prevalence of bad cycle to more “cultures”, i.e. models of voter’s preferences.
Then, the Continuous Polling Dynamics can be studied for various models of Voter’s
strategies, trying to better understand what features of a model lead to predictable
dynamics, and which lead to chaos.

It would be interesting to see if in actual elections, some light could be cast by the
Continuous Polling Dynamics formalism on the sequences of poll results; a particular
difficulty would be to distinguish the effect of poll’s broadcasting from the other events
that may have influenced voters. A recent possible example of poll’s effect is the first
round of the 2017 French presidential election where two candidates, Benoît Hamon
and Jean-Luc Mélenchon, competed for similar parts of the electorates and a positive
reinforcement could explain part of the decline of Hamon in favor of Mélenchon.

Similar dynamics could be used in other many-players games beyond the study of vot-
ing systems. The Continuous Polling Dynamics could be adapted to model generalized
strategies, taking for example into account psychological factors in Voter’s response to
new information.
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