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Abstract—To ease spectral congestion and enhance frequency
reuse, researchers are targeting smart antenna systems using
spatial multiplexing and adaptive signal processing techniques.
Moreover, the accuracy and efficiency of such systems is highly
dependent on the adaptive algorithms they employ. A popular,
adaptive beamforming algorithm, widely used in smart antennas,
is the Recursive Least Square (RLS) algorithm. While, the
classical RLS implementation achieves high convergence, it still
suffers from its inability to track the target of interest. Recently,
a new adaptive algorithm called Recursive Least Square - Least
Mean Square (RLMS) which employs a RLS stage followed by a
Least Mean Square (LMS) algorithm stage and separated by an
estimate of the array image vector, i.e. steering vector, has been
proposed. RLMS outperforms previous RLS and LMS variants,
with superior convergence and tracking capabilities, at the cost of
a moderate increase in computational complexity. In this paper,
an enhanced, low complexity parallel version of the cascade
RLMS is presented by eliminating the need for computing the
array image vector cascading stage. Hence, For an antenna of N
elements our strategy can reduce the complexity of the system by
20N multiplications, 6N additions and 2N divisions. Moreover,
a new Kalman based parallel RLMS (RKLMS) method is
also proposed, where the LMS stage is replaced by a Kalman
implementation of the classical LMS, and compared under low
Signal to Interference plus Noise ratios (SINR). Simulation results
show identical performance for the parallel RLMS, cascaded
RLMS at 10dB and superior performance and robustness for
the RKLMS on low SINR cases up to -10dB.

Index Terms—LMS, RLMS, Kalman Filter, Steering Vector,
Multi Antenna, Adaptive Beamforming, KRLMS, MIMO, SINR,
Spatial Multiplexing, RLS.

I. INTRODUCTION

The rapid increase of wireless systems (smartphones, in-

ternet connected devices, surveillance devices, etc.) created

unparalleled challenges for researchers to overcome resulting

problems, i.e. channel congestion, by enhancing spectral uti-

lization [1], [2]. To resolve the underlying issues and reduce

spectral congestion, smart antenna systems using spatial mul-

tiplexing and adaptive signal processing techniques have been

employed. Such systems minimize the impact of interference

by creating a steerable beam pattern, i.e. beamforming, for di-

rectional signal transmission and reception [3], [4]. Moreover,

the performance of such systems in rapid and precise tracking

is highly correlated with the performance and complexity of

the operating beamforming algorithms [3], [4]. Numerous al-

gorithms exist for realizing an adaptive beamforming systems

with the most popular being the Least Mean Square (LMS)

and Recursive Least Square (RLS). While the RLS algorithm

can achieve faster convergence it does not offer acceptable

tracking performance [5].

Several variants have been proposed for improving the

convergence speed of LMS and tracking ability of RLS in time

varying environments [4]. These techniques include variable

step size LMS (VSSLMS) [6], the modified robust variable

step size LMS (MRVSS) algorithm [7], the adaptive forgetting

factor RLS algorithm (AFF-RLS) [8], the variable forgetting

factor RLS (VFFRLS) and the extended recursive least square

(EX-KRLS) algorithm [9].

In VSSLMS large step sizes are introduced at the beginning

of the adaptation process and smaller ones as the algorithm

approaches its steady state, allowing faster convergence and

a lower residual error floor at the cost of a high increase in

complexity [9]. To further increase VSSLMS noise immunity

and tracking capabilities, the MRVSS algorithm has been

proposed in [7]. Moreover, the robustness of the MRVSS

and the improvement in the tracking ability of the RLS

when implementing the VFFRLS, AFF-RLS and EX-KRLS

algorithms are achieved at a considerably large increase in

computation complexity [10], [11].

Recently, a novel RLMS approach for improving the con-

vergence rate with superior tracking capabilities has been

proposed [3], [4], [10], [11]. RLMS employs a RLS stage

followed by a LMS stage separated by an estimate of the

array image vector, i.e. steering vector with a delayed error

feedback. This technique shows superior performance over

previously discussed LMS and RLS variants with a relatively

acceptable increase in computational complexity. Thus, for

N antenna elements, and in addition to the LMS stage, the

complexity is increased by 20N multiplications, 6N additions

and 2N divisions for the steering vector estimate block.

In this context, the main motivation of this study is to further

optimize the proposed RLMS in terms of complexity and

robustness against low SINR, up to -10dB with an architecture

suitable for a hardware based implementation. Such optimiza-

tion is achieved by considering a parallel RLMS and parallel

RLS with Kalman LMS (RKLMS) structures, eliminating the

need for continuously computing the array image vector.
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II. BACKGROUND REVIEW

A brief background review on some of the well known

and widely used adaptive algorithms for narrow-band complex

signals is presented in this section. Let the input vector at the

discrete time instant k, x(k) = [x1(k), x2(k), ......, xN (k)]T ,

for a uniform linear antenna array with N elements, be defined

by

x(k) =adsd(k) + aisi(k) + n(k) (1)

with [.]T being the matrix transpose, sd(k) and si(k) are the

desired and interfering signals, ad and ai are the [N × 1]
complex array steering vectors for the desired signal and

interference, and n(k) stands for the complex Additive White

Gaussian Noise (AWGN) noise vector.

A general form of the steering vectors ad and ai is given

by

a = [1, e−j2π
D sin(θ)

λ , ...., e−(N−1)j2π
D sin(θ)

λ ]T (2)

where the first antenna element acting as a reference, θ is the

angle of arrival, D is the distance between consecutive antenna

elements, λ is the signal wavelength. Thus, the output y(k) of

the beamformer subject to a linear combiner is given b

y(k) = wH(k)x(k) (3)

where [.]H represents the matrix Hermitian transpose and

w(k) is the array weight vector.

A. Recursive Least Squares

The Recursive Least Square (RLS) algorithm updates the

arrays weight vector based on the minimization of a cost

function. Which is defined by the sum of squared errors for a

known sampling window [10] and is given by

ζ(k) ,
k∑

i=1

αk−1|eRLS(k − 1)|2 (4)

where eRLS(k) = d(k)−y(k) is the error signal for the input

and desired signals x(k) and d(k) respectively, |.| denotes the

modulus and αǫ]0, 1[ is the exponential weighted forgetting

factor. Hence, the weight vector update formula is as follow

eRLS(k) = d(k)−wH(k − 1)x(k) (5)

L(k) =
α−1Q−1(k − 1)

1 + α−1xH(k)Q−1(k − 1)x(k)
(6)

w(k) = w(k − 1 ) + L(k)x(k)e∗(k) (7)

where L(k) is the gain matrix and the inverse signal auto-

correlation matrix Q−1(k) and the weight vector w(k − 1)
are given as follows

Q−1(k) = α−1Q−1(k − 1)

− α−2Q−1(k − 1)x(k)xH(k)Q−1(k − 1)

1 + α−1xH(k)Q−1(k − 1)x(k)
(8)

w(k − 1) = Q−1(k − 1)z(k − 1) (9)

z(k) =
k∑

i=1

αk−1d∗(k)x(k) (10)

Q(k) =
k∑

i=1

αk−1x(k)xH(k) (11)

with z(k) is the cross-correlation vector between the input

and the desired signal and Q(k) is the input signal auto-

correlation matrix [3]. While RLS offers fast convergence, it

lacks acceptable tracking ability.

B. Least Mean Squares

The Least Mean Square (LMS) algorithm minimizes the

mean square error (MSE) eLMS(k), between the input and

desired signals x(k) and d(k), by using the steepest descent

optimization method [9]. LMS is computationally efficient and

is used to estimate the gradient of the error signal to update the

weight vector of the antenna array. The weight vector w(k)
is updated as follows

eLMS(k) = d(k)−y(k) (12)

w(k + 1) = w(k) + µe∗LMS(k)x(k) (13)

where µ controls the magnitude of the gradient descent steps

i.e. step size. While LMS offers superior tracking capabilities

then RLS, it suffers from a trade off between its convergence

speed and the steady state error [12].

C. LMS Kalman Filter Representation

Kalman’s filter presents a realization of an optimal Bayesian

estimator in a two step recursive process, i.e. prediction and

correction. It is described by a state-space model which infers

the parameters of interest from uncertain observations and is

the core of many critical applications i.e. crowd-sensing [13],

[14]. Therefore, Kalman’s filter mathematical model for the

LMS algorithm is given according to [12] by

g(k) =
P(k − 1)

xH(k)P(k − 1 )x(k) + σ2
n

x(k)

w(k) = w(k − 1) + g(k)(d(k)−xH(k)w(k − 1))

P(k) = P(k − 1)−g(k)xH(k)P(k − 1)

(14)

where g(k) is the optimal learning gain vector, P(k − 1) =
E[w̃(k − 1)w̃H(k − 1)] is the error co-variance matrix, E[.]
is the expectation operator, w̃(k−1) , wo(k−1)−w(k−1)
is the weight error vector, wo(k) is the optimal weight vector

and σ2
n = E[|n(k)|2] is the noise variance as given in [12].

D. Cascade Form RLMS Beamformer

The Recursive-Least mean square (RLMS) algorithm is a

RLS stage followed by a LMS stage separated by an estimate

of the array image vector with a delayed error feedback [4]

as shown in figure 1. In RLMS, the output of the first stage

RLS1 , yRLS1(k), is multiplied by the estimate of the desired

signal steering vector ãd, forming the input, x2(k), to the
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Fig. 1. Cascaded RLMS

second LMS2 stage. Moreover, ãd, is given by its stochastic

approximation near convergence [15]

ad,m(k) ⋍
E[w1,m(k)x1,m(k)]

E[w1,m]yRLS1(k) + ε
(15)

⋍
w1,m(k)x1,m(k)

w1,m(k)yRLS1(k) + ε

where w1,m(k), x1,m(k) and ad,m are the RLS1 tap weights,

input signal and the estimate of the mth antenna element of

the complex steering vector ãd at the time instant k with

mǫ{1, 2, 3.......N}. Where ε is chosen as a small constant

to prevent the division by zero. Moreover, a delayed version

of the error signal e2(k) of the LMS2 stage is fed-back to

combine with that of the RLS1 to form the overall error signal

eRLMS(k) used to update the main tap weights of the RLS1

stage. The overall error signal and the optimal tap weights are

given by [10]

eRLMS(k) = e1(k)− e2(k − 1) (16)

wo(k) = Q−1(k)zR(k) (17)

where zR(k) is an estimation of the input, x1(k) assumed

independent and identically distributed (iid), and the LMS2

zero mean desired signal, d1(k), cross correlation vector

zR(k) = E[d∗

1
(k)x1(k)] (18)

while the RLMS presents accelerated convergence and su-

perior tracking abilities, its cascaded form introduces high

latency when targeting a hardware implementation with a

division operation such as in equation (15). Furthermore, the

system complexity is increased by 20N multiplications, 6N
additions and 2N divisions for the steering vector estimated

in equation (15).

III. PARALLEL RLMS

As our main motivation is to propose an optimized parallel

RLMS structure with reduced complexity and noise robust-

ness. This section details the derivation of the RLMS basis

for the RKLMS structure.

A. Parallel RLMS

As previously defined, the input to the mth antenna element

for the LMS stage, x2 ,m(k), is defined by

x2,m(k) =
w1,m(k)x1,m(k)

w1,m(k)yRLS1(k) + ε
yRLS1(k) (19)

After a detailed inspection and since ε is a negligible user

introduced constant, equation (19) can be simplified to

x2,m(k) ≈ x1,m(k) (20)

thus the input to the LMS stage, x2(k), is none other then

the reconstructed RLS1 input x1(k). The parallel RLMS can

now be defined as shown in figure 2.

Fig. 2. Parallel RLMS

The parallel RLMS mean square error (MSE) is re-evaluated

following the same assumptions in [10]: The propagation

environment is time invariant, The components of the signal

vector x(k) should be iid, and all signals are zero mean,

wide sense stationary and spatially uncorrelated. Therefore,

the MSE ξRLMS is given by

ζRLMS(k) ,
k∑

i=1

αk−1E[|e1(k)− je2(k − 1)|2]

=
k∑

i=1

αk−1{E[e1(k)e
∗

1(k) + je1(k)e
∗

2(k − 1)

− je∗1(k)e2(k − 1) + e2(k − 1)e∗2(k − 1)]} (21)

where j =
√
−1 is the complex number resulting in a phase

shift i.e. delay [9], e1(k) and e2(k−1) are the RLS and LMS

errors respectively, |.| signifies modulus and ∗ is the complex

conjugate operator. Moreover, the first term of equation (21)

can be expressed as

E[|e1(k)|2] = E[e1(k)e
∗

1(k)]

= E[|d(k)|2]− zH
R
(k)w1(k)−wH

1 (k)zR(k)

+wH

1 (k)Q(k)w1 (k) (22)

correspondingly the last term of equation (21) can be expanded

to become

E[|e2(k − 1)|2] = E[e2(k − 1)e∗2(k − 1)] (23)

= E[|d(k − 1)|2]− zH
R
(k − 1 )w2(k − 1)

−wH

2 (k − 1 )zH
R
(k − 1 ) +wH

2 (k − 1 )Q(k − 1 )w2 (k − 1 )

Furthermore, the second and third terms of equation (21) can

be written as

E[je1(k)e
∗

2(k − 1)] = jE[d(k)d∗(k − 1) (24)

− d(k)xH(k − 1 )w2(k − 1)− d∗(k − 1)wH

1
(k)x(k)

+wH

1
(k)x(k)xH(k − 1 )w2(k − 1)]
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and

E[−je∗1(k)e2(k − 1)] = −jE[d∗(k)d(k − 1)

− d(k − 1)xH(k)w1(k)− d∗(k)wH

2
(k − 1 )x(k − 1 )

+ xH(k)w1(k)w
H

2
(k − 1 )x(k − 1 )] (25)

where w2(k−1 ) is the LMS2 stage weight vector at time

k−1 . Thus, by using equations (22), (23), (24) and (25), the

MSE defined in (21) can be rewritten as

ζRLMS(k) =
k∑

i=1

αk−1{E[|d(k)|2]− zH
R
(k)w1(k) (26)

−wH

1 (k)zH
R
(k) +wH

1 (k)Q(k)w1 (k) + E[|d(k − 1)|2]
− zH

R
(k − 1 )w2(k − 1)−wH

2 (k − 1 )zH
R
(k − 1 )

+wH

2 (k − 1 )Q(k − 1 )w2 (k − 1 ) + jE[d(k)d∗(k − 1)]

− jE[d(k)xH(k − 1 )]w2(k − 1)

− jwH

1 (k)E[d∗(k − 1)x(k)]

+ jE[d(k − 1)xH(k)]w1(k)

− jE[d∗(k)d(k − 1)] + jwH

2 (k − 1)E[d∗(k)x(k − 1 )]

− jE[xH(k)w1(k)w
H

2
(k − 1 )x(k − 1 )]}

with w1(k) being the tap weights of interest, the optimal

weight vector, wo(k), of w1(k) can be obtained by differen-

tiating equation (26) with respect to wH
1(k) using Wirtinger

calculus [16], and equating the result to zero

∂ξRLMS(k)

∂wH
1(k)

= −zH
R
(k) +Q(k)w1(k) (27)

− jE[d∗(k − 1)x(k)] + jE[x(k)xH(k − 1 )]w2(k − 1)

hence the optimal weight vector wo(k) is represented as

follows

wo(k) = Q−1(k)zH
R
(k) + jQ−1(k)E[d∗(k − 1)x(k)] (28)

− jQ−1(k)E[x(k)xH(k − 1 )]w2(k − 1)

IV. SIMULATION RESULTS

We ran several Monte Carlo simulations with 200 realiza-

tions of 200 samples each with N = 8 antenna elements.

In addition, the input message and interfering signals are

modeled as a random binary data stream modulated by binary

phase shift keying (BPSK). The resulting signal is mixed with

complex AWGN, with a signal to noise ratio SNR = 10dB.

Simulations are conducted for LMS, RLS, KLMS, parallel

RLMS, cascaded RLMS at SNR = 10dB. And using the

parallel RLMS and proposed RKLMS for additional SNR

test case of −10dB. The MSE is used to asses the conver-

gence and performance of each case. In addition, simulation

parameters for the LMS, RLMS variants and the Kalman

LMS and RKLMS respectively, are given as, µLMS = 0.05,

µRLMS = 0.2, α = 0.98, P(0) = 0.5I , Q−1(0) = 0.025−1I ,

ε = 256 × 10−12 and σ2
n = 1, where I is a [N × N ]

identity matrix. Simulation results are in figures 3, 4, 5 and 6

respectively.

The presented results in figure 3 show the identical per-

formance of the cascade and parallel based RLMS stages and

Fig. 3. RLMS and RKLMS Simulation Results for SNR 10dB

Fig. 4. LMS, KLMS and RLS, Simulation Results For SNR 10dB

better performance of the proposed RKLMS for SNR =10dB.

Moreover, the superior performance of the RKLMS to the

traditional RLMS can be seen at SNR = −10dB from figures

5 and 6 respectively, where the classical RLMS diverged while

the RKLMS converged. Furthermore, the following increase

in performance is given at the cost of a small increase in

complexity by replacing the classical LMS stage with the

KLMS whose performance over the latter was demonstrated

in figure 4. Thus,we can state that the parallel RLMS is indeed

the cascade RLMS [4], [10] where 20N multiplications, 6N
additions and 2N divisions are reduced from the computa-

tional complexity. Thus, the resulting parallel structure has

reduced the complexity and the latency. Therefore it becomes

more suitable for a hardware implementation [17], [18].

V. CONCLUSION

In this paper, an efficient parallel RLMS adaptive beam-

former, with identical performance over the traditional LLMS

at 20N multiplications, 6N additions and 2N divisions re-
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Fig. 5. RLMS Simulation Results For SNR -10dB Log-Log Plot

Fig. 6. RKLMS Simulation Results for SNR -10dB

duced complexity is presented. Moreover, a RKLMS is pro-

posed for robustness against low SINR up to SNR =− 10dB
cases by modeling the classical LMS stage with a Kalman

LMS filter. Experimental results have shown satisfactory con-

vergence and identical performance of the parallel RLMS

and cascade RLMS validating the proposed approach. The

results also validated the robustness of the RKLMS in low

SINR scenarios with superior performance over the previously

stated algorithm at a slight increase in complexity. While, pre-

sented simulations show promising results, they only consider

the preset simulation parameters. However, the RLMS and

RKLMS performance may be further optimized for additional

robustness by wisely selecting the preset value of the initial

parameters, i.e. step size and the error co-variance matrix.

Thus, future work includes performing stability analysis to

deduce the optimal initial parameters and implementing the

parallel RKLMS structure on re-configurable hardware such

as FPGA.
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