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Abstract

As an acoustic communications medium, water is characterized by frequency dependent attenuation, short range, very low

bandwidth, scattering, and multi-path. It is generally difficult to acoustically communicate even terse messages underwater

much less images. For the naval mine counter-measures mission, there is value in transmitting images of mine-like objects,

acquired by side-scan sonar on-board unmanned underwater vehicles, to the above-water operator for review. The contribution

of this paper is a methodology and implementation, based on vector quantization, to compress and transmit snippets of side-

scan sonar images from underway unmanned underwater vehicles to an operator. The work has been validated through

controlled indoor tank tests and several at-sea trials. The fidelity of the received images is such that trained operators can

recognize targets in the received images as well as they would have in the original images. Future work investigates machine

learning to improve the compression basis and psycho-visual studies for the specialized skill of feature recognition in sonar

images.

Keywords Underwater communications · Sonar image transmissions · Unmanned underwater vehicle · Naval mine

counter-measures

1 Introduction

One application that this reported work contributes to is naval

mine counter-measures (NMCM) with multiple collaborat-

ing unmanned underwater vehicles (UUVs) and unmanned

surface vehicles (USVs). A task within the NMCM mission is

an underwater survey of an area with side-scan sonars (SSS)

integrated on the UUVs. Collaborating UUVs make the sur-

vey more efficient due to the increase in coverage rate and

provides redundancy in the event an UUV is unable to com-

plete its survey. The USV can also survey if it is in shallow

water or more often, it relays UUV findings to above-water

operators. The important outcome of the survey is the geo-

referenced SSS data (images).
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The payload autonomy (automated target detection, ATD)

on-board the UUVs perform in-situ processing to detect

targets or mine-like objects (MLO) in their geo-referenced

sonars’ images. This processing yields geo-referenced image

snippets (or mugshots) where each snippet (∼ hundreds of

kB in size) contains a target. These 8-bit/pixel monochrome

images are not usually enhanced. The geo-referenced loca-

tions are needed to revisit the targets to confirm their

locations for subsequent actions (http://acomms.whoi.edu/

wp-content/uploads/sites/20/2014/09/401040-SIG-Microm

odem-Software-Interface-Guide.pdf). The sonar images are

typically evaluated by the operator after the UUV is recov-

ered and the images are downloaded.

Some NMCM operations require an operator to evaluate

the target prior to subsequent actions like further classifi-

cation or disposal. The UUV recovery, sonar data download

and UUV re-launch can take a fair amount of time depending

on the sea state and the area to survey. Meanwhile the UUV

cannot be re-tasked to continue the survey (or revisit a target)

and the target information it contains cannot be transmitted

to inform the operator or to re-task another UUV or USV

to investigate the target. This reduces the value of the UUV

collaboration to just increasing the coverage rate instead of

engaging other UUVs and USVs to accelerate the NMCM
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mission. With modern NMCM missions, the timeliness is

important.

This paper reports on communication challenges that

were overcome to transmit SSS image snippets from a UUV,

as soon as they are available, through the underwater path

to an USV which relays to an operator.

This has not been previously done as underwater com-

munications between robots and other submerged systems

is challenging. It is generally difficult to acoustically com-

municate even terse status and command messages under-

water between the collaborating robots/operators much less,

images. The communication challenges are briefly explained

next.

1.1 Underwater acoustic channel and SSS images

Above-water, electromagnetic and light waves provide more

than adequate bandwidth for the transmission of sonar image

snippets that are ∼ hundreds of kB in size. But, such signals

are rapidly attenuated underwater. Acoustic signals are the

most practical in terms of range and bandwidth for under-

water communications. However, even with acoustic signals

the underwater bandwidth and range are still relatively lim-

ited as typical center carrier frequencies are only tens of kHz

(< 50 kHz) compared to the MHz and GHz for in-air com-

munications with above-water or terrestrial robots.

The underwater acoustic channel is also undermined by

low sound speed (high latency), scattering and multi-path

as well as local and temporal variations in the sound speed

profiles. Consequently, SSS images suffer degradation due

to blurring and Doppler effects (low sound speed), low

contrast, non-diffuse reflections from the target and interfer-

ence between the emitted and returned sonar signals. Even

artificial targets, like MLOs, that are sought may not stand-

out strongly against the background seabed. It is currently

impossible to transmit information directly from underwater

through the water-air interface. Proposed, is to use USVs as

communication relays that receive underwater acoustic mes-

sages and translate them to in-air radio waves.

The underwater acoustic channel qualities drive the com-

munications internet protocol (IP) to use—whether it be TCP

(transmission control protocol) or UDP (user datagram pro-

tocol).

1.2 Underwater transmission requirements

With TCP IP, packet transmissions are reliable and ordered at

the cost of more overhead (tracking, setup for socket connec-

tions, etc.). A packet is continually re-broadcast until there is

acknowledgement it was received. Acknowledgements can

take seconds or more—especially if propagation conditions

are poor. However, this is needed to transmit say a zipped file

as it cannot be reconstructed unless every bit was received.

Alternatively, with UDP IP, there is no acknowledgement

of received transmissions and no ordering (later transmitted

packets can arrive before previous ones) consequently, it is

comparably lightweight and fast.

Usually, UDP IP message quality is checked on the receive

end. UDP acoustic modems use additional encoding on their

binary packets to limit the data loss. For example, check-

sums are used to indicate transmission errors. The choice to

use UDP implies that message acknowledgement is a lower

priority. For example, UDP IP can be used for video imagery

transmission as a dropped packet means a poorer quality

image, but an image still could be reconstructed.

The advantages of UDP IP are that it can broadcast simul-

taneously to multiple receivers and uses limited bandwidth

more efficiently. The choice of UDP-like communications

underwater is motivated by the high latency and low band-

width in the underwater acoustic channel. UDP IP was used

in this project.

To adapt to the difficult underwater acoustic communica-

tions channel the strategy is terse communications as with the

Woods Hole Oceanographic Institution (WHOI) underwater

acoustic modem (WHOI 2014). These acoustic modems are

used on UUVs, USVs, and stationary seabed sensors. They

have carrier frequencies around 25 kHz with a bandwidth of 4

kHz. All data transmitted acoustically is executed as binary

fixed-length packets. The data rates for these modems are

shown in Table 1. The reliability of the transmission varies

inversely with its packet size, therefore, the lowest trans-

mission rates are most reliable. This was quantified by the

authors in experimental studies of packet transmission suc-

cess rates as functions of packet size and range (Nams and

Seto 2015). This means smaller messages are more likely to

be successfully transmitted and received.

Therefore, the image compression methodology must

accommodate small packet sizes to transmit at low band-

widths. PSK (phase-shift-keying) rates 1 and 4 (Table 1)

provide a reference starting point for how small. In terms

of a performance goal, the smaller the packet size the better

and the interest is in what is possible over a 200 m range

for NMCM purposes. With the transmission constraints and

goals defined, image compression was considered next.

1.3 Compression of side-scan sonar images

Generally, digital imagery including those from SSS have

coding, inter-pixel and psycho-visual redundancies which

could be removed for more compact transmission.

Coding redundancy arises when more code symbols are

allocated than are needed to represent the monochrome levels

in the image. Given an 8-bit representation, side-scan sonar

images, at least of MLOs, do not have many high intensity

pixels since the image is low contrast. There is a distinctive

tail in the pixel intensity distribution which tapers to near-
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Table 1 WHOI Modem Data
Rates (WHOI 2014) (bps =

bits/s)

Data rate type Frame size Frames/packet Packet size (B) Packet rate (bps)

FSK-0 32 1 32 80

PSK-1 64 3 192 498

PSK-4 256 2 512 1301

PSK-5 256 8 2048 5388

zero values in the upper 20% of an 8-bit representation (e.g.

Fig. 10), that is, most of an MLO SSS image is ‘dark’.

Spatial inter-pixel redundancies come from the correlation

between adjacent pixels as they are not statistically inde-

pendent and contain information about neighbouring pixels.

With images from side-scan sonar insonification, this will be

especially true with MLOs as opposed to stretches of fea-

tureless seabed.

Temporal inter-pixel redundancies come from the statis-

tical correlation between pixels from successive frames as

in a video sequence or repeat UUV dives in an NMCM mis-

sion. This project compares single images against a reference

image so this is not as applicable.

Psycho-visual redundancy exists as human perception

does not quantitatively evalute each pixel’s attributes in visual

processing. This means relatively insignificant information

could be eliminated without much compromise to the recon-

structed image. To address trained operators evaluating SSS

images of MLOs requires a user study in a controlled envi-

ronment which is beyond the scope of the present work.

The additional difficulty with side-scan sonar imagery

is that the target’s appearance, in terms of highlights and

shadows against this background, is dependent on the insoni-

fication direction. Side-scan sonar images will be poorer

quality (and their compressed versions, poorer still) com-

pared to camera and video pictures. Consequently, operators

must be trained to recognize features like MLOs in SSS

imagery from all insonification directions.

Quality metrics of similarity between two images, based

on pixel attributes, are described next. The full reference

image (as opposed to just the image statistics) is the orig-

inal image snippet extracted in post-processing on-board the

UUV. This would be compared against the reconstructed

image which was compressed for transmission.

1.3.1 Quality metrics for compressed images

In image analysis the peak signal-to-noise ratio, P SN R, is

a measure of the reconstructed image’s representation rel-

ative to the reference image. P SN R approximates human

perception of reconstruction quality. Acceptable P SN R val-

ues for camera pictures and video are 20 dB. The higher the

P SN R, the better the reconstruction. For a reference m × n

monochrome side-scan sonar image, f , and its approximate

representation, g, the mean squared error (M SE) is defined:

M SE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[ f (i, j) − g(i, j)]2. (1)

The P SN R in decibels (dB) is then defined as:

P SN R(d B) = 10 log10

( P P2
max

M SE

)

(2)

where P Pmax is the image’s possible pixel maximum value.

As the images were 8 bits/pixel, P Pmax = 255.

The structural similarity, SSI M , index is another mea-

sure of similarity (perceived quality) between images. Unlike

P SN R, it is based on visible structures in the image and

captures perceptual differences (Wang et al. 2004). SSI M

is calculated on sliding square windows of an image. The

measure between 2 windows x and y of the same n × n size

is defined as:

SSI M(x, y) =
(2µx + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ
2
x + σ 2

y + c2)
(3)

such that µx = mean(x) and µy = mean(y) relate to lumi-

nance; σx = var(x) and σy = var(y) relate to contrast

and structure and σxy = covar(x, y) relates to structure.

c1 = (0.01P Pmax )
2 and c2 = (0.03P Pmax )

2 help SSI M

avoid instabilities when the denominator is small. SSI M lies

in the range of: −1 ≤ SSI M ≤ 1 where 1 means the two

images are identical and 0 means there is no structural simi-

larity between them. Unlike M SE and P SN R, SSI M better

quantifies human visual perceptual quality which is relevant

as a measure of what operators recognize from reconstructed

images. A comparison of pixel intensity distribution shape

and relative magnitudes is a visualization of these similarity

measures.

The overview of a solution is presented next given the

difficult underwater acoustic channel and the challenges in

compressing SSS images inherently and further, to accom-

modate underwater transmissions.

1.4 Underwater robots communicating images
above-water

The robot communication challenges to transmit relatively

high bandwidth information from underwater to above-water

were addressed as follows. The system developed consisted

of duplex transmitter (UUV) and receiver (operator) units
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(Fig. 3). The transmitter is a payload processor serially

interfaced to an underwater acoustic modem on-board the

UUV. The autonomy on the transmitter payload processor

extracts target image snippets from the SSS data stream,

compresses/encodes them and then transmits the ones with

high MLO likelihood to the receiver unit. The receiver unit

is an underwater acoustic modem serially interfaced to the

payload computer on the USV or a deck modem deployed

from a small boat. Both could additionally have in-air radios

to relay their received underwater messages and subsequent

findings to above-water locations.

1.5 Novelty and contributions

The contributions from the reported work are as follows.

1. An algorithm to compress and transmit snippets of under-

water side-scan sonar imagery above-water for potential

in situ operator evaluation. The image compression

adapted an existing approach (Murphy et al. 2010) for

underwater pictures, to side-scan sonar imagery with

similar results to pictures. This means side-scan sonar

imagery can compress in the same manner as underwa-

ter photographs. Furthermore, sparse encoding methods

that learn the basis directly from the imagery are more

effective than discrete cosine and wavelet transform

approaches.

2. A proof-of-principle of a robotic solution to extract, ana-

lyze, compress and transmit small, highly compressed

side-scan sonar images in-situ from submerged robots to

above-water robots using low-bandwidth acoustic com-

munications. The above-water robots relayed the images

to operators for evaluation. This was tested and validated

through multiple sea trials.

3. More timely underwater surveys can be performed

through a tighter collaboration between the UUV, USV

and operator for naval mine counter-measures missions.

While the results ultimately contribute to the timely evalu-

ation of MLOs by operators based on transmitted imagery,

and it was initially presented to operators, this work is not

a thorough investigation of the psycho-visual or human-

robot interaction aspects. The emphasis was on overcoming

challenges in communicating complex information between

robots in different environments (underwater to above-water

to shore).

1.6 Paper organization

The rest of this paper is organized as follows. To start, Sect. 2

has a a description of the image compression requirements

followed by a review of existing image compression algo-

rithms. This is followed by a brief trade-off in simulation

of several possible compression algorithms that could be

implemented on an UUV which helped select the vector

quantization method pursued. Then, Sect. 3 describes the

hardware used and the software developed to realize the

method pursued.

This is followed by Sect. 4 which reports the in-water test-

ing. Initially, the realized algorithm was tested in a controlled

environment in a small (2 m) indoor tank, followed by at-sea

trials to test for range and image database sufficiency. Then,

advanced at-sea tests were undertaken where the on-board

ATD extracts the images from the side-scan sonar stream

to be vector quantized and transmitted from the acoustic

modem. The paper concludes with some remarks and future

work to address the specialized psycho-visual aspects spe-

cific to this problem.

2 Related work

Algorithms for compressing above-water camera pictures

and videos may not be as effective for sonar images as the

noise in underwater imagery is higher and the resolution is

lower. The possibilities to compress SSS imagery snippets

to the point where they could be transmitted underwater was

explored as well as metrics to assess the compression quality.

There is a fair bit of work on processing side-scan sonar

images with the intent to enhance it for better object detec-

tion. Typically, as mentioned earlier for NMCM and other

surveys, the side-scan sonar imagery acquired by the UUV

is downloaded and analyzed after the UUV is recovered.

This is especially so since the SSS data is not typically ana-

lyzed on-board the UUV for several reasons. SSS imagery

is memory intensive (30 min survey mission generates ≈ 80

MB of data). Prior to recent developments in UUV auton-

omy and embedded processors, it was not even possible to

analyze the data on-board much less transmit information

from it. Compressing SSS imagery was motivated by the

authors’ objectives to transmit snippets via low bandwidth

transmissions to exploit adaptive robotic mission-planning

and collaboration, sometimes with the operator in-the-loop,

towards timely underwater surveys. There has been no moti-

vation, beyond archival ones (Moszynski et al. 2013), to

compress sonar data so the topic has not received much

attention. The project’s image compression requirements are

stated next.

2.1 Above-water compression applied to SSS images

For the application considered, the image compression

assessment will be based on:

• compression ratio which is critical as the image quality

can be overlooked if the targets are visually recognizable;
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• compressed image distortion as measured through the

P SN R (not a consistent good measure) as well as the

SSI M which accounts for some psycho-visual aspects;

• no image processing or augmentation to be considered at

this point and

• processing effort to encode and transmit (bits/pixel)

images as it is performed on embedded systems

as applicable to underwater images and side-scan sonar in

particular.

As described earlier, side-scan sonar images of MLOs

have psycho-visual, coding and inter-pixel redundancies that

could be reduced without unduly compromising the recon-

structed image quality. While there has been little work on

SSS images towards this, above and below water pictures and

video transmission has a fair amount to offer and is a starting

point.

Above-water compression methods are generally divided

into lossy and lossless. With lossy methods, information is

irrecoverably lost in the compression while lossless methods

retain the original information in the reconstructed image.

Consequently, lossy methods produce much smaller trans-

mission packets than lossless ones and are commonly used

in pictures and videos. Pictures can achieve lossy compres-

sion ratios of 10:1 or better. In this regard, SSS images were

treated like still pictures to start. Given psycho-visual redun-

dancy some loss may be tolerable for human perception in

exchange for larger compression ratios.

Examples of lossless compression methods (Yang and

Bourbakis 2005) include the common PNG, GIF, TIF and

JPEG2000 (Skodras et al. 2001). However, their compression

ratios are insufficient for underwater low bit rate transmis-

sions and are only retained here as a reference.

Methods like Huffman coding (Huffman 1952), discrete

cosine transform (e.g. JPEG Skodras et al. 2001; Wallace

1992), vector quantization (Shen and Huang 2010) and

wavelet compression (Said and Pearlman 1996) (e.g. SPIHT)

are lossy where the reconstructed image only approximates

its original but with the advantage of a more favourable

compression ratio. This holds potential for compressing SSS

images to the point where they might be transmitable from

low bandwidth acoustic modems.

Lossy methods address the inter-pixel redundancy by

transforming the image then quantizing it to remove the

psycho-visual redundancy and finally, encoding it efficiently

to remove coding redundancy. The compression performance

of these methods will be assessed by applying them to SSS.

2.1.1 Discrete cosine transforms

Discrete cosine transform methods like JPEG (Wallace 1992)

and even lossless JPEG2000 (Skodras et al. 2001) were not

favored for this application as they they do not compress well

enough for successful low bit-rate transmissions. JPEG2000

will be retained in the analysis to provide a relatable reference

for comparison purposes.

2.1.2 Huffman coding

Huffman’s method (Huffman 1952) encodes images to com-

press more efficiently. It is used in JPEG (Wallace 1992) for

example. Huffman coding is based on frequently-appearing

values given shorter bit representations than less common

ones. To achieve this, a tree represents the priority of each

value based on its frequency of occurrence. A given value

is coded through a traversal of the tree. Therefore, Huffman

coding is more efficient than .zip or .rar compressions. In

Moszynski et al. (2013) this was applied to compress multi-

beam echo sounder (MBES) images for archiving. MBES

data is not unlike SSS data however, this was an application

for only archiving.

2.1.3 Vector quantization

Vector quantization of above-water pictures can achieve

PSNR values up to 30 dB which is acceptable. However,

methods that adapt the encoding (Shen and Huang 2010) can

substantially improve the quality of vector quantized com-

pressed images still more. With vector quantization, a picture

is deconstructed into a mosaic of non-overlapping square

tiles. Then, the intensity of each pixel in the tile populates a

vector, T , with a specific ordering. In this way, a constituent

tile can be compared against a codebook or database of tiles,

Ci , where k is the tile vector’s dimension. Tile similarity is

assessed through the Euclidean distance, d , between a con-

stituent tile vector T and database tile vector, Ci . The smallest

distance, d , is the best fit:

d(T , Ci ) =

√

√

√

√

k−1
∑

j=0

(T j − Ci, j )
2. (4)

Each constituent tile is compared against tiles in a com-

mon database at the transmit and receive end. Once the most

similar tile in the database is identified for a constituent tile,

that tile’s database index is retained (and later transmitted)

as representative of that part of the image. Various methods

can be used to optimize the training of the database (Bhat-

tacharyya et al. 2014; Ferdowski et al. 2017).

WHOI (Murphy et al. 2010) developed a compression

method using vector quantization (VQ, to refer from this

point on to the WHOI method), specific to color seafloor pic-

tures. This process is facilitated through a principal compo-

nents analysis (PCA) (https://www.quantstart.com/articles/

Eigen-Library-for-Matrix-Algebrain-C) to determine the

Euclidean distance. At the receiver end when all the indices
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Fig. 1 Steps in the WHOI vector quantization (VQ) compression algorithm

for all constituent tiles are received, the image can be recon-

structed from the common database (Fig. 1). It is possible to

implement this on the payload processor of an UUV and to

transmit images through low bandwidth acoustic modems.

2.1.4 Wavelet-based encoding

SPIHT (Set Partitioning in Hierarchical Trees) (Said and

Pearlman 1996) uses wavelet transforms to encode images.

The transmission is based on two steps: (1) the wavelet coef-

ficients are ordered by magnitude and (2) to transmit the

most significant bits first. The encoder (transmitter end) and

decoder (receiver end) use a common ordering scheme so it

is not necessary to transmit that. A spatial orientation tree

defines the data ordering based on a recursive four sub-

band splitting. The tree is defined so each node has either

no offspring (the leaves) or four offsprings. Consequently,

the compressed image can be truncated at various points and

decoded to give a series of progressively refined (higher reso-

lution) versions of the initial image. Bin and Qinggang (2013)

implemented an improved SPIHT algorithm, based on adap-

tive lifting wavelet transforms, and applied it to sonar images.

They found it difficult to capture edges well but were able to

achieve bit-rates of 0.2 bits/pixel. Others (Liu and Li 2013)

also use lifting wavelet transforms with PSNR of 25 + on

Lena (people) images, which are high contrast and less noisy,

compared to SSS images. They were able to do this at low

bit-rates (lowest ∼ 0.016 bpp) and with encoding times as

low as ∼ 0.14 s. However, their method additionally requires

more computation resources to achieve this.

Atallah et al. (2016) applied SPIHT to compress images

for underwater transmission. To simulate underwater trans-

mission they added white Gaussian noise and delay paths to

emulate multi-path effects. This does not capture the under-

water acoustic channel challenges this project was interested

in. Discrete wave transforms were applied to de-noise their

received images to get acceptable PSNR values. This work

is still at an early stage.

Zhang et al. (2015) presents a seafloor image compression

technique based on hybrid wavelet transforms and direc-

tional filter banks to underwater color pictures. This is a

development beyond discrete wavelet transform approaches

as it captures texture and contour structures better. They

achieved good compression and reconstruction through high

coding efficiency for transmission at low bit rates. The rele-

vant aspects from this for the present application is a novel

distortion model to remove psycho-visual redundancies for

underwater still images. The psycho-visual redundancies are

not a priority for this present project but they are for the next

one. This method is computationally intensive and has not

been tested for implementation on an embedded system.

Zhang et al. (2016) is a development on the work of Zhang

et al. (2015) applied to underwater color video compres-

sion. It comprehensively targets the psycho-visual aspects

by modelling the human vision system including the spatial-

temporal aspects from consecutive images as would be the

case in video. Through insight on these psycho-visual redun-

dancies and removing them to achieve lower bit rates they

were able to achieve high P SN Rs on underwater color

images which are more information-rich than underwater

side-scan sonar imagery.

It was not clear what the computation effort was for Zhang

et al. (2015, 2016) to obtain their results and whether it would

be achievable on an embedded system. They achieved low

bit-rates (0.1 bits/pixel) for transmitting color video which is

comparable to VQ’s 0.14 bits/pixel. This methodology mer-
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its further consideration when the psycho-visual aspects are

addressed in the follow-on project. At that point it is worth

testing for encoding on an embedded system. It would likely

require a different payload processor than what has been used

to date.

Therefore, SPIHT, Huffman coding and vector quan-

tization will be evaluated as the methods that could be

implemented with an embedded processor. JPEG2000 will

be retained as an example of a lossless method to compare

against. The next step was to investigate similarity measures

for SSS imagery.

2.1.5 Sonar image quality assessment

For sonar image quality assessment, the earlier work of

Kalwa and Madsen (2004) used the mean pixel value (noise),

entropy (complexity of image) and substance (amount of

strong returns in the image). However, these measures do not

adequately capture what is needed given the sonar image’s

nonuniform noise as well as noise that contains strong

returns.

Chen et al. (2017) compiled a diverse database of sonar

images, initially ground truthed by (subjective) experts, to

develop metrics for sonar image quality assessments. They

compared images that were degraded by compression and

transmission against their full reference image and devised

an objective metric that uses the entropy map. They used gra-

dient magnitudes in the sonar intensities to look for targets.

This has potential in the highlight regions and shadows that

are part of a target. However, there are as many strong gra-

dients in side-scan sonar images from corrupted images and

the nadir (blind spots in side-scan sonar) and is dependent

on insonification aspect with SSS. In this regard, this is no

better than SSI M .

Li et al. (2018) devised subjective and objective evaluation

measures with sonars and cameras to monitor the density of

biological invasive species towards the safe operation of a

nuclear power plant. However, their focus was on analyzing

sonar (and video) images without references. Their image

quality is evaluated as a distance between a no-reference

quality aware model and the fit of the distorted image against

that. This is not the comparison that was desired.

DeBortoli et al. (2017) applied an atrous convolution

architecture as part of a learning approach to extract frames

with high quality imagery from a sequence of images. The

advantage of this, beyond other convolutional neural net-

work approaches, is the use of more pixels around the target

which decreases the dependence on strong local targets. This

is extensible to extract high quality frames that are not limited

to those the system trained on. Their system selects images

based on its usefulness to a human operator. DeBortoli et al.

(2017) also targets the psycho-visual aspects which is of

interest in the follow-on work. This approach will be pur-

sued in the next project phase as DeBortoli et al. (2017) came

out well after our original concept was presented to show that

learning the basis of the target was a good approach. Whether

DeBortoli et al. (2017) can be implemented on an embedded

system (through transfer learning or distillation Hinton et al.

2014 for example) remains to be seen.

Given that there are no image quality metrics that specif-

ically address side-scan, or any other sonar imagery for full

reference analysis, the project chose to stay with P SN R and

SSI M as the quality metrics.

Therefore, the image compression method to use was

based upon comparing the merits of SPIHT, Huffman cod-

ing and vector quantization using P SN R and SSI M . This

is discussed next.

2.2 Image compression selectionmethod from
simulations

Based on the requirements outlined in Sect. 2.1 for the com-

pression scheme, Huffman coding, vector quantization and

SPIHT were further investigated for their appropriateness to

SSS images. JPEG2000 was retained as a representative loss-

less reference. In the evaluation through simulations, the four

algorithms were implemented in MATLAB©.

An example of an evaluation of these four compression

methods against a reference image (49×113 pixels) is shown

in Table 2 with a visual example in Fig. 2 from the Klein 5500

SSS sonar.

As shown, JPEG2000 and Huffman coding reduce the file

size by less than 10 times and distorts the images as reflected

in lower P SN R values. The SPIHT algorithm provides either

visually satisfactory results with a poor compression ratio

(shown) or distorted images with a good compression ratio

(not shown). The best results are achieved with the VQ

method. The compression ratio is more than satisfactory

resulting in a compressed file of only 100 bytes in this case.

Furthermore, the image is visually similar to the original

image.

Given the complexity and uncertainty in underwater sonar

images, a sparse coding method that learns its basis directly

from the imagery has greater effectiveness than approaches

based on discrete cosine and wavelet transforms. This should

at least work where the training images are similar to the test

images. Vector quantization is an example of this.

The compression time for VQ takes ∼ 35 s on the embed-

ded processor (described later). The other methods took

much longer. This relatively short time means it is feasible

for the operator to view the images while the UUV is under-

way and soon after the images were captured. This makes

it possible for the NMCM mission to be carried out more

rapidly.

The most promising compression scheme, against the

requirements in Sect. 2.1, for underwater sonar images from
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Table 2 Relative performance of four compression methods applied to side-scan sonar images

Method

JPEG 200 Huffman coding Vector quantization SPIHT

Compress ratio 9.449 8.916 251.682 25.924

PSNR 29.52 21.66 18.19 21.94

Pros Constant updates Previous info not required to
compress

No distorts fr compression Image can be truncated to
give refined version

Previous info not required to
compress

Quality dep on database Previous info not required to
compress

Cons Distortions under high
compression

Distortions under high
compression

Requires a tile database Distortions under high
compression

Fig. 2 Compression algorithm performance on archived Klein 5500
side-scan sonar image

the evaluation is the VQ algorithm (Murphy et al. 2010).

This method’s performance depends, not unexpectedly, on

the quality of the database. The optimal database would have

many tiles with great diversity that capture a variety of seabed

bottom types (gravel, sand, clay, mud, etc.).

Noisier images, like those in SSS, require more represen-

tation (bits) to achieve the same fidelity as measured through

the P SN R. Therefore, they do not compress as well. Vec-

tor quantization effectively applies a low pass filter which

smooths the high frequency noise yet still captures the main

features (in the lower frequencies). This lowers the bit rate

and makes it more bandwidth efficient.

Given the VQ database represents 15,000 tiles and only

the indices of the constituent tiles in an image are transmitted,

this means each 10×10 pixel tile can be represented by 14 bits

(up to 16, 384 possible tiles), the ‘bit-rate’ is 0.14 bits-per-

pixel. This is comparable to other efficient low bit rates at 0.1

bits-per-pixel (Zhang et al. 2016) using wavelet transforms.

VQ decoding is fast and straight forward as it re-assembles

the image in a look-up table manner. Vector quantization is

a method that is resilient against the inherent noise in SSS

images.

Therefore, VQ was selected as the image compression

method and its implementation is discussed in Sect. 3.3.

However, the overall system will be discussed first in more

detail.

3 System description

3.1 High level systems overview

The systems overview is shown in Fig. 3. The process starts

with the UUV acquiring SSS data underwater in the upper

left and terminates with the above-water display of the recon-

structed transmitted image on the bottom right for operator

evaluation. The top blue dashed-line box (transmitter—UIB)

graphically shows the steps that occur on-board the UUV

prior to the image snippet being transmitted as an acoustic

modem message. The bottom blue dashed-line box (receiver–

operator) shows the steps to decompress the received image.
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Fig. 3 System overview—hardware components in bolded boxes and names of software components in italics

Fig. 4 IVER3 unmanned underwater vehicle

Items in square brackets identify components realized in soft-

ware that are described in this Section and the Appendix.

3.2 Hardware description

3.2.1 Unmanned underwater vehicle

The work here targets the capabilities of the IVER3 UUVs

(Fig. 4) that DRDC owns and uses. One has the Klein 3500

side-scan sonar with an interferometric bathymetry sonar and

the other has the MarineSonics HDS side-scan sonar.

The embedded processor on-board the UUVs is an Intel

Atom Dual-Core 1.6 GHz N2600 that can access 512 GB of

RAM. It has a maximum memory of 2 GB and is capable of 4

threads. This is roughly similar to an Intel I3 processor. There

Fig. 5 HMS (Her Majesty’s Ship) Hazzard unmanned surface vehicle

were plans to potentially upgrade to the NVIDIA Jetson TX2

(256 CUDA Cores). This GPU processor is for advanced on-

board computer vision processing. Its power consumption

however, is twice that of the Intel N2600.

For the advanced in-water trials the underwater messages

were sent to unmanned surface vehicles which are briefly

discussed next.

3.2.2 Unmanned surface vehicle used

The unmanned surface vehicle that was used as the

receiver and relay units in some of the trials is shown in Fig. 5.

At a minimum, the USV has an underwater acoustic modem

to receive underwater messages and can host the receiver–

operator module (Fig. 3). Additionally, the USV must have

an in-air radio to relay the reconstructed images to shore.
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3.2.3 Underwater acoustic micromodems

The underwater acoustic modems on-board the UUVs and

USVs were previously described in Sect. 1.2 and WHOI

(2014).

3.3 Software development

3.3.1 Description of software modules

All the software developed is original to the project except for

the principal components analysis which was borrowed from

the Eigen Library for Matrix Algebra in C++ (https://www.q

uantstart.com/articles/Eigen-Library-for-Matrix-Algebrain

-C). The developed code components, outlined in Fig. 3 in

boxes, and described below, is organized as follows:

• VQScheme class contains methods and functions for

image compression and decompression

• Compression is achieved through Compress.cpp (com-

pressor ROS Purvis 2017 node) compiled as an exe-

cutable.

• Similarly, decompression is achieved through Decom-

press.cpp (decompressor ROS node).

• The VQ database is formed through Database.cpp (algo-

rithm in Fig. 6) and support functions (not discussed). The

database is formed and compiled ahead of time however,

the database in binary form is loaded on-line as shown in

Fig. 3.

VQScheme has one private function, matchingTile, which

is defined for vectors of doubles or unsigned integers. This

function takes as parameters a 1D-vector of 8 bit unsigned

integers that represent a tile and a 2D-vector that represent

a database. It is also defined for 1D-vector of doubles that

represents a tile and a 2D-vector that represents a database

so that it can be used for constituent and database tiles.

It compares the constituent tile to those in the database

and returns the index of the one that is most similar. This

function, matchingTile, is used to compress an image by

the encodeCompress.cpp function. During its execution, this

function affects the value of the distance between the closest

database tile found and the constituent image tile (Fig. 7).

The results from a sensitivity analysis of parameters that

impact the VQ compression are presented and discussed.

3.3.2 Vector quantization: database

There are two thresholds in the database creation to deter-

mine whether a new tile needs to be added. This, in turn,

affects the execution speed and compression quality. To gain

insight into these parameters’ impact, a sensitivity analysis

Fig. 6 Database creation algorithm

was performed. The analysis focuses on the 4 parameters

deemed most significant:

1. number of dimensions retained in the principal compo-

nents analysis

2. threshold for a user-defined figure-of-merit, F O M , that

assesses whether an image reconstruction is acceptable

3. threshold for the Euclidean distance to the database that

defines what tiles should be added to the database (if any),

and

4. number of images in the database.

The results are evaluated using a set of test images where

the following were calculated: the F O M ; the difference in

the ATD confidence that the image contained an MLO before

and after compression; the time to compress an image; the

size of the database, and the time to create the nominal

database (a one-time activity).
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Fig. 7 Illustration of database creation algorithm

The F O M pertains to a reconstructed image straight from

the database and how similar it is to the original image.

It takes as parameters a 2D vector which has on the first

row, the reference (database index) to the tiles that constitute

the compressed image and on the second row, the distance

between each tile of the original image and the tile chosen

from the database to encode it. These distances are squared

and added to obtain a type of mean squared error, M SE2, [to

distinguish it from the earlier defined Eq. (1)] for the recon-

structed image. Therefore, the F O M is a a number between

0 and ∞ and is defined as:

F O M = 10 log10

(max(M SE2)
2

M SE2

)

.

Defined this way, F O M values less than 39 dB produced

results that were visually quite similar for the authors - admit-

tedly a bit subjective. This is a similarity measure specific to

the database in the VQ implementation for SSS images.

The ATD confidence is obtained through a fusion of sev-

eral filters and represents the likelihood the ATD detected an

MLO. Its value is a rational number between 0.0 to 2.0. The

ATD confidence (not shown) was inconclusive as it is mostly

constant over the test images examined. However, when the

number of tiles used to create the database increases it became

more diverse and the maximum error in the ATD confidence

diminishes. This proves that diversity in the database ensures

better reconstructed images, as expected.

Figure 8 shows that when more dimensions in the PCA

are retained, it increases time to create the database and to

Fig. 8 Sensitivity of VQ parameters to the principal components dimen-
sions retained

compress an image. As well, the size of both the PCA rotation

matrix and the database increases. But, the results are visually

better even with no significant difference in the F O M and

the ATD confidence (not shown). Thus, the number of PCA

dimensions retained was set to 70, as it is a reasonable balance

between reconstructed image quality and computation time.

When the number of images in the database is increased

to improve the results, the computation and execution time as

well as the memory required, increased quickly. The solution,

then, was to build the database incrementally. First, many

images are used to generate the nominal database with a low

FOM and high distance threshold. This means only tiles from
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images that were poorly reconstructed and quite diverse from

those in the original database were added. Then, the number

of images and the threshold distance is reduced and the F O M

threshold is increased. This process was repeated multiple

times to arrive at a database that was a reasonable compro-

mise between computational efficiency and image quality.

To create the VQ database, 500 SSS images from multi-

ple types of SSS were deconstructed into constituent tiles

(redundant tiles removed) and inserted into the database.

This resulted in a 15,992-tile (88 MB) database which is a

respectable size that is manageable by the payload processors

on-board the UUVs. This was the training set.

3.3.3 Vector quantization: other parameters

The image snippets were automatically cropped to 80 × 140

pixels by the ATD. This size was chosen based on practical

considerations. For 900 kHz side-scan sonars the range on

each side is about 40–50 m. The altitude of the UUV with the

side-scan sonar is typically 10% or less of that range which

is 3–5 m. Given that, cropped images of underwater targets

are approximately 80 × 140 pixels. This is a size that will

encompass the target with enough seabed bottom type visible

if bottom type was to be used in the ATD image analysis. This

is also approximately the image size that the ATD processes

to determine the likelihood a target is an MLO. With the

image snippet size determined, the next consideration is the

tile size in the database.

The size of each tile in the database impacts the size of

the database and the computation speed to determine the best

fit for each candidate tile. As shown in Fig. 2, a 20 × 20

pixel tile gives a fourfold increase in the compression ratio

over a 10 × 10 pixel tile. However, the P SN R degrades,

as expected, since the ‘resolution’ of the image drops due

to a larger tile size. A 5 × 5 tile size (not shown) needs a

larger database and transmitted message to exploit the better

resolution. However, it is also more unwieldy for embedded

processing and low bandwidth transmission. Based on this,

a 10 × 10 pixel size was chosen for the size of the tiles in the

database.

The resulting compressed image snippets were larger than

the 256 bytes that could be accommodated in 1 frame so two

frames were used for PSK-4 transmission. If the full 512

bytes was not needed, the empty bytes were padded with

zeroes. The compression ratios (not shown) in all cases were

similar to what was shown for VQ in Table 2 for 10 × 10

pixels (∼ 60 or slightly better).

How these nodes were implemented and interfaced with

the underwater acoustic modems is described in detail in the

Appendix.

4 In-water tests

4.1 Preliminary validation in an indoor water tank

After the ROS nodes were developed to realize the algorithm,

they were tested in an indoor water tank with two submerged

acoustic modems each serially interfaced to a computer –

the transmitter (UUV) and receiver (operator) units. The two

acoustic modems were 2–3 m apart in the tank. The transmit

(UUV) unit hosted the talker node which simulated the ATD

detecting and extracting MLOs in the sonar data stream and

its modem emulates the on-board UUV modem. The talker

node is redundant when the ATD is later integrated into the

system. The receiver (operator) unit is used by the operator

to receive the compressed images via its modem.

Modem transmission rates were trialled at PSK-1 and

PSK-4 (Table 1). During these tests the communications was

adapted to handle broken packets (a very real situation). Pre-

viously, if a packet was received it was considered to contain

all the data needed to reconstruct half the sonar image. How-

ever, because of the highly reverberant water tank (small size

and lack of anechoic cladding) some of the acoustic packets

were damaged: the end of a packet might be unintentionally

padded with zeros or random numbers. The algorithm was

adapted so that if a tile index in the encoded message was

greater than the maximum index possible then it was replaced

with a black tile to signify a bad packet.

After these adaptations, the in-water tank tests were suc-

cessful. A few packets were lost or damaged because of the

tank reverberations and the PSK-4 rate, as expected, is not as

reliable as the PSK-1 rate. These tests validate the implemen-

tation of the compression/decompression algorithms and the

transmit/receive protocols used. They also suggest that for

at-sea conditions, the acoustic modems should rely on the

PSK-1 rate though the PSK-4 rate was used as well. The

at-sea tests are described next.

4.2 Initial tests and validation at-sea

The objective of the at-sea tests was to assess the transmission

and reception success over much larger acoustic modem sep-

arations, in a body of water with variable sound speeds and

over a real seabed. These factors present underwater commu-

nication challenges to successful message transmission and

reception. Otherwise, the testing and validation in Bedford

Basin (to depths of 20 m) were similar to the indoor water

tank ones. The same images were transmitted and received to

assess the impact of range. PSK-1 and PSK-4 modem modes

were used. PSK-1 gave better reliability at longer modem

separations.

The transmitter (UUV) unit computer was on-board a

small boat with its modem deployed over the side into 6.4

m water depth. On the receiver (operator) unit, its acous-
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Fig. 9 Representative results from indoor tank and initial sea trials and validation of underwater transmissions at different ranges

tic modem was tethered to a barge at the same water depth.

The underwater transmissions ranges trialed were 2 to 200

m between UUV and operator units. Representative results

are summarized in Fig. 9 and analyzed in detail in Figs. 10,

11, 12 and 13.

At less than 130 m range between the transmitter and

receiver units, given the acoustic propagation conditions that

day, most transmitted packets were received. The transmis-

sion was 100% successful when the size of the images was

140 × 80 pixels. For smaller images the second packet was

missing in some cases. This error was intermittent and due

to the second and third frame of the packets at PSK-1 being

empty or not full to start, thus resulting in unreliable trans-

missions. This was fixed for the next set of trials. At greater

than 130 m range, most packets were lost. A sound velocity

profiler dropped at the beginning of the runs showed the best

possible range achieved would have been about 130/140 m.

This is consistent with what was observed and thus this is not

a reflection on the VQ algorithm.

Of the images (or parts of images) received they were

reconstructed with the same fidelity as obtained in the indoor

tank tests or they were completely unrecognizeable.

4.2.1 Analysis of results

The analysis of the at-sea SSS collected and extracted images

(representative results in Table 2) was through calculating the

P SN R and SSI M as well as inspecting pixel intensity dis-

tributions for vector quantized images against their reference

(original) image.

The way the ATD extracts targets, the target is usually

centered vertically in the frame and to the left. Therefore, the

decision was made that if an image had to be transmitted over

two packets the packets would be divided along the lines of

the top and bottom (as opposed to left and right) of the image

snippet. Black pixels were used as filler in a decompressed

image for a packet that was not received. Consequently, in
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Fig. 10 Comparison of the original image against the received vector
quantized version as a function of range between the acoustic modem
transmitter and receiver. Fidelity of the reconstructed image is quanti-

fied through the peak signal-to-noise ratio (P SN R), structural similarity
index (SSI M) and distribution of pixel intensities. At 200 m range, 1
of the 2 packets for the image was dropped (case 2 from Fig. 9)

those images, bin 1 in the pixel intensity distribution was

artificially inflated.

Of the examples shown in Fig. 9, cases 2 (Fig. 10), 3

(Fig. 11), 4 (Fig. 12) and 5 (Fig. 13) were analyzed in more

detail and are discussed next.

Case 2 (Fig. 10) had 2 targets that were close and insoni-

fied from an aspect that produced clear shadows. The vector

quantized image distinguished between the targets and their

shadows with a P SN R ∼ 16 and the SSI M = 0.31.

Based on these metrics, the similarity between the two was

marginal but acceptable. Overall, the pixel intensity distri-

bution (statistics) in the vector quantized image captured the

shape and magnitudes well. What was not captured in the

compressed image was the increased number of pixels at the

peak of the distribution. At 200 m range, only the packet rep-

resenting the top of the image was received. Consequently,

with half the image missing the number of bins was halved

but the shape and the amplitudes were representative of the

original image. The large number of pixels at pixel intensity

bin 1 is due to the black pixels used as filler for the missing

half image.

Case 3 (Fig. 11) shows a target extracted by the ATD with

bright highlight pixels as well as a shadow. The interest-

ing aspect of this image was that it was close to the nadir

of the SSS (black strip on the left)—not atypical with SSS

images. This is the blind spot beneathe the sonar that cannot

be insonified and was filled in with black pixels. The impact

of the nadir on the vector quantized image was more pixels

in bin 1 of the pixel intensity distribution. The original and

vector quantized images showed this - not surprisingly. As

in case 2, the pixel statistics were preserved with the nomi-

nally correct shape and magnitudes except at the peak values.

The presence of the nadir did not make a difference in the

fidelity of the vector quantized image. It also had no impact

in the compression since each tile in the original image was

represented by the same number of bits. This would not be

the case for methods like SPIHT where frequently appearing

values have a different representation than less frequent ones

which would impact compression.

At 200 m range the bottom half of the image was

not received however, unlike case 2, the bin discretization

remained the same as the original. Unlike case 2, the magni-

tudes for other than intensity bin 1 were reduced although the

14



Fig. 11 Comparison of the original image against the received vector
quantized version as a function of range between acoustic modem trans-
mitter and receiver. Fidelity of the reconstructed image is quantified
through the peak signal-to-noise ratio (P SN R), structural similarity

index (SSI M) and distribution of pixel intensities. The black strip on
the left is the typical nadir zone below the side-scan sonar (case 3 from
Fig. 9)

shape was nominally correct (which proved our argument that

it was better to divide the image along top and bottom). The

reduced magnitudes are due to the smaller number of pixels

available compared to case 2. Both the P SN R and SSI M

were larger than case 2’s. Lost packets aside, both similarity

measures agree that case 3’s vector quantized image was a

better match than case 2’s.

Case 4 (Fig. 12) is similar to case 1 (detailed analysis

not shown). Both show highlights and dark features in the

target image which speaks to a larger dynamic range. Case

4 appears to have greater diversity in the highlight (brighter)

returns. The pixel intensity distribution did not show trends

that were different from cases 2 and 3. The only small notable

difference is that the tail of the distribution was not as well

captured as the other 2 cases. Case 4’s P SN R and SSI M

are midway between case 2 and 3’s.

Case 4 suggests the tiles database lacks in diversity for

some of the highlight (brighter) returns which were not

needed as much to capture cases 2 or 3, well. Consequently,

the database was amended to include more tiles with bright

returns.

Case 5 shows sand ripples which is not an unusual under-

water feature. This case is interesting in that there is no one

distinct target that the ATD could extract. Such cases may

be completely ignored by the ATD. Sand ripples are a diffi-

cult background to identify targets from for ATD based on

matched filters. The vector quantized pixel intensity distri-

bution had the correct shape but, unlike the other 3 cases, its

amplitudes were diminished and it had more resolution in the

bins. It suggests that randomly distributed bright returns are

difficult for the tiles database to match well to. For whatever

reasons, the full image was only received for the shortest

ranges. The case with only half an image still captured the

correct shape and intensity albeit with lower resolution (as in

case 2, only half the number of bins). The other noteworthy

difference is that its P SN R (15.31) is the lowest of the 5

highlighted cases due to the lack of a singular bright target.

Its SSI M (0.43) however, is the highest. The lack of a dis-

tinct target manifests in the P SN R trends not tracking the

SSI M ones well.

As in the study in the literature survey, the P SN R values

are less than the 20 dB threshold considered for ‘good’ recon-
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Fig. 12 Comparison of the original image against the received vector
quantized version as a function of range (distance between acoustic
modem transmitter and receiver). Fidelity of the reconstructed image

is quantified through the peak signal-to-noise ratio (P SN R), structural
similarity index (SSI M) and histogram of pixel intensities. The whole
image was transmitted for the entire range tested (case 4 from Fig. 9)

struction in monochrome pictures. This is due to the inherent

high noise and low contrast and luminosity in side-scan sonar

imagery.

The next step was to integrate these validated ROS nodes

into a larger stand-alone node with the ATD. This provided a

ROS node for a function that was directly integrated into the

UUV payload autonomy. Then, an opportunity was sought

to gather more SSS data files over different seabed types,

propagation conditions, and sonar types to further test VQ

applied to SSS and the amended database in particular.

4.3 Advanced tests and validation at-sea

Unmanned Warrior 2016 (UW16) was a Royal Navy (RN)

hosted exercise at the British Underwater Test and Evalua-

tion Centre (BUTEC) in Loch Alsh, Scotland. Participants

achieved significant milestones and world firsts in collabora-

tive robotics for NMCM. Underwater transmission of sonar

images was one such milestone.

UW16 was a venue to gather side-scan sonar imagery from

other types of SSS and test under other underwater acous-

tic propagation conditions. It was also an opportunity for

experienced sonar and UUV operators to view the recon-

structed SSS images for some initial feedback. This part was

not intended as a thorough investigation to explicitly address

psycho-visual or human-robot aspects in recognizing MLOs.

This project’s UW16 objective, to create a “UUV-in-a-

box” (UIB), required the development of a stand-alone ROS

node that encompassed all the ROS nodes described earlier

including the ATD. Above and beyond what has already been

described to this point, the UIB node needed to be developed.

The full UIB node (Fig. 3) was finalized, tested and demon-

strated at UW16.

The UIB node runs as a stand-alone ROS node that was

integrated into the UUV’s on-board autonomy (ATD) as

a function. The ATD polls a specific directory for a new

SSS data file (1000 pings in length). Once a new SSS data

file was detected, the ATD processes the file to detect and

extract targets. If targets were detected, their images were

extracted, compressed and formed into acoustic modem mes-

sages. Then, the messages were queued for transmission to

the operator.

At UW16 the UIB node read in and processed pre-logged

SSS data files collected at UW16. These pre-logged sonar

data files were collected over the duration of UW16. The side-

scan sonars that contributed images were the MarineSonics
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Fig. 13 Comparison of the original image against the received vector
quantized version as a function of range (distance between acoustic
modem transmitter and receiver). Fidelity of the reconstructed image

is quantified through the peak signal-to-noise ratio (P SN R), structural
similarity index (SSI M) and histogram of pixel intensities (case 5 from
Fig. 9)

High Definition Sonar and the Klein 3500. They were pay-

load sensors on-board REMUS 100 and IVER3 UUVs at

UW16.

4.4 Analysis of results

The results from the trial produced a large number of SSS

data files and runs with more sonar brands, different acoustic

propagation conditions and target sizes as desired.

Figure 14 presents image snippets that were identified and

cropped by the on-board ATD from SSS data files, com-

pressed by VQ, formed into a message and transmitted with

the acoustic modem. Then, the messages were received and

decompressed at the receiver end. The sonar files were auto-

matically deposited in the polled directory at a rate consistent

with what occurs on-board the UUV. At UW16, the receiver

unit was an underwater acoustic modem deployed from the

USV HMS Hazzard (Fig. 5) which had operators on-board).

It received the packet, then decompressed and decoded it.

Next, on-board operators analyzed the image and decided if

it was an MLO. Once the operators on-board Hazzard exam-

ined the decompressed images, they were further relayed,

in-air, to a shore-based command and control center. This

chain of events (Fig. 15) emulates the situation where the

expert opinion of shore-based experts was sought for further

target prosecution.

As in the initial at-sea tests, the P SN R and SSI M

were used as similarity measures between the original ATD

cropped images and the compressed ones that were transmit-

ted, received and reconstructed. Also in the results from the

initial at-sea tests, PSK-1 and PSK-4 were mainly used for

the underwater modem transmission rates.

4.4.1 Similarity across different sonars

Figure 14 shows example targets ordered by their P SN R

values and which coincidentally falls along the lines of

decreasingly smaller targets in the snippets. Interestingly

enough, the trend in the SSI M values were inversely related

to the P SN R ones. Not surprisingly, SSI M tended to be

higher if there were larger and more distinct features in the

image. With SSS the image size is controlled by the altitude

of the sonar/UUV. This is usually set based on operational

requirements. If the target of interest is small in the ‘field-
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Fig. 14 Comparison of targets across two different sonars. The sonar
image snippets are sorted by P SN R. Note there is not alot of variation
in the metrics

of-view’ then the SSI M value is not the best measure of

similarity.

Having said that the variation in P SN R and SSI M was

not large even across different types and resolutions (fre-

quency) of side-scan sonars for this image set. This is likely

due to the seabed being the same as the images were from

the same area and the low contrast expected of SSS imagery.

4.4.2 Operator evaluation

The decompressed images were initially presented to sonar

and UUV operators who inspect SSS images for MLOs. In

an average of 18 out of 20 images, 4 operators correctly

recognized them as MLO (or not). This was not a user survey.

It was a check that the compression algorithm and nominal

database had some merit and that it was worth pursuing to

the next stage with operators.

4.4.3 VQ compression for transmission

Side-scan sonar imagery is amenable to compression using

VQ techniques that were applied to underwater camera

color pictures. The P SN R for transmittable SSS images

were below the 20 dB threshold used for above-water pic-

tures. However, no enhancements were applied to the ATD

extracted image prior to compression or to improve the recon-

structed image. Despite that, the images were recognizable

to the few (including the authors) who are experienced in

inspecting SSS images for MLOs.

With the VQ compression, the results critically depend on

the tile database diversity. Consequently, improvements in

the database directly improve the transmitted images’ qual-

ity. The database can be adapted to target specific seabed

types and offer flexibility to the algorithm. Using a very

large database impacts the speed of the analysis. The nom-

inal database formed used images from a wide variety of

trials and seabed types from places around the world. It per-

formed reasonably well against the seabed type experienced

in Scotland without any amendments.

Based on the calculated P SN R and SSI M values as

well as pixel density distributions, side-scan sonar MLO

imagery compresses well with VQ (Murphy et al. 2010). With

insight from this analysis, the P SN R and SSI M measures

are reasonable measures for capturing side-scan sonar image

similarity but there is motivation to consider other similarity

measures for monochrome, noisy and low contrast images.

4.4.4 Underwater acoustic propagation

Transmission and reception of the side-scan image snippets

works well when the underwater acoustic communications

channel was favorable for communications at 25 kHz. On

days with high underwater acoustic ambient noise from

winds and or motions of the acoustic modem in a sea state,

packet loss occurred a little more frequently. At UW16, one

of the days had higher winds (15 knots) and more sea state

(sea state 2+) than in the initial at-sea tests which had none.

Dropped packets were occassionally seen at shorter ranges

(< 150 m) than in the initial tests. They are similar in effect

to Fig. 9 (case 5) and Fig. 11. The acoustic packet’s form and

transmission is otherwise robust and fits within a reasonably

sized number of packets.

5 Concluding remarks

The focus was on overcoming challenges in communicating

complex high bandwidth information across very different

environments (under and above water). The work reported

show that it is possible for marine robots (UUV, USV) to

transmit and receive small sonar images underwater and to

further relay them to above-water points Fig. 15.

A compression method appropriate for side scan sonar

image snippets was identified, developed and implemented.

The compression scheme was tested on side-scan sonar

images collected from a variety of trials and sonars. Then, the

sonar image transmissions were tested in a real at-sea envi-

ronment. Finally, the compression and transmission scheme

was integrated with ATD tools and tested, evaluated and
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Fig. 15 Example of underwater sonar image transmitted at Unmanned Warrior 2016. Note the similarities between the original sonar image (upper
left) and the decompressed and reconstructed version that was transmitted underwater (bottom right). This is case 1 of Fig. 14

demonstrated at the Royal Navy Unmanned Warrior 2016

exercise.

SSS images are amenable to compression using vector

quantization methods from underwater color pictures. How-

ever, there is degradation as Table 2 demonstrates that SSS

imagery can be compressed at higher P SN R and SSI M that

are well above the 20 dB threshold but at a cost of not being

transmittable through low bandwidth modems.

6 Future work

To capture an image to the fidelity needed a good approach

is to learn the basis from the target itself. Work is underway

to apply machine learning to optimize the database quality

while building it in the lab (DeBortoli et al. 2017). Addi-

tionally, the F O M evaluation could be used in-situ to do

small incremental on-line builds of the database. The tiles

database should adapt, if needed, to a new area by learning

from repeat dives in that area. A more powerful payload pro-

cessor is being considered for the UUV however there are

implications on robot endurance from this.

The second objective for the next stage work is to address

the psycho-visual aspects.The focus of the work reported

was on pixel-based approaches of monochrome atypical tar-

gets being evaluated, without augmentation at the transmit

or receive end, by specially trained sonar operators. Their

psycho-visual perceptions are different. They are more like

those specifically trained for medical ultrasound. This could

be better addressed through a targetted user study of sonar

operators of all types.

The work of Zhang et al. (2015) may be investigated

initially for its ability to be implemented on an embedded

processor on-board a robot.

Acknowledgements This project is grateful for the timely and helpful
advice and assistance of the WHOI Acoustic Communications Group.

7 Appendix

7.1 Implementation as ROS nodes

ROS (robotic operating system) is a widely supported open

source middleware for robotic systems (Purvis 2017). It pro-

vides operating system services, including hardware abstrac-

tion, low-level device control, implementation of commonly

used functionality, message-passing between processes, and

package management. It also provides tools and libraries to

build, write, and run code across multiple platforms. It is
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Fig. 16 Interconnection of nodes on the transmit (UUV) unit

Fig. 17 Interconnection of nodes on the receive (operator) unit

image identifier 

0  0001 518d3648a656e564d6f5z4f684e6516a….313826 

     image top half       encoded image  
  (1 = bottom half) 

Fig. 18 Example of a message in an acoustic packet as formed by
ModemUUV node

light weight enough that it is widely applied in embedded

systems. ROS works as a publish-subscribe architecture.

ROS is used by Defence R&D Canada (DRDC) as

a middleware for its IVER3 UUVs’ on-board autonomy.

Implementation of the compression and transmit algorithm

as ROS nodes facilitates rapid integration into this autonomy.

There are nodes on the transmit (UUV) side and the receive

(operator) side. On the transmit (UUV) side, the compression

algorithm consists of 3 ROS nodes described next and illus-

trated as a ROS rqt_graph in Fig. 16.

• talker Tasked with publishing the path of the images to

compress on the dedicated topic imgToCompress. Ini-

tially, it simulated the ATD algorithm detecting MLO

images from the sonar data stream. Later, it was directly

integrated with the ATD

• compressor Subscribes to the topic imgToCompress.

Each time it receives a new image path it compresses

the image and publishes the encoded image on the topic

imgToDecompress.

• uuvModem This node subscribes to the topic imgToDe-

compress. It is connected to the acoustic modem through

a serial port. For each encoded image it receives, it sends

it through the underwater acoustic link using the appro-

priate messages.

On the receive (operator) side (Fig. 17) are two nodes:

• opModem This node is connected to the receiving acous-

tic modem through a serial port. It ‘listens’ to all messages

sent by the UUV’s modem to find the packet that con-

tains the encoded image. When that message is found, it

extracts the content of the message and publishes it on

the topic imgToDecompress.

• decompressor This node subscribes to the topic img-

ToDecompress and when a new encoded image is

received, it decodes it and saves the reconstructed image

to the / out folder.

7.2 Underwater acoustic communications

The acoustic modems can transmit/receive at several discrete

rates that vary with packet size. For the initial in-laboratory

tests, rate 4 (Table 1) was chosen so an encoded image

could fit into the minimum number of packets of one frame

each.This makes it easier to perform the nodes’ algorithmic

proof-of-principle tests at the higher risk of losing packets.

Losing the occasional packet was not a primary concern for

these tests. Packet loss will be addressed in the at-sea tests.

The proof-of -principle tests were performed in an indoor

water tank where the transmit and receive acoustic modems

were 2–3 m apart which limits packet loss. The final at-sea

implementation will be performed at rate 1 which is more

reliable albeit at a cost of smaller packets which means an

image would be transmitted over multiple frames. This will

be explained in a later section. The maximum size of a frame

at rate 4, is 256 bytes so an encoded image could be transmit-

ted over two packets. This means half of one encoded image,

at a time, would be published on the topic imgToDecom-

press. As shown in Fig. 18, the message published contains a

header with the first character identifying whether the packet

contains the top or bottom half of an image followed by the

image identifier coded on four characters to recognize the

origin of the half image. The rest of the message is half of

the encoded image.

The uuvModem node is connected to the acoustic modem

through a serial port, which was configured in write-only

mode. At initialization, it gives the acoustic modem an iden-

tifier to send messages in the later stages. The syntax to set

the identifier to ‘2’ is:

$CCCFG, SRC, 2\r\n. (1)

Then, when a message is published on the topic it writes the

following instruction to the serial port:

$CCCYC, 0, 2, 1, 4, 0, 1\r\n. (2)

This informs the acoustic modem that a packet will be sent

from modem number 2 to modem number 1 with acoustic

modem rate 4 containing 1 frame. The modem then replies

with a query for the packet to send with:

$CADRQ,< Time of request >, 2, 1, 0, 64, 1\r\n. (3)
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The user then provides the hex-encoded message to the

modem:

$CCTXD, 2, 1, 0,< HexData > \r\n. (4)

On the operator side (Fig. 17), the ModemOp node con-

figures the connection with the modem through the serial

port to read and write mode. At initialization of the node, it

will set the identifier for the operator’s modem to ‘1’ using a

command similar to (1) above. Then, the node listens to the

modem output through the serial port. If it reads a CARXD

message it means a packet was received. The content of that

packet is read and published on the topic imgToDecompress.

The decompressor node is subscribing (listening) to the

topic imgToDecompress. When a message is published on

that topic, this node will identify (1) whether it is for the top

or bottom half of an image and (2) its unique identifier from

the message header. If it previously received the other half

of the image, it will concatenate the two and decompress the

image using functions from the VQScheme class. But, if the

other half came from a different image, then the older packet

will be decompressed after zero padding its missing half. The

last packet received will be stored to wait for its other half

for decompression. If no other half was received, the node

will wait for the next packet for decompression.
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