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Abstract 

This work investigates network-related trajectory features to unravel trips that the most contribute to the system 
under-performance. When such trips are identified, features analysis also permits to identify the best 
alternatives in terms of routes to make the system to its optimum. First, data mining is carried out on trajectories 
obtained from reference dynamic traffic assignment (DTA) simulations in a real-world network, based on User-
Equilibrium (UE) and System-Optimum (SO). This helps us (i) to target the trajectories to be changed, and (ii) 
to identify their main features (trip lengths, experienced travel time, path marginal costs, and network-related 
features such as betweenness centrality and traffic light parameters, etc.). Similarity analysis based on Longest 
Common Subsequence, Principle Component Analysis are the main methods that are performed to carry out 
descriptive analysis of trajectories. Supported Vector Machine is then used to determinate the features with 
regards to their contribution to better network performance.  
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Introduction 

In urban areas, the conflict between the increasing mobility demand and limited infrastructures degrades the 
level of service of road networks. The resulting consequences include (i) economic loss resulting from wasted 
time and fuel in traffic jams and (ii) environmental pollutions. A key element to determinate the network level 
of service is the traffic assignment (TA) process as it describes how users spread over the network. Different 
levels of equilibrium may result from different TA: User equilibrium (UE) and system optimum (SO) (Wardrop, 
1952; Beckmann, 1956; Smith 1979; Mahmassani and Peeta, 1993). In UE, network users choose their route 
by minimizing their own travel cost when traveling from Origin to Destination (O-D). Under SO equilibrium, 
users choose their travel paths in such a way that the total travel costs of the whole network are minimized.   
 
Over the past few decades, increasing sources of traffic data are becoming available: GPS-based floating car 
data, Bluetooth data, GPS data from cellphones, etc. (Treiber and Kesting, 2013). This rich data helps engineers, 
decision makers, and researchers to propose corresponding strategies for improving urban mobility (Gonzalez 
et al., 2008, Saeedmanesh and Geroliminis, 2016, Lopez et al., 2017). For example, with detailed GPS data 
from mobile phones, Wang et al. (2012) show that the congestion of a given network is mostly due to very few 
network users who are on the most congested road segments. However, this conclusion is obtained by 
decreasing the traffic demand from a certain number of O-D pairs, without giving alternative routing solution. 
Çolak et al. (2016) use mobile phone GPS-data to compute path travel time and calibrate TA models. They 
show that if 10% of drivers adjust their routing behavior under SO condition instead of selfish routing, the 
average travel cost of the whole network drops 40%. Nevertheless, their static TA model ignores the dynamic 
interactions of the traffic, especially the spillback of queues in congested situations.  

Research contribution 

A variety of vehicle trajectory data gives new insights for better understanding the network, user mobility 
patterns, and the congestion mechanism. The objective of this work is to investigate network-related trajectory 
features, in order to unravel trips that the most contribute to the system under-performance. When such trips 
are identified, features analysis also permits to identify the best alternatives in terms of routes to make the 
system to its optimum. Re-routing strategies are given to target trips in order to improve network performance 
by only considering network-related features. This avoids computational burden of DTA simulations.   
 
The contribution of this work is threefold:  



1. By analyzing trajectories in UE and SO equilibrium from DTA simulations, define the network-related 
trajectory features, that determinate the users who contribute the most to the network congestion.  

2. With the defined network-related trajectory features, propose re-routing strategies for target users in order 
to improve the total network performance (e.g., the total travel times of all vehicles).  

3. Assess through simulations the performance of the solution and re-routing process in a real-world test 
case. 

Methodology 

Figure 1 presents the framework of our methodology. The main challenges and methods are listed below: 

1. Descriptive analysis of UE and SO trajectories. We define trajectory features from two reference DTA 
simulations, under UE and SO condition, with the same traffic volume and departure time. Trajectories from 
the SO-based simulation are considered as the optimal travel pattern. We identify the most influential features 
that differ the SO trajectories from UE trajectories. Principal component analysis (PCA) is carried out to reveal 
similar trajectory features under both equilibrium. Longest common subsequence (LCS) is also used to measure 
the similarity of trajectories (Kim and Mahmassani 2015). The users whose trajectories are of the largest 
dissimilarity are then targeted to give re-routing strategies.  

2. Supervised learning. Once the users are identified, new DTA simulations are carried out, with pre-defined 
optimal patterns for the target users. The others are assigned under UE condition. We then quantify the network 
total travel time (TTT) reduction with respect to the reference UE simulation. This defines the final target 
trajectories that contribute the most to the network performance improvement. Then, for these trajectories, the 
features related to traffic characteristics from SO simulation are considered as training samples 𝒚. The network-
related features are considered as training points 𝒑. Supervised learning with Supported Vector Machine (SVM) 
(Ben-Hur, et al. 2001) is carried to this training dataset, so that a relation 𝑓: 𝒑 → 𝒚, mapping network-related 
trajectory features, to trajectory features that define target users.  

3. Validation and re-routing. A new set of target trajectories can be defined by only using network-related 
features. We give them pre-defined optimal patterns and carry out DTA in UE condition to evaluate the TTT 
reduction. Furthermore, instead of re-routing by optimal patterns, 𝑓  can also help us to define the best 
alternative paths to make the system to its optimum, based on the identified network-related trajectory features.   
The proposed re-routing strategies are validated by UE simulation.  
 

 
Figure 1 Flow chart of methodology 

Preliminary results and discussion 

Descriptive analysis shows that trajectories with high path marginal costs (PMC) are among the first trajectories 
to be targeted. In addition, by analyzing different trajectories from UE and SO simulations, the changing 
tendency of node betweenness centrality (BC) on the trajectories is correlated with the changes in PMC. Two 
scenarios are carried out with two following groups of target users.  The O-D matrix and network are the same 
as those in reference UE simulation (UE-ref) and SO simulations (SO-ref). The cumulated traffic demand is 
7565 vehicles during 1 hour. The two targeting strategies are:  

(i) PMC-based targeting: trajectories whose PMC reduction from UE-ref to SO-ref is bigger than 600 
seconds. The total number of target trajectories is 𝑁 = 	674, i.e., 8.9% of all users in the network; 

(ii) BC-based targeting: 𝑁 trajectories with the largest mean node BCs in the reference UE simulation. 



The results of the above simulation scenarios are presented in Table 1. In the reference DTA simulations, the 
TTT reduces 1.08×106 seconds in the reference SO simulation, compared to the TTT in UE simulation. Results 
of the two above scenarios show that if we change trajectories of 8.9% users by targeting trajectories with big 
PMC (scenario (i)) or with big node BC (scenario (ii)), the TTT reduction reaches 61.93% and 72.96% of the 
TTT reduction in the reference cases, respectively. 

Table 1 Total travel time and total travel distance of vehicles in different DTA simulation scenarios 
(TT: user experienced travel time (sec); TTT: total experienced travel times of all vehicles (sec); relative TTT reduction: 

100%	×(𝑇𝑇𝑇_𝑈𝐸567 − 	𝑇𝑇𝑇_𝑈𝐸956:67;<6)/(𝑇𝑇𝑇?@ABC − 𝑇𝑇𝑇_𝑆𝑂567)) 

 
These results show that the node BC is one of the network-related trajectory features that the most contribute 
to the network under-performance. Ongoing works are being carried out to identify other network-related 
trajectory features, for example, traffic signal characteristics. We are also working on defining the best re-
routing alternatives based on the identified network-related trajectory features, in order to make the system to 
its optimum. 
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 UE-ref SO-ref PMC-based 
targeting 

BC-based 
targeting 

Number of finished trips 4504 4959 4787 4722 
Total experienced travel times: TTT (s) 6.84×106 5.76×106 6.17×106 6.05×106 
TTT reduction w.r.t. TTT in UE-ref - 1.08×106 0.67×106 0.79×106 
Relative TTT reduction  - - 61.93% 72.96% 
TT (travel time) per user (min) 15.08 12.69 13.59 13.33 


