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Abstract The D3R Grand Challenge 4 provided a bril-
liant opportunity to test macrocyclic docking proto-
cols on a diverse high-quality experimental data. We
participated in both pose and affinity prediction exer-
cises. Overall, we aimed to use an automated structure-
based docking pipeline built around a set of tools de-
veloped in our team. This exercise again demonstrated
a crucial importance of the correct local ligand geom-
etry for the overall success of docking. Starting from
the second part of the pose prediction stage, we de-
veloped a stable pipeline for sampling macrocycle con-
formers. This resulted in the subangstrom average pre-
cision of our pose predictions. In the affinity predic-
tion exercise we obtained average results. However, we
could improve these when using docking poses submit-
ted by the best predictors. Our docking tools includ-
ing the Convex-PL scoring function are available at
https://team.inria.fr/nano-d/software/.

keywords protein-ligand docking; ensemble
docking; macrocycle modeling; Convex-PL; conformer
generation; D3R; Drug Design Data Resource; scoring
function;

Introduction

The Drug Design  Data  Resource (D3R,
www.drugdesigndata.org) is a community initiative
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that hosts multiple blind challenges dedicated to
modeling of proteins-ligand association events. Two
subchallenges were suggested this time. Subchallenge
1 was focusing on pose and affinity predictions for the
ligands binding the beta secretase 1 (BACE) receptor.
In Subchallenge 2, participants were asked to predict
the affinities of ligands that bind the cathepsin S
(CatS) protein, which has already been a target of the
previous Grand Challenge 3. Our team has only
participated in the Subchallenge 1, which was divided
into two stages, Stage 1 and Stage 2. The goal of
Stage 1 was to predict the correct binding poses of the
ligands. Later on, Stage 2 targeted affinity or free
binding energy estimation for a larger set of ligands
(compared to ligands in Stage 1). Following the ideas
of the previous Grand Challenge 3, Stage 1 was split
into Stage la and Stage 1b, where Stage 1b was a
self-docking exercise allowing to utilize the revealed
co-crystal receptor structures. It was also possible to
participate in the affinity prediction in both substages
of Stage 1. However, we only took part in pose
prediction parts of Stage 1 substages, and in Stage 2.

This challenge provided interesting examples of
macrocycle docking. Macrocycles are often described
as large non-peptidic cyclic molecules. Modeling of
cyclic molecules generally poses multiple
computational tasks related to the preservation of
molecular topology upon sampling of cycle
conformations. When doing the sampling of cycles in
torsion coordinates, one often has to solve the loop
closure problem. There are efficient sampling methods
specifically developed for cyclic peptides [1]. However,
to the best of our knowledge, there are no free |[2]
methods for macrocycle sampling in torsion
coordinates, which are essential for computationally
efficient docking protocols.
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In both stages of the exercise, we addressed the
macrocycle docking problem using the classical fully
structure-based sampling approach in torsional coordi-
nates. This method keeps all the molecular cycles rigid.
Therefore, we had to generate multiple starting confor-
mations of each macrocycle. However, the cycle confor-
mations we used in Stage la had unfavorable stereo-
chemistry, which resulted in rather average RSMD val-
ues of our predictions. In the subsequent stages, we
guided the cycle conformational sampling using addi-
tional constraints from the geometry of cyclic ligands
crystallized with homologous receptors. This approach
helped us to obtain low-RMSD predictions in Stage 1b.
We have also participated in Stage 2, where we could
only obtain average affinity prediction results.

Docking strategies in previous exercises

Several major docking challenges were organized during
the past five years, namely CSAR 2013 [3], CSAR 2014
[4], D3R 2015-2016 [5], D3R Grand Challenge 2 [6], and
D3R Grand Challenge 3 [7]. Some of them were remark-
able for the exercise design or specific features of the
receptor or ligands. For example, in Phase 1 of CSAR
2013 exercise participants were asked to find the best
protein sequence that binds with the same compound,
which involved extensive homology modeling. The tar-
get protein of the D3R Grand Challenge 2 was a flex-
ible farnesoid X receptor (FXR). Its flexibility caused
difficulties in pose predictions of several ligands, espe-
cially those of chemical series unrepresented in the crys-
tallized homologous structures from the Protein Data
Bank (PDB) [§]. Subchallenge 1 of D3R Grand Chal-
lenge 3 was focused on docking of chemically diverse
ligand molecules to the CatS receptor. Although the
receptor itself was fairly rigid, and a considerable num-
ber of homologous structures were available in the PDB,
docking to its wide binding pocket exposed to the sol-
vent turned out to be quite challenging for many clas-
sical structure-based approaches. The most successful
strategies of ligand pose prediction for the CatS pro-
tein were structure-based methods with search space re-
stricted with respect to known ligand structures crystal-
lized with homologous proteins [9-13]. Two of these sub-
missions included 3D similarity-based ligand placement
into the binding pocket with a subsequent optimiza-
tion of the ligand and the receptor sidechains conforma-
tions [9,/10]. Knowledge of ligand locations in homolo-
gous proteins can also be directly included into the scor-
ing function used in docking [13|. Participants also re-
ported on additional molecular dynamics-based refine-
ment that improved the pose prediction quality [9L[14].
Explicit water molecules might be very important for

proper estimation of interactions with the wide bind-
ing pockets [11]. Novel graph-based features for binding
free energies prediction were proposed [12]. The two lat-
est Grand Challenges are also remarkable for the first
demonstrations of the 3D convolutional neural network-
based methods [15]. Other approaches included molec-
ular dynamics-based sampling and thermodynamic av-
eraging [16] and implicit ligand theory [17] for binding
free energy predictions.

Challenge data

BACE is a transmembrane aspartic-acid protease that
is responsible for the cleavage of the amyloid precursor
protein. This leads to amyloid-5 peptide formation |18].
Beta amyloid is the main component of amyloid plaques
found in brains of Alzheimer’s disease patients, there-
fore activity regulation of beta-secretase is one of the
promising Alzheimer’s treatment strategies [19).

BACE substrate is normally a polypeptide in the
extended [ strand conformation. Potential BACE
inhibitors are designed to mimic this property, which
can be achieved with macrocyclization [20]. BACE
binding pocket contains several sub-sites, which are
partially or totally occupied by the inhibitor [21}22].
One of the types of aspartic protease inhibitors are
hydroxyethylamine-containig ~ compounds, binding
with hydrogen bonds to the aspartate residues.

This challenge focused on 158 hydroxyethylamine
inhibitors provided by Novartis. 20 of them were used
in the pose prediction of Stage 1. These were one acyclic
and 19 macrocyclic compounds. Later on, 154 inhibitors
were used in the affinity (IC50) prediction of Stage 2.
Most of them were cyclic with cycle length varying be-
tween 14 and 17 atoms, with diverse substituents and
cycle structures. In this paper we will refer to these com-
pounds as to BACE _[ID], with ID ranging between 1
and 158.

Methods

This section briefly describes computational approaches
that we have been using throughout the challenge. We
were adapting the algorithms used for ligand conformer
generation and some of the scoring function parame-
ters between the stages based on the analysis of the
previous results. Therefore, our structure preparation
procedures and submission protocols will be described
and analyzed in the Submission protocols and discus-
sion section, along with the evaluation results discus-
sion.
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Docking macrocycles with Convex-PL

Pose sampling with AutoDock Vina and Convex-PL

Below we will describe the docking pipeline applied in
all the stages. Binding pocket was centered on the co-
crystal ligand geometrical center. Box sizes were set
to (22, 22, 25) A with respect to the orientation of
the original structure. All ligand conformations were
cross-docked to all the chosen receptors with an in-
house modified version of AutoDock Vina 23| using the
Convex-PL potential as an integrated scoring function
|24] and the Knodle parametrization of small molecules
[25]. More precisely, we generated 400 poses for each
ligand conformation for the subsequent re-scoring. In
the AutoDock Vina configuration files, the parameter
num_ modes was set to 400 and exhaustiveness to 10.
Our in-house modifications also include the change of
num__ saved_ man to a bigger value so that more confor-
mations are outputted. PDBQT-formatted (the format
is an extension of the PDB file format, which also al-
lows representing a kinematic tree of a molecule) struc-
tures were generated in the AutoDockTools package
|26], where we kept all rotatable bonds in the ligands to
be flexible. Explicit hydrogens were removed from the
molecules. In our parametrization, ligand protonation
states are defined by the atom types, which are assigned
according to the ligand 3D geometry. These were gen-
erated from the provided SMILES strings using RDKit
functions, as it is explained in more detail below. Re-
ceptor atom types corresponded to those at neutral pH.
Receptors were considered to be rigid.

Then, we re-scored the obtained poses with the
Convex-PL  potential  [24] supplemented with
additional descriptors that account for the solvation
and ligand flexibility contributions to the binding free
energy. Coefficients corresponding to these descriptors
were trained with a linear ridge regression model to fit
binding constants of a set of structures in the training
set extracted from the PDBBind database [27]:

min ||y — Xwl[3 + o * [|w][3,

where y is a set of experimental binding constants, X
is a set of vectors of descriptors, « is a regularization
coefficient, and w is the unknown vector of weights.
We used several versions of the enhanced Convex-PL
scoring function, which differed from each other by the
feature weights, distance cutoff, and omitting some of
the descriptors. The features we chose to enhance
Convex-PL  were designed to take into account
interactions with solvent and conformational ligand
entropy. Protein-solvent and ligand-solvent
interactions were computed using a grid representation
of the solvent volume that was displaced upon
binding. To do so, we constructed three solvent grids

for the complex, standalone receptor, and standalone
ligand using the linked-cell algorithm [28]. We marked
all grid cells that are not occupied by the receptor or
the ligand atoms as the solvent cells. Then, we
superposed the receptor and the ligand grids on the
complex grid and detected solvent cells overlapping
with the receptor or the ligand cells. We used their
centres as the positions of dummy atoms representing
the displaced solvent molecules. Finally, we computed
distance distribution functions between ligand atoms
and solvent dummy atoms, and receptor atoms and
dummy atoms following the procedure
described in [24], and used them as protein-solvent

solvent

and ligand-solvent descriptors. We also used
additional atomic solvent-accessible surface areas
descriptors computed with the POWERSASA

library [29,30]. For the ligand conformational entropy
we introduced a measure, called flexibility, which
quantifies the conformational space a ligand molecule
can adopt upon rotations about the rotatable bonds.
More precisely, we assume the ligand conformational
space to be discrete with its volume equal to the total
number of ligand conformations. We then define the
ligand flexibility as a logarithm of the conformational
space volume, following the definition of entropy, as

# bonds
ligand flexibility = log H w;,

K2

where the product is taken over all the ligand bonds.
Coefficients w; specify the number of discrete rotations
about the bonds, w; = 3 for single bonds, w; = 2 for
double and conjugated bonds, and w; = 1 for triple
bonds. One of our submissions also included energy
terms that approximated the conformational entropy
of the receptor sidechains. We estimated the entropy
using a volume accessible to each of the sidechains nor-
malized by its solvent-accessible surface area. Then we
computed a set of 20 descriptors, one per each of the
amino acid types, using the following equation,

# residues,

Si,unbound
Ch )

i Si,single

receptor flexibility, = log

where the product is taken over all amino acids of the
same type located at the interface with the ligand. Here,
a is a type of amino acid, v; is a precomputed con-
stant volume of a sphere that is obtained by the rota-
tion of the sidechain of type a around its Cg carbon,
Siunbound 1S the solvent-accessible surface area of the
residue 7 computed for the receptor molecule in the un-
bound state, and s; singie is the total surface area of the
same residue, if it is extracted from the receptor.
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The original Convex-PL is a knowledge-based scor-
ing function, which we have already used in the pre-
vious D3R and CSAR challenges [31133]. It is freely
available on our website at http://team.inria.fr/
nano-d/convex-pl/. The cutoff distance for the pair-
wise interactions in the original Convex-PL potential is
10 A. In order to minimize potential overfitting, we re-
duced this value in most of the experiments with the en-
hanced versions of Convex-PL. The captions of evalua-
tion tables list the description of the Convex-PL param-
eters we used during the computational experiments.

Finally, the best poses were clustered with the 0.5
A threshold using the best-scored structures as seeds
for the new clusters. The resulting scores in Stage 2
were averaged over the top 10 predictions for each com-
pound.

Submission protocols and discussion
Stage la

For the first stage, we intended to use a simple and
robust protocol with a minimal amount of user
intervention, and also without wusing ligand-based
approaches. Therefore we chose cross-docking of
flexible ligands with multiple conformations of rigid
cycles, to several receptor structures.

Structure preparation

Starting from the provided SMILES strings, we
generated 1,000 3D conformations for each
macrocyclic ligand using RDKit’s [34] EmbedMolecule
function [35] with default parameters. We then
clustered these conformations with respect to the
pairwise locations of the cycle atoms using hierarchical
clustering from  scipy.cluster.hierarchy  with  a
threshold of 0.2 A. One conformation from each
cluster was then selected for docking. For the acyclic
BACE 20 we generated one conformation using
RDKit’s EmbedMolecule function.

The Protein Data Bank contains more than 300
highly homologous structures of the BACE receptor,
whose binding site seems to be rather conserved. Out
of these 300 receptors, we selected 38 fully homologous
structures for the acyclic BACE 20 docking. Nine of
them were crystallized together with cyclic ligands and
thus we chose them for the BACE 1-19 docking. Ta-
ble [1| lists the PDB codes of selected structures. Apart
from removing solvent molecules we did not do any
other modifications of the selected structures.

Docking

Docking and scoring were performed according to the
pipeline described above.

FEvaluation results

It turned out that all cyclic ligand conformations gen-
erated by RDKit had an incorrectly sampled dihedral
angle between the atoms of an amide group leading to
a cis conformation instead of the native trans one. This
angle is denoted as « in Figure [I} and is a part of all
the cycle-containing ligands of Stage 1. This resulted
in completely wrong geometry of the whole neighbor-
hood of the amide group, which could not be fixed by
docking due to the macrocycle rigidity. An example of
an incorrectly predicted cycle conformation is shown
in Figure [I} where the inclination of the cycle plane is
different from the native geometry. In many cases this
also lead to flipped and shifted ligand docking poses,
which produced high RMSD values. We have noticed
this amide bond sampling problem at the very end of
the Stage la timeframe, and submitted two predictions
where the flipped and shifted poses were rejected based
on the cycle similarity with the co-crystallized ligands.
One more submission also used visual inspection. Over-
all, improper cycle conformations lead to lower than av-
erage and average in case of the manual or automatic
pose rejection results listed in Table [2| Using the auto-
matic pipeline without rejection of unrealistic poses, we
obtained satisfactory low RMSDs for only a few ligands,
one of which was the acyclic BACE 20.

Stage 1b
Structure preparation

For Stage 1b, crystallographic structures of all the re-
ceptors were revealed by the challenge organizers, and
we used them to repeat the docking calculations. We
removed the water molecules, and no other additional
modifications were applied to the receptor structures.
Learning from the Stage la experience, we changed
the way to sample ligand cycles. Initially we only tried
to sample more conformations (up to 10,000).
However, it turned out that in all of them RDKit
produced the wrong o value of the dihedral angle
despite different combinations of parameters in the
EmbedMolecule() function. We then tried to minimize
all conformers using a force field with a constraint on
the wrongly predicted dihedral angle. The constraint
applied with the UFF force field implemented in
RDKit did mnot affect the final results. Also,
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Docking macrocycles with Convex-PL

2{3e 2f3f  3dvl  3dvh
2fdp 2g94 2hml 2iqg
2qp8  2zjn 3cib 3cic
3k5d  3kbf  3kbg  3kyr
4k9h  5dqc

3kb5c
2pdi
3dm6
3158

5
4dpf 4dpi 4gmi  4k8s
2gkb 2gmd 2qmf 2qmg
3duy 3i25 3ixj 3ixk
315e 3lnk 3veu 4gid

Table 1: PDB codes of protein structures selected for Stage la docking. Structures highlighted in gray were used

for docking of the acyclic BACE 20 ligand only.

(a)

Fig. 1: BACE 1 ligand. (a) Incorrectly sampled torsion angle of the amide group present in most of the 158
compounds is highlighted in light gray. On average, the dihedral angle a’s value differs by more than 100° from
the ones found in crystallographic structures. (b) The native ligand conformation is shown in blue, our top-scored
pose is shown in gray. It can be seen that the wrong « value leads to the incorrect conformation of the cycle.

. . . rejection of unrealistic visual mean RMSD, A
id scoring function . . .
conformations inspection  average closest  top-1
biw3a  enhanced Convex-PL v v 1.99 1.40 1.82
jitb4  enhanced Convex-PL - 2.78 1.72 2.64
bsrvb  enhanced Convex-PL v - 2.88 1.77 2.64
buck5  enhanced Convex-PL - - 3.90 2.52 3.99
maej5  enhanced Convex-PL - - 3.92 2.57 3.99
s4fu0 original Convex-PL - - 5.45 3.77 5.47

Table 2: Stage la evaluation results. Here we applied different versions of the enhanced Convex-PL function. The
jit54 and buckd submissions included the type-specific interactions with displaced solvent and Convex-PL score
computed with a 5.2 A distance cutoff. The bsrv5 and maej5 submissions included the solvent-accessible surface
areas and the Convex-PL score computed with a 5.2 A distance cutoff. In the biw3a submission, we chose the
highest-ranked poses scored with the three versions of Convex-PL used in all the other Stage 1a submissions, and

rejected some poses based on visual inspection.

constrained minimization using the MMFF94 [36]
force field resulted in very distorted structures.
Although at this stage it could have been possible to
simply use another tool for conformer generation, not
all of them are free, and we also felt being somewhat
challenged to make RDKit generate better
conformations. Finally, we decided to try the
coordMap option of the EmbedMolecule() function,
which rejects conformations where the distances
between specified atoms’ positions are different from
those passed through the coordMap argument, up to a

certain threshold. When using only the 4 dihedral
angle atoms, conformational sampling results did not
change and the angle was still wrongly sampled. We
have tried to tweak internal threshold of this
map-based reduction in the RDKit source code, but it
did not improve the results. Therefore we increased
the size of the map, pushing ourselves to a more
ligand-based setup. Figure [2| schematically represents
an algorithm for the map generation used for cyclic
ligands.
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We started with computing the maximum common
substructures (MCS0) between the cycles (including
non-rotatable cycle substituents) of each target ligand
and the cycles of the 9 ligands co-crystallized with
proteins listed in Table We also computed the
maximum common substructures between the entire
ligands (MCS). For each target ligand, we chose a
reference ligand based on the MCSO size. Then, we
selected 4 atoms corresponding to the wrongly
predicted amide group, and two carbon atoms bound
to them, including one from the hydroxyethylamine
group. These are shown in yellow in Figure [3] and will
be referenced as a "core set”. The mapping of these 6
atom indices in the target ligand structure to the
coordinates from the reference ligand structure were
provided as a coordMap argument to the conformer
generating function. We then computed « value of the
generated conformers. If more than 10% « values were
lying between —25° and 25°, we saved the conformers
and proceeded to the next target ligand. If not, we
iteratively increased the map based on a set of rules
illustrated in Figure 3| until 10% of structures would
have the correct amide bond conformation. If more
than 80% of the MCS was included into the map
without providing good conformers, we moved to the
next reference structure. If three reference structures
were not sufficient, we aligned them to each other
based on the coordinates of the atoms of the "core
set”, and used the union of the MCSs of both reference
molecules to create a new mapping. After at least 10%
of good conformations was achieved, we stopped the
algorithm and saved the molecules. If > 70% of
conformations were generated with « values inside the

[-25°,25°] threshold interval, we squeezed this
interval to [-10°,10°] and rejected outlying
conformations.

Overall, even though we did not manage to find out
what exactly led to the cycle sampling problems, this
approach finally allowed us to create structures with
correct o angle for all macrocyclic targets.

Fuvaluation results

This approach lead to low-RMSD results, summarized
in Table [3l The mean RMSD of the closest pose of all
our submissions was less than 1 A. Figure [4] shows sev-
eral examples of the poses we obtained in Stage 1b.
The enhanced versions of Convex-PL on average pre-
dict binding poses more accurately compared to the
original version. For example, the top-1 ranked pose of
the BACE 12 ligand in the dhueb submission was con-
siderably shifted and rotated with respect to the native
pose, which resulted in the 10.53 A RMSD. In the ny-

rou submission we obtained 0.80 A RMSD. However,
the biggest contribution to this performance improve-
ment was driven not by the additional descriptors, but
by the change of the interaction cutoff distance to 5.2 A,
which is smaller than the default value of 10 A. This
smaller cutoff value was used to train the enhanced ver-
sions of Convex-PL in the nyrou and vfkn2 submissions.
The low contribution of additional descriptors can be
explained by the fact that all of them are related to the
interactions that a molecule could have with displaced
solvent. The BACE binding pocket is not very open to
solvent, and the fraction of ligand surface that could be
exposed to solvent does not change much even between
the poses with 10 A RMSD difference. Therefore, the
sums of additional descriptors’ contributions were very
close to each other for the majority of ligand poses.

mean RMSD, A

id scoring function average  closest  top-1
nyrou  enhanced Convex-PL 0.98 0.84 0.89
vikn2 enhanced Convex-PL 0.99 0.84 0.89
mjevmm  enhanced Convex-PL 1.14 0.79 1.00
dhueb original Convex-PL 1.56 0.90 1.60

Table 3: Stage 1b evaluation results. Enhanced version
of Convex-PL used in the nyrou submission was trained
on the interactions with the volume displaced solvent
and the original Convex-PL score computed with a
5.2 A cutoff. The vfkn2 submission included solvent-
accessible surface area descriptors and the Convex-PL
score computed with a 5.2 A cutoff. Scoring function
used in the mjevm submission included included inter-
actions with the volume of displaced solvent and the
original Convex-PL score computed with a 4.8 A cut-
off.

Stage 1a redocking

To check how did the macrocycle conformer quality in-
fluenced the results of Stage la, we repeated the en-
semble docking of the BACE 1-19 ligand structures
prepared for Stage 1b to the set of 9 receptors used in
Stage la. As it could be expected, better ligand struc-
tures considerably improved the pose prediction. With-
out manual inspection or pose filtering we obtained the
subangstrom mean RMSD value for the closest pose
shown in the Table[d] Figure[5]illustrates the redocking
pose of the BACE 7, which is superimposed with the
one we submitted for Stage la. Here it can be clearly
seen how did the bad initial conformation from our sub-
mission lead to a considerable shift of the ligand inside
the pocket.
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‘ Choose the reference structure ‘

i

Put the "core set” of 6
atoms into the CoordMap

i

‘ Generate conformations ‘47

Iteratively increase the CoordMap

i

—25 < o < 25 for
> 10% of confs

‘ Save conformations ‘

mapping

> 80% of
MCS in map

Fig. 2: Algorithm 1. Schematic description of an algorithm for conformer generation in RDKit driven by distance

constraints. Please see main text for more details.

(a) BACE_4

(b) BACE 12

Fig. 3: Examples of ligand mapping priority. Each color represents a different priority, which are ranked from 0 to
4. On each iteration of the algorithm an atom (or a group of atoms in case of rings) was added to the map with the
following priorities. (1) Atoms with minimal topological distance from the "core set”, amide groups of the cycle,
aromatic substituents topologically close to the "core set”. (2) Carbons and nitrogen of the hydroxyethylamine
group, non-carbon atoms of the cycle. (3) Atoms of the "tails”, oxygen of the hydroxyethylamine group. (4) Rest of
the macrocycle atoms topologically far from the "core set”, hydroxyl and carboxyl substituents of the macrocycle.
We tried to use as few of these atoms as possible since they adopt the most diverse conformations as compared
between the cycles, and we would not like to occasionally freeze them.

mean RMSD, A
average closest top-1
1.54 0.89 1.22

id scoring function

- enhanced Convex-PL

Table 4: Stage la redocking results. Here, we trained
the scoring function using the interactions with the dis-
placed solvent volume, atomic SASA values, and the
original Convex-PL score computed with a 5.2 A cut-
off.

Stage 2

Stage 2 was dedicated to the scoring exercises. The goal
was to correctly predict the relative binding affinities

of the set of 154 molecules binding the BACE receptor.
The 20 crystallographic structures of complexes from
Stage 1 were already revealed for this stage.

Structure preparation

Since the amount of computations required for dock-
ing of all the 154 compounds was considerably higher
compared to Stage 1, and more protein structures be-
came available for docking, we first selected a set of
target structures for each compound. The BACE 1 -
BACE 20 ligands were docked into the co-crystal re-
ceptors. For the rest of the cyclic ligands we first ex-
tracted the fragments containing the macrocycle only,
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BACE_ 19

BACE_14

)

Fig. 4: Examples of the closest poses from our Stage
1b nyrou submission. Crystallographic structures are
shown in blue, our predictions are shown in green. Bond
orders are not shown.

Fig. 5: BACE 7 ligand poses. Crystallographic struc-
ture is shown in blue, our initial Stage la prediction
from the buck5 submission is shown in red, the pose
obtained with redocking is shown in green. Bond or-
ders are not shown. Please note a considerable shift of
the red ligand compared to the crystallographic (blue)
one.

and the macrocycle with some substituents, such as
aromatic rings. We then computed the maximum com-
mon substructures of these fragments with the ligands
with known co-crystal structures, and selected the re-
ceptors with maximum MCS size resulting in 4 - 12
receptors per each compound. Receptors for the acyclic
BACE 145 and BACE 146 ligands were chosen based
on the overall MCS size.

To create the cyclic ligand structures, we followed
the algorithm applied in Stage 1b with several modifi-

cations. The pool of reference ligands now included the
20 co-crystal structures from Stage 1. In some cases we
visually inspected the results and supervised the pro-
cess of macrocycle structure generation.

Fuvaluation results

We ran out of time and have not finished docking of
all the conformations of macrocyclic molecules. We
have submitted two sets of predictions containing
about 60% and 80% of all docked conformations to see
how the result will change depending on these
numbers. This resulted in Kendall 7 of 0.12 for the
first subset’s best prediction, and 0.14 for the second,
which are listed in Table |5} We can see that regardless
the cutoff value, the ligand flexibility descriptor, which
estimates the conformational entropy change upon
binding, improved the results in all the enhanced
submissions. The scoring function wused in the
submission with the highest Kendall 7, zz4i5, was
trained on both solvent-related and entropy-related
descriptors. Unlike the Stage 1 pose prediction
exercise, where solvent-related descriptors almost did
not contribute to the comparison of the poses, here
they do influence the results, since binding poses of
different ligands are now compared to each other.

We have also evaluated the ability of our enhanced
scoring function to predict binding affinities based on
the docking poses generated by other predicting teams.
To do so, we firstly rescored all the available submis-
sions of structure-based predictor teams with the scor-
ing function used in the zz4i5 submission. Secondly,
we also applied local optimization to the ligand posi-
tions in the binding sites using AutoDock Vina’s al-
gorithm and the basic version of the Convex-PL scor-
ing function. We then recomputed the affinity scores.
Figure [] shows the rescoring results. We can see that
our approach does not improve the predictions of the
best submitters (those with Kendall 7 > 0.15). Local
optimization improves the results from 0.09 to 0.11 7
averaged over all the predictions without and with lo-
cal optimization, respectively. Our own submissions got
also slightly improved after the re-scoring.

We have also found out that we obtain rather good
affinity predictions with Kendall 7 equal to 0.24 when
using the docking poses submitted by the second-best
structure-based affinity predictor urt76. However, this
result gets worse if the local optimization is applied
prior to computing the affinities.
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% initial

id scoring function conformations Kendall’s ~ Spearman’s
docked T P
xx4i5 enhanced Convex-PL 80% 0.14 0.21
dzyxt  enhanced Convex-PL 80% 0.13 0.19
u7r6y  enhanced Convex-PL 80% 0.12 0.19
kzsvh enhanced Convex-PL 60% 0.12 0.18
i88wa original Convex-PL 80% 0.12 0.18
g6émvt  enhanced Convex-PL 60% 0.11 0.16

Table 5: Stage 2 affinity prediction results. Submissions dzyzt and kzsv5 were scored only with two descriptors,
the Convex-PL score computed with a 10 A cutoff and the ligand flexibility. The w76y submission was scored
using the ligand flexibility and the Convex-PL score computed with a 5.2 A cutoff. The zz4i5 and g6mut submis-
sions correspond to the scoring function trained on interactions with the volume of the displaced solvent, SASA
values, ligand flexibility, flexibility of the interacting receptor residues, and the Convex-PL score computed with a

5.2 A cutoff.
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Fig. 6: Re-scoring of the available structure-based sub-
missions computed with the scoring function that was
used in the xx4i5 submission. All scores were rounded
up to the second digit, as in the evaluation results chart.
Submissions dzji8 and pngkk were excluded from the
comparison due to the incorrect receptor structures.
Submissions 6jyjp and ufr7g were excluded from the
comparison because the provided ligand chemical struc-
tures did not correspond to the original structures.

Technical details

We computed symmetry-adapted RMSD values with a
modified GetBestRMS() function from the RDKit
package [34]. The RMSD values we obtained
corresponded to those reported in the official
evaluation results. Receptor alignment was done with
the PyMOL 1.8.6 [37] align function. Algorithm 1 was
implemented in python3 using RDKit. Images were
created with MarvinSketch, PyMOL 1.8.6, Matplotlib,
and Inkscape.

Conclusion

This docking exercise provided us a unique opportu-
nity to model macrocyclic ligands that bind to pro-
tein targets. The modeling part was challenging for
us, as we aimed to use structure-based approaches and
sampling in torsion coordinates. We have started with
a fully structure-based and automated docking proce-
dure. However, at the end of Stage la we analyzed
the docking results and discovered a very poor gen-
eration of realistic ligand macrocycle conformations.
Therefore, we supplemented the docking protocol with
constraints based on the structure of similar ligands. Fi-
nally, we converged to a stable pipeline that resulted in
sufficiently low (subangstrom) RMSD of binding poses.
During the restricted challenge timeframe we have not
tried other algorithms of fast ligand conformer genera-
tion besides the one implemented in RDKit. Yet, we be-
lieve that the problems we encountered with the amide
bond conformation undersampling in cycles deserve fur-
ther research and investigation.

In this exercise we compared the performance of our
original Convex-PL knowledge-based scoring function
with its several enhanced versions that included addi-
tional terms and were trained with shorter cutoff values
for the pairwise interactions. The additional descriptors
accounted for interactions with solvent, and for ligand
and receptor sidechain flexibility. Our results demon-
strated a considerably better on average pose prediction
power of the enhanced Convex-PL potential compared
to its original version. For example, in Stage 1b we ob-
tained the mean RMSD values averaged over top-5 best
predictions of 0.98 A for the enhanced Convex-PL ver-
sus 1.56 A for the original version. However, this pose
prediction improvement seems to be mostly caused by
the change in the cutoff value.
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In the affinity predictions we also relied on the val-
ues suggested by our scoring function. The resulting
correlations turned out to be average compared to the
other structure-based methods. We believe that we did
not manage to obtain good binding poses for all the 154
ligands in Stage 2. For example, if we applied our scor-
ing function to the pose predictions of some of the best
submitters, we could considerably improve our own re-
sult. After rescoring of other predictors’ submissions, we
also noticed that local gradient-based pose optimization
on average led to better binding affinity predictions.
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