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Abstract The D3R Grand Challenge 4 provided a bril-1

liant opportunity to test macrocyclic docking proto-2

cols on a diverse high-quality experimental data. We3

participated in both pose and affinity prediction exer-4

cises. Overall, we aimed to use an automated structure-5

based docking pipeline built around a set of tools de-6

veloped in our team. This exercise again demonstrated7

a crucial importance of the correct local ligand geom-8

etry for the overall success of docking. Starting from9

the second part of the pose prediction stage, we de-10

veloped a stable pipeline for sampling macrocycle con-11

formers. This resulted in the subangstrom average pre-12

cision of our pose predictions. In the affinity predic-13

tion exercise we obtained average results. However, we14

could improve these when using docking poses submit-15

ted by the best predictors. Our docking tools includ-16

ing the Convex-PL scoring function are available at17

https://team.inria.fr/nano-d/software/.18

keywords : protein-ligand docking; ensemble19

docking; macrocycle modeling; Convex-PL; conformer20

generation; D3R; Drug Design Data Resource; scoring21

function;22

Introduction23

The Drug Design Data Resource (D3R,24

www.drugdesigndata.org) is a community initiative25
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that hosts multiple blind challenges dedicated to 26

modeling of proteins-ligand association events. Two 27

subchallenges were suggested this time. Subchallenge 28

1 was focusing on pose and affinity predictions for the 29

ligands binding the beta secretase 1 (BACE) receptor. 30

In Subchallenge 2, participants were asked to predict 31

the affinities of ligands that bind the cathepsin S 32

(CatS) protein, which has already been a target of the 33

previous Grand Challenge 3. Our team has only 34

participated in the Subchallenge 1, which was divided 35

into two stages, Stage 1 and Stage 2. The goal of 36

Stage 1 was to predict the correct binding poses of the 37

ligands. Later on, Stage 2 targeted affinity or free 38

binding energy estimation for a larger set of ligands 39

(compared to ligands in Stage 1). Following the ideas 40

of the previous Grand Challenge 3, Stage 1 was split 41

into Stage 1a and Stage 1b, where Stage 1b was a 42

self-docking exercise allowing to utilize the revealed 43

co-crystal receptor structures. It was also possible to 44

participate in the affinity prediction in both substages 45

of Stage 1. However, we only took part in pose 46

prediction parts of Stage 1 substages, and in Stage 2. 47

This challenge provided interesting examples of 48

macrocycle docking. Macrocycles are often described 49

as large non-peptidic cyclic molecules. Modeling of 50

cyclic molecules generally poses multiple 51

computational tasks related to the preservation of 52

molecular topology upon sampling of cycle 53

conformations. When doing the sampling of cycles in 54

torsion coordinates, one often has to solve the loop 55

closure problem. There are efficient sampling methods 56

specifically developed for cyclic peptides [1]. However, 57

to the best of our knowledge, there are no free [2] 58

methods for macrocycle sampling in torsion 59

coordinates, which are essential for computationally 60

efficient docking protocols. 61

https://team.inria.fr/nano-d/software/
www.drugdesigndata.org
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In both stages of the exercise, we addressed the62

macrocycle docking problem using the classical fully63

structure-based sampling approach in torsional coordi-64

nates. This method keeps all the molecular cycles rigid.65

Therefore, we had to generate multiple starting confor-66

mations of each macrocycle. However, the cycle confor-67

mations we used in Stage 1a had unfavorable stereo-68

chemistry, which resulted in rather average RSMD val-69

ues of our predictions. In the subsequent stages, we70

guided the cycle conformational sampling using addi-71

tional constraints from the geometry of cyclic ligands72

crystallized with homologous receptors. This approach73

helped us to obtain low-RMSD predictions in Stage 1b.74

We have also participated in Stage 2, where we could75

only obtain average affinity prediction results.76

Docking strategies in previous exercises77

Several major docking challenges were organized during78

the past five years, namely CSAR 2013 [3], CSAR 201479

[4], D3R 2015-2016 [5], D3R Grand Challenge 2 [6], and80

D3R Grand Challenge 3 [7]. Some of them were remark-81

able for the exercise design or specific features of the82

receptor or ligands. For example, in Phase 1 of CSAR83

2013 exercise participants were asked to find the best84

protein sequence that binds with the same compound,85

which involved extensive homology modeling. The tar-86

get protein of the D3R Grand Challenge 2 was a flex-87

ible farnesoid X receptor (FXR). Its flexibility caused88

difficulties in pose predictions of several ligands, espe-89

cially those of chemical series unrepresented in the crys-90

tallized homologous structures from the Protein Data91

Bank (PDB) [8]. Subchallenge 1 of D3R Grand Chal-92

lenge 3 was focused on docking of chemically diverse93

ligand molecules to the CatS receptor. Although the94

receptor itself was fairly rigid, and a considerable num-95

ber of homologous structures were available in the PDB,96

docking to its wide binding pocket exposed to the sol-97

vent turned out to be quite challenging for many clas-98

sical structure-based approaches. The most successful99

strategies of ligand pose prediction for the CatS pro-100

tein were structure-based methods with search space re-101

stricted with respect to known ligand structures crystal-102

lized with homologous proteins [9–13]. Two of these sub-103

missions included 3D similarity-based ligand placement104

into the binding pocket with a subsequent optimiza-105

tion of the ligand and the receptor sidechains conforma-106

tions [9, 10]. Knowledge of ligand locations in homolo-107

gous proteins can also be directly included into the scor-108

ing function used in docking [13]. Participants also re-109

ported on additional molecular dynamics-based refine-110

ment that improved the pose prediction quality [9, 14].111

Explicit water molecules might be very important for112

proper estimation of interactions with the wide bind- 113

ing pockets [11]. Novel graph-based features for binding 114

free energies prediction were proposed [12]. The two lat- 115

est Grand Challenges are also remarkable for the first 116

demonstrations of the 3D convolutional neural network- 117

based methods [15]. Other approaches included molec- 118

ular dynamics-based sampling and thermodynamic av- 119

eraging [16] and implicit ligand theory [17] for binding 120

free energy predictions. 121

Challenge data 122

BACE is a transmembrane aspartic-acid protease that 123

is responsible for the cleavage of the amyloid precursor 124

protein. This leads to amyloid-β peptide formation [18]. 125

Beta amyloid is the main component of amyloid plaques 126

found in brains of Alzheimer’s disease patients, there- 127

fore activity regulation of beta-secretase is one of the 128

promising Alzheimer’s treatment strategies [19]. 129

BACE substrate is normally a polypeptide in the 130

extended β strand conformation. Potential BACE 131

inhibitors are designed to mimic this property, which 132

can be achieved with macrocyclization [20]. BACE 133

binding pocket contains several sub-sites, which are 134

partially or totally occupied by the inhibitor [21, 22]. 135

One of the types of aspartic protease inhibitors are 136

hydroxyethylamine-containig compounds, binding 137

with hydrogen bonds to the aspartate residues. 138

This challenge focused on 158 hydroxyethylamine 139

inhibitors provided by Novartis. 20 of them were used 140

in the pose prediction of Stage 1. These were one acyclic 141

and 19 macrocyclic compounds. Later on, 154 inhibitors 142

were used in the affinity (IC50) prediction of Stage 2. 143

Most of them were cyclic with cycle length varying be- 144

tween 14 and 17 atoms, with diverse substituents and 145

cycle structures. In this paper we will refer to these com- 146

pounds as to BACE_[ID], with ID ranging between 1 147

and 158. 148

Methods 149

This section briefly describes computational approaches 150

that we have been using throughout the challenge. We 151

were adapting the algorithms used for ligand conformer 152

generation and some of the scoring function parame- 153

ters between the stages based on the analysis of the 154

previous results. Therefore, our structure preparation 155

procedures and submission protocols will be described 156

and analyzed in the Submission protocols and discus- 157

sion section, along with the evaluation results discus- 158

sion. 159
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Pose sampling with AutoDock Vina and Convex-PL160

Below we will describe the docking pipeline applied in161

all the stages. Binding pocket was centered on the co-162

crystal ligand geometrical center. Box sizes were set163

to (22, 22, 25) Å with respect to the orientation of164

the original structure. All ligand conformations were165

cross-docked to all the chosen receptors with an in-166

house modified version of AutoDock Vina [23] using the167

Convex-PL potential as an integrated scoring function168

[24] and the Knodle parametrization of small molecules169

[25]. More precisely, we generated 400 poses for each170

ligand conformation for the subsequent re-scoring. In171

the AutoDock Vina configuration files, the parameter172

num_modes was set to 400 and exhaustiveness to 10.173

Our in-house modifications also include the change of174

num_saved_min to a bigger value so that more confor-175

mations are outputted. PDBQT-formatted (the format176

is an extension of the PDB file format, which also al-177

lows representing a kinematic tree of a molecule) struc-178

tures were generated in the AutoDockTools package179

[26], where we kept all rotatable bonds in the ligands to180

be flexible. Explicit hydrogens were removed from the181

molecules. In our parametrization, ligand protonation182

states are defined by the atom types, which are assigned183

according to the ligand 3D geometry. These were gen-184

erated from the provided SMILES strings using RDKit185

functions, as it is explained in more detail below. Re-186

ceptor atom types corresponded to those at neutral pH.187

Receptors were considered to be rigid.188

Then, we re-scored the obtained poses with the
Convex-PL potential [24] supplemented with
additional descriptors that account for the solvation
and ligand flexibility contributions to the binding free
energy. Coefficients corresponding to these descriptors
were trained with a linear ridge regression model to fit
binding constants of a set of structures in the training
set extracted from the PDBBind database [27]:

min ||y −Xw||22 + α ∗ ||w||22,

where y is a set of experimental binding constants, X
is a set of vectors of descriptors, α is a regularization
coefficient, and w is the unknown vector of weights.
We used several versions of the enhanced Convex-PL
scoring function, which differed from each other by the
feature weights, distance cutoff, and omitting some of
the descriptors. The features we chose to enhance
Convex-PL were designed to take into account
interactions with solvent and conformational ligand
entropy. Protein-solvent and ligand-solvent
interactions were computed using a grid representation
of the solvent volume that was displaced upon
binding. To do so, we constructed three solvent grids

for the complex, standalone receptor, and standalone
ligand using the linked-cell algorithm [28]. We marked
all grid cells that are not occupied by the receptor or
the ligand atoms as the solvent cells. Then, we
superposed the receptor and the ligand grids on the
complex grid and detected solvent cells overlapping
with the receptor or the ligand cells. We used their
centres as the positions of dummy atoms representing
the displaced solvent molecules. Finally, we computed
distance distribution functions between ligand atoms
and solvent dummy atoms, and receptor atoms and
solvent dummy atoms following the procedure
described in [24], and used them as protein-solvent
and ligand-solvent descriptors. We also used
additional atomic solvent-accessible surface areas
descriptors computed with the POWERSASA
library [29, 30]. For the ligand conformational entropy
we introduced a measure, called flexibility, which
quantifies the conformational space a ligand molecule
can adopt upon rotations about the rotatable bonds.
More precisely, we assume the ligand conformational
space to be discrete with its volume equal to the total
number of ligand conformations. We then define the
ligand flexibility as a logarithm of the conformational
space volume, following the definition of entropy, as

ligand flexibility = log

# bonds∏
i

wi,

where the product is taken over all the ligand bonds.
Coefficients wi specify the number of discrete rotations
about the bonds, wi = 3 for single bonds, wi = 2 for
double and conjugated bonds, and wi = 1 for triple
bonds. One of our submissions also included energy
terms that approximated the conformational entropy
of the receptor sidechains. We estimated the entropy
using a volume accessible to each of the sidechains nor-
malized by its solvent-accessible surface area. Then we
computed a set of 20 descriptors, one per each of the
amino acid types, using the following equation,

receptor flexibilitya = log

# residuesa∏
i

vi
si,unbound
si,single

,

where the product is taken over all amino acids of the 189

same type located at the interface with the ligand. Here, 190

a is a type of amino acid, vi is a precomputed con- 191

stant volume of a sphere that is obtained by the rota- 192

tion of the sidechain of type a around its Cβ carbon, 193

si,unbound is the solvent-accessible surface area of the 194

residue i computed for the receptor molecule in the un- 195

bound state, and si,single is the total surface area of the 196

same residue, if it is extracted from the receptor. 197
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The original Convex-PL is a knowledge-based scor-198

ing function, which we have already used in the pre-199

vious D3R and CSAR challenges [31–33]. It is freely200

available on our website at http://team.inria.fr/201

nano-d/convex-pl/. The cutoff distance for the pair-202

wise interactions in the original Convex-PL potential is203

10 Å. In order to minimize potential overfitting, we re-204

duced this value in most of the experiments with the en-205

hanced versions of Convex-PL. The captions of evalua-206

tion tables list the description of the Convex-PL param-207

eters we used during the computational experiments.208

Finally, the best poses were clustered with the 0.5209

Å threshold using the best-scored structures as seeds210

for the new clusters. The resulting scores in Stage 2211

were averaged over the top 10 predictions for each com-212

pound.213

Submission protocols and discussion214

Stage 1a215

For the first stage, we intended to use a simple and216

robust protocol with a minimal amount of user217

intervention, and also without using ligand-based218

approaches. Therefore we chose cross-docking of219

flexible ligands with multiple conformations of rigid220

cycles, to several receptor structures.221

Structure preparation222

Starting from the provided SMILES strings, we223

generated 1,000 3D conformations for each224

macrocyclic ligand using RDKit’s [34] EmbedMolecule225

function [35] with default parameters. We then226

clustered these conformations with respect to the227

pairwise locations of the cycle atoms using hierarchical228

clustering from scipy.cluster.hierarchy with a229

threshold of 0.2 Å. One conformation from each230

cluster was then selected for docking. For the acyclic231

BACE_20 we generated one conformation using232

RDKit’s EmbedMolecule function.233

The Protein Data Bank contains more than 300234

highly homologous structures of the BACE receptor,235

whose binding site seems to be rather conserved. Out236

of these 300 receptors, we selected 38 fully homologous237

structures for the acyclic BACE_20 docking. Nine of238

them were crystallized together with cyclic ligands and239

thus we chose them for the BACE_1-19 docking. Ta-240

ble 1 lists the PDB codes of selected structures. Apart241

from removing solvent molecules we did not do any242

other modifications of the selected structures.243

Docking 244

Docking and scoring were performed according to the 245

pipeline described above. 246

Evaluation results 247

It turned out that all cyclic ligand conformations gen- 248

erated by RDKit had an incorrectly sampled dihedral 249

angle between the atoms of an amide group leading to 250

a cis conformation instead of the native trans one. This 251

angle is denoted as α in Figure 1, and is a part of all 252

the cycle-containing ligands of Stage 1. This resulted 253

in completely wrong geometry of the whole neighbor- 254

hood of the amide group, which could not be fixed by 255

docking due to the macrocycle rigidity. An example of 256

an incorrectly predicted cycle conformation is shown 257

in Figure 1, where the inclination of the cycle plane is 258

different from the native geometry. In many cases this 259

also lead to flipped and shifted ligand docking poses, 260

which produced high RMSD values. We have noticed 261

this amide bond sampling problem at the very end of 262

the Stage 1a timeframe, and submitted two predictions 263

where the flipped and shifted poses were rejected based 264

on the cycle similarity with the co-crystallized ligands. 265

One more submission also used visual inspection. Over- 266

all, improper cycle conformations lead to lower than av- 267

erage and average in case of the manual or automatic 268

pose rejection results listed in Table 2. Using the auto- 269

matic pipeline without rejection of unrealistic poses, we 270

obtained satisfactory low RMSDs for only a few ligands, 271

one of which was the acyclic BACE_20. 272

Stage 1b 273

Structure preparation 274

For Stage 1b, crystallographic structures of all the re- 275

ceptors were revealed by the challenge organizers, and 276

we used them to repeat the docking calculations. We 277

removed the water molecules, and no other additional 278

modifications were applied to the receptor structures. 279

Learning from the Stage 1a experience, we changed 280

the way to sample ligand cycles. Initially we only tried 281

to sample more conformations (up to 10,000). 282

However, it turned out that in all of them RDKit 283

produced the wrong α value of the dihedral angle 284

despite different combinations of parameters in the 285

EmbedMolecule() function. We then tried to minimize 286

all conformers using a force field with a constraint on 287

the wrongly predicted dihedral angle. The constraint 288

applied with the UFF force field implemented in 289

RDKit did not affect the final results. Also, 290

http://team.inria.fr/nano-d/convex-pl/
http://team.inria.fr/nano-d/convex-pl/
http://team.inria.fr/nano-d/convex-pl/
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2f3e 2f3f 3dv1 3dv5 3k5c 4dpf 4dpi 4gmi 4k8s
2fdp 2g94 2hm1 2iqg 2p4j 2qk5 2qmd 2qmf 2qmg
2qp8 2zjn 3cib 3cic 3dm6 3duy 3i25 3ixj 3ixk
3k5d 3k5f 3k5g 3kyr 3l58 3l5e 3lnk 3veu 4gid
4k9h 5dqc

Table 1: PDB codes of protein structures selected for Stage 1a docking. Structures highlighted in gray were used
for docking of the acyclic BACE_20 ligand only.

CH3N
H

O

CH3

N

O

O

CH3

O

HNH3C

H3C

OH

α

(a) (b)

Fig. 1: BACE_1 ligand. (a) Incorrectly sampled torsion angle of the amide group present in most of the 158
compounds is highlighted in light gray. On average, the dihedral angle α’s value differs by more than 100◦ from
the ones found in crystallographic structures. (b) The native ligand conformation is shown in blue, our top-scored
pose is shown in gray. It can be seen that the wrong α value leads to the incorrect conformation of the cycle.

id scoring function rejection of unrealistic
conformations

visual
inspection

mean RMSD, Å
average closest top-1

biw3a enhanced Convex-PL X X 1.99 1.40 1.82
jit54 enhanced Convex-PL X - 2.78 1.72 2.64
bsrv5 enhanced Convex-PL X - 2.88 1.77 2.64
buck5 enhanced Convex-PL - - 3.90 2.52 3.99
maej5 enhanced Convex-PL - - 3.92 2.57 3.99
s4fu0 original Convex-PL - - 5.45 3.77 5.47

Table 2: Stage 1a evaluation results. Here we applied different versions of the enhanced Convex-PL function. The
jit54 and buck5 submissions included the type-specific interactions with displaced solvent and Convex-PL score
computed with a 5.2 Å distance cutoff. The bsrv5 and maej5 submissions included the solvent-accessible surface
areas and the Convex-PL score computed with a 5.2 Å distance cutoff. In the biw3a submission, we chose the
highest-ranked poses scored with the three versions of Convex-PL used in all the other Stage 1a submissions, and
rejected some poses based on visual inspection.

constrained minimization using the MMFF94 [36]291

force field resulted in very distorted structures.292

Although at this stage it could have been possible to293

simply use another tool for conformer generation, not294

all of them are free, and we also felt being somewhat295

challenged to make RDKit generate better296

conformations. Finally, we decided to try the297

coordMap option of the EmbedMolecule() function,298

which rejects conformations where the distances299

between specified atoms’ positions are different from300

those passed through the coordMap argument, up to a301

certain threshold. When using only the 4 dihedral 302

angle atoms, conformational sampling results did not 303

change and the angle was still wrongly sampled. We 304

have tried to tweak internal threshold of this 305

map-based reduction in the RDKit source code, but it 306

did not improve the results. Therefore we increased 307

the size of the map, pushing ourselves to a more 308

ligand-based setup. Figure 2 schematically represents 309

an algorithm for the map generation used for cyclic 310

ligands. 311
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We started with computing the maximum common312

substructures (MCS0) between the cycles (including313

non-rotatable cycle substituents) of each target ligand314

and the cycles of the 9 ligands co-crystallized with315

proteins listed in Table 1. We also computed the316

maximum common substructures between the entire317

ligands (MCS). For each target ligand, we chose a318

reference ligand based on the MCS0 size. Then, we319

selected 4 atoms corresponding to the wrongly320

predicted amide group, and two carbon atoms bound321

to them, including one from the hydroxyethylamine322

group. These are shown in yellow in Figure 3 and will323

be referenced as a ”core set”. The mapping of these 6324

atom indices in the target ligand structure to the325

coordinates from the reference ligand structure were326

provided as a coordMap argument to the conformer327

generating function. We then computed α value of the328

generated conformers. If more than 10% α values were329

lying between −25◦ and 25◦, we saved the conformers330

and proceeded to the next target ligand. If not, we331

iteratively increased the map based on a set of rules332

illustrated in Figure 3 until 10% of structures would333

have the correct amide bond conformation. If more334

than 80% of the MCS was included into the map335

without providing good conformers, we moved to the336

next reference structure. If three reference structures337

were not sufficient, we aligned them to each other338

based on the coordinates of the atoms of the ”core339

set”, and used the union of the MCSs of both reference340

molecules to create a new mapping. After at least 10%341

of good conformations was achieved, we stopped the342

algorithm and saved the molecules. If ≥ 70% of343

conformations were generated with α values inside the344

[−25◦, 25◦] threshold interval, we squeezed this345

interval to [−10◦, 10◦] and rejected outlying346

conformations.347

Overall, even though we did not manage to find out348

what exactly led to the cycle sampling problems, this349

approach finally allowed us to create structures with350

correct α angle for all macrocyclic targets.351

Evaluation results352

This approach lead to low-RMSD results, summarized353

in Table 3. The mean RMSD of the closest pose of all354

our submissions was less than 1 Å. Figure 4 shows sev-355

eral examples of the poses we obtained in Stage 1b.356

The enhanced versions of Convex-PL on average pre-357

dict binding poses more accurately compared to the358

original version. For example, the top-1 ranked pose of359

the BACE_12 ligand in the dhueb submission was con-360

siderably shifted and rotated with respect to the native361

pose, which resulted in the 10.53 Å RMSD. In the ny-362

rou submission we obtained 0.80 Å RMSD. However, 363

the biggest contribution to this performance improve- 364

ment was driven not by the additional descriptors, but 365

by the change of the interaction cutoff distance to 5.2 Å, 366

which is smaller than the default value of 10 Å. This 367

smaller cutoff value was used to train the enhanced ver- 368

sions of Convex-PL in the nyrou and vfkn2 submissions. 369

The low contribution of additional descriptors can be 370

explained by the fact that all of them are related to the 371

interactions that a molecule could have with displaced 372

solvent. The BACE binding pocket is not very open to 373

solvent, and the fraction of ligand surface that could be 374

exposed to solvent does not change much even between 375

the poses with 10 Å RMSD difference. Therefore, the 376

sums of additional descriptors’ contributions were very 377

close to each other for the majority of ligand poses. 378

id scoring function mean RMSD, Å
average closest top-1

nyrou enhanced Convex-PL 0.98 0.84 0.89
vfkn2 enhanced Convex-PL 0.99 0.84 0.89
mjevm enhanced Convex-PL 1.14 0.79 1.00
dhueb original Convex-PL 1.56 0.90 1.60

Table 3: Stage 1b evaluation results. Enhanced version
of Convex-PL used in the nyrou submission was trained
on the interactions with the volume displaced solvent
and the original Convex-PL score computed with a
5.2 Å cutoff. The vfkn2 submission included solvent-
accessible surface area descriptors and the Convex-PL
score computed with a 5.2 Å cutoff. Scoring function
used in the mjevm submission included included inter-
actions with the volume of displaced solvent and the
original Convex-PL score computed with a 4.8 Å cut-
off.

Stage 1a redocking 379

To check how did the macrocycle conformer quality in- 380

fluenced the results of Stage 1a, we repeated the en- 381

semble docking of the BACE_1-19 ligand structures 382

prepared for Stage 1b to the set of 9 receptors used in 383

Stage 1a. As it could be expected, better ligand struc- 384

tures considerably improved the pose prediction. With- 385

out manual inspection or pose filtering we obtained the 386

subangstrom mean RMSD value for the closest pose 387

shown in the Table 4. Figure 5 illustrates the redocking 388

pose of the BACE_7, which is superimposed with the 389

one we submitted for Stage 1a. Here it can be clearly 390

seen how did the bad initial conformation from our sub- 391

mission lead to a considerable shift of the ligand inside 392

the pocket. 393
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Choose the reference structure

Put the ”core set” of 6
atoms into the CoordMap

Generate conformations

−25 ≤ α ≤ 25 for
≥ 10% of confs

≥ 80% of
MCS in map

Iteratively increase the CoordMap
mapping

Save conformations

no

no

yes

yes

Fig. 2: Algorithm 1. Schematic description of an algorithm for conformer generation in RDKit driven by distance
constraints. Please see main text for more details.

H3C
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(a) BACE_4

NH

O

N

N
H

O

H3C

OH

N
H

CH3

CH3

(b) BACE_12

Fig. 3: Examples of ligand mapping priority. Each color represents a different priority, which are ranked from 0 to
4. On each iteration of the algorithm an atom (or a group of atoms in case of rings) was added to the map with the
following priorities. (1) Atoms with minimal topological distance from the ”core set”, amide groups of the cycle,
aromatic substituents topologically close to the ”core set”. (2) Carbons and nitrogen of the hydroxyethylamine
group, non-carbon atoms of the cycle. (3) Atoms of the ”tails”, oxygen of the hydroxyethylamine group. (4) Rest of
the macrocycle atoms topologically far from the ”core set”, hydroxyl and carboxyl substituents of the macrocycle.
We tried to use as few of these atoms as possible since they adopt the most diverse conformations as compared
between the cycles, and we would not like to occasionally freeze them.

id scoring function mean RMSD, Å
average closest top-1

- enhanced Convex-PL 1.54 0.89 1.22

Table 4: Stage 1a redocking results. Here, we trained
the scoring function using the interactions with the dis-
placed solvent volume, atomic SASA values, and the
original Convex-PL score computed with a 5.2 Å cut-
off.

Stage 2394

Stage 2 was dedicated to the scoring exercises. The goal395

was to correctly predict the relative binding affinities396

of the set of 154 molecules binding the BACE receptor. 397

The 20 crystallographic structures of complexes from 398

Stage 1 were already revealed for this stage. 399

Structure preparation 400

Since the amount of computations required for dock- 401

ing of all the 154 compounds was considerably higher 402

compared to Stage 1, and more protein structures be- 403

came available for docking, we first selected a set of 404

target structures for each compound. The BACE_1 – 405

BACE_20 ligands were docked into the co-crystal re- 406

ceptors. For the rest of the cyclic ligands we first ex- 407

tracted the fragments containing the macrocycle only, 408
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BACE_2 BACE_19

BACE_20 BACE_14

Fig. 4: Examples of the closest poses from our Stage
1b nyrou submission. Crystallographic structures are
shown in blue, our predictions are shown in green. Bond
orders are not shown.

Fig. 5: BACE_7 ligand poses. Crystallographic struc-
ture is shown in blue, our initial Stage 1a prediction
from the buck5 submission is shown in red, the pose
obtained with redocking is shown in green. Bond or-
ders are not shown. Please note a considerable shift of
the red ligand compared to the crystallographic (blue)
one.

and the macrocycle with some substituents, such as409

aromatic rings. We then computed the maximum com-410

mon substructures of these fragments with the ligands411

with known co-crystal structures, and selected the re-412

ceptors with maximum MCS size resulting in 4 - 12413

receptors per each compound. Receptors for the acyclic414

BACE_145 and BACE_146 ligands were chosen based415

on the overall MCS size.416

To create the cyclic ligand structures, we followed417

the algorithm applied in Stage 1b with several modifi-418

cations. The pool of reference ligands now included the 419

20 co-crystal structures from Stage 1. In some cases we 420

visually inspected the results and supervised the pro- 421

cess of macrocycle structure generation. 422

Evaluation results 423

We ran out of time and have not finished docking of 424

all the conformations of macrocyclic molecules. We 425

have submitted two sets of predictions containing 426

about 60% and 80% of all docked conformations to see 427

how the result will change depending on these 428

numbers. This resulted in Kendall τ of 0.12 for the 429

first subset’s best prediction, and 0.14 for the second, 430

which are listed in Table 5. We can see that regardless 431

the cutoff value, the ligand flexibility descriptor, which 432

estimates the conformational entropy change upon 433

binding, improved the results in all the enhanced 434

submissions. The scoring function used in the 435

submission with the highest Kendall τ , xx4i5, was 436

trained on both solvent-related and entropy-related 437

descriptors. Unlike the Stage 1 pose prediction 438

exercise, where solvent-related descriptors almost did 439

not contribute to the comparison of the poses, here 440

they do influence the results, since binding poses of 441

different ligands are now compared to each other. 442

We have also evaluated the ability of our enhanced 443

scoring function to predict binding affinities based on 444

the docking poses generated by other predicting teams. 445

To do so, we firstly rescored all the available submis- 446

sions of structure-based predictor teams with the scor- 447

ing function used in the xx4i5 submission. Secondly, 448

we also applied local optimization to the ligand posi- 449

tions in the binding sites using AutoDock Vina’s al- 450

gorithm and the basic version of the Convex-PL scor- 451

ing function. We then recomputed the affinity scores. 452

Figure 6 shows the rescoring results. We can see that 453

our approach does not improve the predictions of the 454

best submitters (those with Kendall τ > 0.15). Local 455

optimization improves the results from 0.09 to 0.11 τ 456

averaged over all the predictions without and with lo- 457

cal optimization, respectively. Our own submissions got 458

also slightly improved after the re-scoring. 459

We have also found out that we obtain rather good 460

affinity predictions with Kendall τ equal to 0.24 when 461

using the docking poses submitted by the second-best 462

structure-based affinity predictor urt76. However, this 463

result gets worse if the local optimization is applied 464

prior to computing the affinities. 465



Docking macrocycles with Convex-PL 9

id scoring function
% initial

conformations
docked

Kendall’s
τ

Spearman’s
ρ

xx4i5 enhanced Convex-PL 80% 0.14 0.21
dzyxt enhanced Convex-PL 80% 0.13 0.19
u7r6y enhanced Convex-PL 80% 0.12 0.19
kzsv5 enhanced Convex-PL 60% 0.12 0.18
i88wa original Convex-PL 80% 0.12 0.18
q6mvt enhanced Convex-PL 60% 0.11 0.16

Table 5: Stage 2 affinity prediction results. Submissions dzyxt and kzsv5 were scored only with two descriptors,
the Convex-PL score computed with a 10 Å cutoff and the ligand flexibility. The u7r6y submission was scored
using the ligand flexibility and the Convex-PL score computed with a 5.2 Å cutoff. The xx4i5 and q6mvt submis-
sions correspond to the scoring function trained on interactions with the volume of the displaced solvent, SASA
values, ligand flexibility, flexibility of the interacting receptor residues, and the Convex-PL score computed with a
5.2 Å cutoff.
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Original scores
Convex-PL rescoring
Convex-PL rescoring
and local optimization

Fig. 6: Re-scoring of the available structure-based sub-
missions computed with the scoring function that was
used in the xx4i5 submission. All scores were rounded
up to the second digit, as in the evaluation results chart.
Submissions dxji8 and pngkk were excluded from the
comparison due to the incorrect receptor structures.
Submissions 6jyjp and ufr7g were excluded from the
comparison because the provided ligand chemical struc-
tures did not correspond to the original structures.

Technical details466

We computed symmetry-adapted RMSD values with a467

modified GetBestRMS() function from the RDKit468

package [34]. The RMSD values we obtained469

corresponded to those reported in the official470

evaluation results. Receptor alignment was done with471

the PyMOL 1.8.6 [37] align function. Algorithm 1 was472

implemented in python3 using RDKit. Images were473

created with MarvinSketch, PyMOL 1.8.6, Matplotlib,474

and Inkscape.475

Conclusion 476

This docking exercise provided us a unique opportu- 477

nity to model macrocyclic ligands that bind to pro- 478

tein targets. The modeling part was challenging for 479

us, as we aimed to use structure-based approaches and 480

sampling in torsion coordinates. We have started with 481

a fully structure-based and automated docking proce- 482

dure. However, at the end of Stage 1a we analyzed 483

the docking results and discovered a very poor gen- 484

eration of realistic ligand macrocycle conformations. 485

Therefore, we supplemented the docking protocol with 486

constraints based on the structure of similar ligands. Fi- 487

nally, we converged to a stable pipeline that resulted in 488

sufficiently low (subangstrom) RMSD of binding poses. 489

During the restricted challenge timeframe we have not 490

tried other algorithms of fast ligand conformer genera- 491

tion besides the one implemented in RDKit. Yet, we be- 492

lieve that the problems we encountered with the amide 493

bond conformation undersampling in cycles deserve fur- 494

ther research and investigation. 495

In this exercise we compared the performance of our 496

original Convex-PL knowledge-based scoring function 497

with its several enhanced versions that included addi- 498

tional terms and were trained with shorter cutoff values 499

for the pairwise interactions. The additional descriptors 500

accounted for interactions with solvent, and for ligand 501

and receptor sidechain flexibility. Our results demon- 502

strated a considerably better on average pose prediction 503

power of the enhanced Convex-PL potential compared 504

to its original version. For example, in Stage 1b we ob- 505

tained the mean RMSD values averaged over top-5 best 506

predictions of 0.98 Å for the enhanced Convex-PL ver- 507

sus 1.56 Å for the original version. However, this pose 508

prediction improvement seems to be mostly caused by 509

the change in the cutoff value. 510
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In the affinity predictions we also relied on the val-511

ues suggested by our scoring function. The resulting512

correlations turned out to be average compared to the513

other structure-based methods. We believe that we did514

not manage to obtain good binding poses for all the 154515

ligands in Stage 2. For example, if we applied our scor-516

ing function to the pose predictions of some of the best517

submitters, we could considerably improve our own re-518

sult. After rescoring of other predictors’ submissions, we519

also noticed that local gradient-based pose optimization520

on average led to better binding affinity predictions.521
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